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ABSTRACT—The image of a material’s surface varies not

only with viewing and illumination conditions, but also

with the material’s surface properties, including its 3-D

texture and specularity. Previous studies on the visual

perception of surface material have typically focused on

single material properties, ignoring possible interactions.

In this study, we used a conjoint-measurement design to

determine how observers represent perceived 3-D texture

(‘‘bumpiness’’) and specularity (‘‘glossiness’’) and modeled

how each of these two surface-material properties affects

perception of the other. Observers made judgments of

bumpiness and glossiness of surfaces that varied in both

surface texture and specularity. We quantified how changes

in each surface-material property affected judgments of

the other and found that a simple additive model captured

visual perception of texture and specularity and their in-

teraction. Conjoint measurement is potentially a powerful

tool for analyzing perception of surface material in real-

istic environments.

Surfaces can be analyzed at various spatial scales. Koenderink

and Van Doorn (1996) delineated three distinct scale ranges in

the perception of surface properties: megascale, mesoscale, and

microscale. These scales can be understood with reference to the

example of an orange (see Fig. 1). A megascale description of the

orange refers to its global shape, which is spherical. Mesoscale

refers to the properties of the orange skin, that is, the irregular

and bumpy surface (mesotexture) of the orange, which is similar

to the surface of a lemon, but dramatically different from the

surface of a smooth rubber ball. Variations at the microscale

level include changes in the microscopic surface structure of the

orange skin that result in its glossy appearance. To visually

identify an orange, one takes into account the geometry at all

three scales. Certain perceptual tasks, such as discriminating an

orange from an orange-colored rubber ball, require an ability to

detect differences in structural geometry at the meso- and mi-

croscales (i.e., material properties). Judgments of surface ma-

terial are made frequently and effortlessly, yet surprisingly little

is understood about how the visual system represents materials.

One difficulty in studying the perception of material is that

light interacts with surfaces in a complex way. As a conse-

quence, it may be difficult for the visual system to estimate

surface-material properties independently of one another and of

illumination and viewing geometry. Failures of material con-

stancy have been demonstrated for a variety of surfaces viewed

under different illumination conditions (Pont & te Pas, 2006).

Visual judgments of roughness, glossiness, and color are not

independent of viewing conditions or other surface properties

(e.g., Billmeyer & O’Donnell, 1987; Ferwerda, Pellacini, &

Greenberg, 2001; Fleming, Dror, & Adelson, 2003; Ho, Landy,

& Maloney, 2006; Ho, Maloney, & Landy, 2007; Hunter &

Harold, 1987; Pfund, 1930; Sève, 1993; Zaidi, 2001; although

see Obein, Knoblauch, & Viénot, 2004).

Previous work in the perception of material has considered

one perceived surface property at a time; however, most surfaces

display several properties (e.g., the gloss and mesotexture of an

orange, illustrated in Fig. 1). It would be useful if estimates of

gloss were unaffected by surface mesostructure and vice versa,

but cues to one surface property (e.g., size and position of

specular highlights) can affect visual judgments of another

property (e.g., shape). For example, gloss can affect the per-

ception of global shape by making curved surfaces appear more

curved (Braje & Knill, 1994; Mingolla & Todd, 1986; Todd &

Mingolla, 1983; Todd, Norman, Koenderink, & Kappers, 1997)

and by making convex surfaces appear concave (Blake &

Bülthoff, 1990, 1991; but also see Nefs, Koenderink, & Kap-

pers, 2006). Systematic patterns of distortions created by

specular highlights on a surface provide a substantial amount of

information about 3-D surface curvature, and human observers

use this information to derive 3-D shape (Fleming, Torralba, &

Adelson, 2004; Norman, Todd, & Orban, 2004). Similarly, it has

been shown that shape can affect judgments of surface reflec-

tance (Nishida & Shinya, 1998). Changes in curvature of glossy
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surfaces produce changes in shape, size, and distribution of

specular highlights, and such changes, in turn, can affect

judgments of glossiness (e.g., Beck & Prazdny, 1981; Berz-

hanskaya, Swaminathan, Beck, & Mingolla, 2005).

Figure 2 illustrates how perceived gloss and mesotexture in-

teract. Figure 2b shows the same surfaces as Figure 2a with

specular highlights removed. The surfaces look less glossy, as

one might expect, but also less bumpy. This interaction is not

unexpected given recent research. Techniques have been de-

veloped to successfully recover mesotexture from specularities

(Chen, Goesele, & Seidel, 2006; Wang & Dana, 2006). Thus, a

surface’s specular content can provide strong visual cues that

humans use to estimate local shape geometry (i.e., mesotexture).

The effect of removing specularities in Figure 2 suggests that two

properties—gloss and mesotexture—interact in judgments of

glossiness and bumpiness.

We had two goals in the study reported in this article. First, we

wanted to estimate perceptual scales for two material properties,

gloss and mesotexture. Second, we wanted to model and un-

derstand their evident interaction. We employed a particular

method, conjoint measurement, that allowed us to achieve both

goals with one experimental design (Krantz, Luce, Suppes, &

Tversky, 1971, chaps. 6 and 7; Luce & Tukey, 1964; Roberts,

1979, chap. 5). We demonstrate that an additive conjoint-mea-

surement model sufficiently describes the psychophysical

mapping of each property to internal scales of gloss and

bumpiness. Although this is not the first study to examine the

perceptual scaling of a material property (i.e., Ferwerda et al.,

2001, determined the perceptual scaling of gloss for flat sur-

faces), it is the first to simultaneously estimate the perceptual

scaling for each of two material properties of a given surface and

provide a simple model of their interaction.

METHOD

Stimuli

The stimuli were 3-D mesotextured surfaces positioned in a

frontoparallel plane 70 cm in front of the observer. For conve-

nience, we refer to the mesotexture in these surfaces as

‘‘bumpiness.’’ Each stimulus was assigned one of five possible

bump levels (mesotexture) and one of five gloss levels (specular

reflectance), for a total of 25 possible surfaces. We denote the

physical values of glossiness as gi and bumpiness as bj (i, j 5 1,

2, . . . , 5).

We defined the stimuli using a Cartesian coordinate system

whose x- and y-axes lay within the frontoparallel plane of the

stimulus. The z-axis was parallel to the observer’s line of sight.

Four hundred points forming a 20-cm � 20-cm square grid in

the stimulus plane were jittered in the x- and y-directions by

random values ranging over �0.2 cm. An ellipsoid with prin-

cipal axes parallel to the x-, y-, and z-axes was centered on each

of these 400 points, and neighboring ellipsoids were allowed to

intersect. The radii in the x and y directions were 1 cm. For a

surface texture with bump level bj, the z radii of the ellipsoids

were chosen randomly from the range [0, bj], where bj 5 (j 1 1)2/

10 cm.

The gloss value gi was used to set two parameters associated

with specular reflectance in Ward’s (1994) reflectance model as

implemented by the Radiance rendering software: the specular

reflectance parameter, rs, which controls the proportion of in-

coming light reflected off the surface at an angle close to the

angle of incidence, and the microroughness parameter a, which

controls the amount of blurring of the specular lobe. Gloss level

Fig. 2. Examples of real-world mesoscale texture (a) with and (b) with-
out specular highlights. The image of the raspberries in (b) was created by
using a polarizing filter, and the image of the toad in (b) was created by
digitally removing highlights using Adobe Photoshop CSTM software.

Fig. 1. An example of a typical object (an orange) that has (a) megascale,
(b) mesoscale, and (c) microscale properties.
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g1 corresponded to a matte (Lambertian) surface reflectance

(i.e., rs 5 0, making a irrelevant). Gloss levels g2 through g5

corresponded to four logarithmically spaced levels, with rs

ranging from .007 up to .053 and a ranging from .178 down to

.032. A combination of a high value of rs and a low value of a
yielded a surface of high gloss and sharp highlights, whereas a

low value ofrs and a high value ofa yielded a surface of low gloss

with blurred highlights. These gloss levels were chosen such

that each level of gloss was approximately equally discriminable

from the next (see Fleming et al., 2003; Pellacini, Ferwerda, &

Greenberg, 2000). The diffuse component (rd), or surface al-

bedo, was fixed at red 5 .1, green 5 .2, and blue 5 .1, yielding a

dark-green surface color. All surfaces were rendered with in-

terreflections (up to two ambient bounces), as well as occlusions

and vignetting.

Each surface was rendered under a rectangular light source

that measured 92 cm � 52 cm and was positioned above and to

the left of the observer. These scene and object parameters

provided the observer with several cues to gloss, including the

color and shape of the specular highlights. Each stimulus was

rendered from the right and left eyes’ viewpoints, and viewed

binocularly, so as to provide a binocular-disparity cue to depth.

Four random surfaces were generated for each combination of

gloss and bump levels to minimize the chance of observers using

idiosyncratic patterns in the distribution of ellipsoids to aid their

judgments. Figure 3 shows a single stimulus stereo pair and a

representative set of stimuli showing all combinations of phys-

ical gloss and bumpiness.

Apparatus

We presented the left and right images to the corresponding eyes

of the observer on two 21-in. Dell LCD monitors placed to the

observer’s left and right and viewed through a mirror stereo-

scope. Lookup tables were used to correct the nonlinearities in

the gun responses and to equalize the display values on the two

monitors on the basis of luminance measurements made with a

Photo Research PR-650 spectrometer (Chatsworth, CA). The

maximum luminance achievable on either screen was 114 cd/

m2. The stereoscope was contained in a box whose side mea-

sured 124 cm. The front face of the box was missing, and a chin-

head rest was positioned there. The interior of the box was

coated with black flocked paper (Edmund Scientific, Tonawan-

da, NY) to absorb stray light. Only the stimuli on the screens of

the monitors were visible to the observer. The casings of the

monitors and any other features of the room were hidden behind

the nonreflective walls of the box. Additional light baffles were

placed near the observer’s face so that light from the screens

could not reach the observer’s eyes directly. The optical distance

from each of the observer’s eyes to the corresponding computer

screen was 70 cm. The stimuli were rendered to be 70 cm in front

of the observer to minimize any conflict between binocular

disparity and accommodation. The observer’s eyes were ap-

proximately in line with the center of the scene being viewed.

Software

The experimental software was written in the C programming

language. We used the X Window System, Version 11R6

(Scheifler & Gettys, 1996), running under Red Hat Fedora Core

2 for graphical display. The computer was a Dell Optiplex GX

270 Workstation with a Matrox G450 graphics card. The ren-

dered stereo image pair was represented by floating-point (red,

green, blue) triplets, one for each pixel of the image. These

triplets were the relative luminance values of the pixels. We

translated the output relative luminance values to 24-bit

graphics codes, correcting for nonlinearities in the monitors’

responses by means of a measured lookup table for each monitor.

Procedure

Two sets of observers participated, the first judging bumpiness

(Experiment 1) and the second judging glossiness (Experiment

Fig. 3. Example of a stimulus stereo pair (a) and a representative set of
stimuli showing all combinations of gloss level and bump level (b). The
stimuli were green surface patches composed of intersecting ellipsoids in a
20 � 20 grid. The example in (a) has physical gloss level i 5 2 and bump
level j 5 3. The left and right image pairs are for crossed and uncrossed
binocular viewing, respectively.
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2). All observers first participated in a screening test that con-

sisted of two blocked conditions in which they were required to

make judgments of bumpiness or glossiness within each given

level of gloss or bumpiness, respectively. We performed the

screening test to ensure that observers could order the stimuli in

bumpiness when gloss was fixed and vice versa. In doing so, we

tested one of the necessary conditions for an additive conjoint

representation, monotonicity (Krantz et al., 1971, p. 249).

On each screening trial, observers viewed two surfaces in

succession and judged which appeared bumpier or glossier,

depending on the condition. In the condition in which observers

judged bumpiness, only the comparisons between stimuli with

the same gloss level were tested, resulting in a total of 50 trials (1

trial per comparison). Likewise, glossiness judgments were

made only for pairs of stimuli having the same level of bumpi-

ness.

On each trial of the main experiment, observers viewed 1 of

the 325 possible pairs (including self-comparisons) of the 25

types of surfaces illustrated in Figure 3b. As in the screening

test, the observer’s task was to judge which of the two surfaces

appeared bumpier (Experiment 1) or glossier (Experiment 2).

Each pair was presented three1 times.

The sequence on each trial was follows: First, a central fixa-

tion point was presented for 200 ms. Next, the first surface was

presented for 400 ms followed by a 200-ms interstimulus in-

terval (blank frame). Then, the second surface was presented for

400 ms. The observer indicated by key press whether the first or

second surface appeared to be bumpier (or glossier). The next

trial was initiated immediately after the response.

Observers

A total of 12 observers participated in this study (6 each in

Experiments 1 and 2). One additional observer failed to pass the

screening test (i.e., responded correctly on fewer than 90% of

the trials) and was excluded from the main study. All observers

were unaware of the purpose of the study and had normal or

corrected-to-normal vision.

AN ADDITIVE CONJOINT-MEASUREMENT MODEL OF
MATERIAL PERCEPTION

To determine whether observers could ignore cues to gloss when

making judgments of bumpiness and vice versa, we fit an ad-

ditive conjoint model to our data. For the model, it was assumed

that the physical gloss level gi and bump level bj of surface Sij

separately and additively contribute to perceived bumpiness

and gloss. Perceived bumpiness was modeled in an additive

model2 Bij
A as the sum of contributions (‘‘cues’’) to bumpiness

from physical bumpiness Bb(bj) and physical gloss Bg(gi):

Bij
A ¼ BgðgiÞ þ BbðbjÞ ¼ Bi

g þ Bj
b: ð1Þ

Perceived gloss was modeled similarly:

Gij
A ¼ GgðgiÞ þ GbðbjÞ ¼ Gi

g þ Gj
b: ð2Þ

Note that this is not the typical weighted linear cue-combination

model commonly discussed in the literature (e.g., Landy, Ma-

loney, Johnston, & Young, 1995). We assumed only that cues

combine additively after we scale them by functions Bg( . ),

Bb( . ), and Gg( . ), Gb( . ).

As written, Equations 1 and 2 model interactions by additive

‘‘contamination’’ of the estimate of one property by cues to the

other. If the two surface properties do not interact, then Bi
gand

Gj
b should equal zero for all i and j. When analyzing the data, we

tested this simple additive model against a model that allowed

more complex, nonadditive interactions between the surface

properties.

In comparing the bumpiness of surfaces Sij and Skl, we assume

that the observer forms the noise-contaminated decision vari-

able

D ¼ Bij
A � Bkl

A þ e; e � Gaussianð0;s2Þ; ð3Þ

and judges surface Sij as bumpier precisely for values of D
greater than 0. The parameter s represents the observer’s pre-

cision in judgment.

If we simultaneously scaled all the values of Bij
Aand s by a

positive constant, or added a constant to all of the values of Bij
A,

the predictions of the model would not be affected. For conve-

nience, we anchored the scales by setting B1
b ¼ B1

g ¼ 0 and

scaled them so that s 5 1. We then estimated the remaining

eight free parameters B2
g; . . . ;B5

g and B2
b; . . . ;B5

b using max-

imum likelihood estimation (Mood, Graybill, & Boes, 1974). We

fit a similar model of comparisons of gloss.

Our model makes no assumption about the direction of the

cue’s effect, that is, whether gloss increases or decreases

bumpiness; estimated parameters can be positive or negative.

Indeed, in a departure from the ordinary additive conjoint model

(Krantz et al., 1971, chap. 6) we do not force Bg( . ), Bb( . ), and

Gg( . ), Gb( . ) to be monotonic functions.

RESULTS

Judgments of bumpiness and glossiness from 2 typical observers

in Experiments 1 and 2, respectively, are shown in Figures 4a

and 4b, along with predicted results of an ideal observer whose

judgments are uncontaminated by cues from the task-irrelevant

property. Although observers’ performance is fairly close to

ideal, there are obvious deviations. We estimated the perceived-

bumpiness and perceived-gloss parameters, Bij
A and Gij

A, by

maximum likelihood fit of the additive model to determine the

relationship (if any) between gloss and mesotexture. Figure 4c

shows the averaged parameter estimates for all observers in

Experiments 1 and 2. Note that the parameter estimates were

1This value was determined to be the smallest number of repetitions needed
to produce reliable parameter estimates for gloss and bumpiness (on the basis of
simulations of the additive conjoint-measurement model).

2Note that we use superscript ‘‘A’’ to refer to our additive models and su-
perscript ‘‘F’’ to refer to the full model, which we discuss in the Results section.
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first normalized to the maximum value of Bj
b (or Gi

g) for each

observer to best illustrate the relative magnitude of cue con-

tamination. The monotonically increasing form of Bb( . ) shows

that perceived bumpiness increased with bump level. Likewise,

perceived gloss increased with gloss level. These results are not

surprising given that observers were screened in advance to

ensure that their ordering of bumpiness and glossiness was close

to veridical. What is surprising is that the functions of perceived

bumpiness and gloss were strikingly similar across all observers

in each experiment (data not shown, except indirectly in Fig. 5),

which suggests that observers used one common perceptual

scale for bumpiness and one common scale for glossiness. The

internal scaling of bumpiness and glossiness can be described

by simple transformations of the corresponding physical prop-

erties.

Were observers’ judgments of bumpiness and glossiness

contaminated by cues to the irrelevant property? Clearly, all

parameter estimates Bi
g and Gj

b were greater than zero for i, j 5

2, . . . , 5 for the 2 typical observers whose data are shown in

Figure 4. We tested whether there was significant contamination

of bumpiness judgments by changes in gloss and vice versa for

all observers using a nested hypothesis test (Mood et al., 1974,

pp. 440 ff.).

To do this, we fit the data to an independent-property model in

which the task-irrelevant contributions (Bi
g and Gj

b) were fixed

at zero. Thus, the independent-property model for perceived

bumpiness has only four parameters ðB2
b;B3

b;B4
b; and B5

bÞ, as

does the independent-property model for perceived gloss. The

fits of these independent-property models were compared with

the fits of the additive models by the same likelihood-ratio test.

The independent-property model was rejected, at the Bonfer-

roni-corrected level, for 4 out of 6 observers in each experiment

(w2� 0.089, p< .008; see Tables 1 and 2). In other words, most

observers could not ignore cues to gloss in making judgments of

bumpiness, and, similarly, most observers could not ignore cues

to bumpiness in making judgments of glossiness. An increase of

gloss increased perceived bumpiness for all observers by an

average of 11% of the range of bump levels we used. Likewise,

glossiness judgments for surfaces with greater bumpiness in-

creased by an average of 27% of the range of gloss levels used.

Fig. 4. Results for Experiments 1 and 2. In (a), bumpiness judgments made by 1 typical observer (R.K.) in Experiment 1 are shown along with
predicted judgments of bumpiness uncontaminated by changes in physical gloss (i.e., judgments of the ideal observer). In (b), glossiness judgments
made by 1 typical observer (F.C.) in Experiment 2 are shown along with predicted judgments of glossiness uncontaminated by changes in physical
bumpiness (i.e., judgments of the ideal observer). The gray levels of the squares in the matrices represent the proportion of time that a surface Skl was
perceived to be (a) bumpier or (b) glossier than another surface Sij, for each pair-wise comparison. Gloss level i (or k) is indicated by the large
numerical labels (1, 2, . . . , 5), and bump level j (or l) is indicated by the small numerical labels (1, 2, . . . , 5). The graphs in (c) present the normalized
parameter estimates for the additive model, averaged across all observers in Experiments 1 (top) and 2 (bottom). Parameter estimates for bumpiness
and glossiness judgments as a function of gloss level—Bi

g and Gi
g, respectively—are indicated in gray, and estimates for bumpiness and glossiness as a

function of bump level—Bj
b and Gj

b, respectively—are indicated in black. Parameter estimates for observers R.K. and F.C. are indicated by the open
circles. Standard errors across observers are plotted for each experiment (N 5 6).

200 Volume 19—Number 2

Gloss and Surface Texture



In the top rows of Figures 5a and 5b, we plot for all observers

the same curves shown in Figure 4c, but in a form commonly

used in analysis of variance. The solid lines correspond to the fit

of the additive model, which forces these contours to be parallel.

The clean separation of the contours confirms that perceived

bumpiness increased with physical bumpiness and perceived

gloss increased with physical glossiness for all observers (the

same result shown by the upper curves in Fig. 4c). Almost all

observers perceived an increase in bumpiness with increasing

gloss level, as shown by the slight upward trend in almost all of

Fig. 5. Predictions of the full and additive models and residual differences for all observers in Experiments 1 and 2. In (a), estimates of perceived
bumpiness from the fits of the full (Bij

F; dashed lines) and additive (Bij
A; solid lines) models are plotted as a function of gloss level, with bump level as the

parameter. Corresponding residual differences, Bij
F � Bij

A, are shown as gray-scale plots in the bottom row. In (b), estimates of perceived gloss from the
fits of the full (Gij

F) and additive (Gij
A) models are plotted as a function of bump level, with gloss level as the parameter. Again, corresponding residual

differences, Gij
F � Gij

A, are shown in the bottom row. The ^ symbol indicates participants who exhibited significant differences between the fits of the
additive and independent-property models. The symbol indicates participants who exhibited significant differences between the fits of the full and
additive models. (Note that residuals were forced to have a mean of 0; an additive shift of scale values leaves the predictions of both models unchanged.)

TABLE 1

Log-Likelihood Values for Three Models and p Values for Nested Hypothesis Tests Comparing the Models: Experiment 1

Model or test

Observer

B.M. C.L. N.B. R.K. R.Y. S.G.

I. Full model (24 parameters) �241.95 �182.05 �236.88 �230.77 �258.31 �370.78

II. Additive model (8 parameters) �248.86 �188.56 �254.30 �238.24 �267.17 �380.73

Test: I vs. II .612 .671 .004 .528 .340 .225

III. Independent-property model (4 parameters) �267.11 �239.92 �267.75 �250.06 �273.67 �385.27

Test: II vs. III < .0001 < .0001 < .0001 < .0001 .011 .059

Note. Boldface indicates p values that were significant at the Bonferroni-corrected alpha level, .008.
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the bumpiness-level contours (Fig. 5a). Similarly, most observ-

ers could not ignore bumpiness when making judgments of

glossiness (Fig. 5b), although in this case the trend was less

clearly monotonic, again confirming the trend observed in Fig-

ure 4c.

To evaluate whether the additive conjoint model adequately

fits the data, we compared the fit of that model with the fit of a full

model that allows nonlinear interactions between the two cues.

In the full model, we model the perceived bumpiness, Bij
F, as an

unconstrained value,

Bij
F ¼ BFðgi; bjÞ; ð4Þ

and we model perceived gloss similarly,

Gij
F ¼ GFðgi; bjÞ: ð5Þ

As before, we assume that, in comparing the perceived bumpi-

ness of surfaces Sij and Skl, the observer forms the noise-con-

taminated decision variable

D ¼ Bij
F � Bkl

F þ e; e � Gaussianð0;s2Þ; ð6Þ

and judges surface Sij as bumpier precisely when the value of D
is greater than 0. Again, without loss of generality, we anchored

the scale by setting B11
F ¼ 0 and s 5 1. We then estimated the

remaining 24 values of Bij
F. We fit the glossiness judgments

analogously.

The parameter estimates in the full model, Bij
F and Gij

F, are

plotted as dashed lines in Figures 5a and 5b, respectively. We

performed a nested hypothesis test (Mood et al., 1974, pp. 440

ff.) to determine whether the full model resulted in a signifi-

cantly better fit to the choice data than the more constrained

additive model. The nested hypothesis test revealed that at the

Bonferroni-corrected level, the additive model performed just as

well as the full model for 5 of the 6 observers in Experiment 1

and 3 of the 6 observers in Experiment 2 (w2� 32.61, p< .008;

see Tables 1 and 2). This suggests that the additive model

sufficiently describes the interactions in the data for 8 of the 12

observers.

We also regressed the additive model’s predictions against the

full model’s predictions to examine any differences between the

two models in more detail. R2 values ranged from .97 to .99 (Mdn

5 .98) for the 6 observers in Experiment 1 and from .83 to .99

(Mdn 5 .96) for the 6 observers in Experiment 2. Thus, for all

observers, including those who exhibited significant differences

between the additive and full models’ predictions, the predic-

tions of the two models were strikingly similar. Finally, to de-

termine if the predictions of the full model differed from those of

the additive model in a systematic way, we computed the re-

sidual differences between the two models for both judgments

(i.e., Bij
F � Bij

A and Gij
F � Gij

A) and normalized the residuals

for each subject to have a mean of 0. Gray-scale plots of the

normalized residuals are shown in the bottom rows of Figures 5a

and 5b. The residual values are small and show no obvious

common pattern. Thus, we conclude that the additive model is

adequate to model the data.

DISCUSSION

In this study, we used conjoint measurement to derive scales for

the perceptual correlates of two surface-material properties,

gloss and bumpiness. An ideal observer judging glossiness

should ignore variations in surface texture, and an ideal ob-

server judging variations in surface texture should ignore

glossiness. In contrast, most human observers in our study

perceived physically glossier surfaces to be bumpier and

physically bumpier surfaces to be glossier, despite the avail-

ability of binocular disparity, a cue potentially used to disam-

biguate bumpiness from gloss. These patterns of interactions are

analogous to those found in previous studies concerning gloss-

iness and megascale judgments of shape. In these studies,

curved surfaces with high gloss appeared to have a greater de-

gree of surface curvature than surfaces with low gloss (Braje &

Knill, 1994; Mingolla & Todd, 1986; Nishida & Shinya, 1998;

Todd & Mingolla, 1983; Todd et al., 1997).

In estimating the perceptual scales of glossiness and bumpi-

ness, we found that we could model the interaction of the two

properties as a simple additive contamination of each by the

other. The degree of contamination, although statistically sig-

nificant, was small on average across observers: about 11% for

contamination of bumpiness by gloss and 27% for contamination

of gloss by bumpiness, relative to the range of the relevant cue in

our stimulus set.

TABLE 2

Log-Likelihood Values for Three Models and p Values for Nested Hypothesis Tests Comparing the Models: Experiment 2

Model or test

Observer

A.T. F.C. I.Z. K.K. L.V. S.F.

I. Full model (24 parameters) �337.27 �259.48 �277.45 �177.17 �479.28 �322.36

II. Additive model (8 parameters) �340.71 �273.73 �302.84 �250.38 �495.82 �337.49

Test: I vs. II .976 .028 < .0001 < .0001 .007 .017

III. Independent-property model (4 parameters) �379.09 �335.90 �308.10 �278.37 �544.04 �343.08

Test: II vs. III < .0001 < .0001 .033 < .0001 < .0001 .024

Note. Boldface indicates p values that were significant at the Bonferroni-corrected alpha level, .008.
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What might explain the interactions we observed? Re-

searchers have proposed that the visual system makes use of

simple, image-based statistics to evaluate material properties.

In particular, Nishida and Shinya (1998) found that visual es-

timates of surface reflectance could be modeled by a luminance

histogram-matching algorithm. Recently, Motoyoshi, Nishida,

Sharan, and Adelson (2007) found that visual estimates of gloss

correlate well with the skewness of the distribution of luminance

values and that changing the skewness of the distribution affects

perception of both surface lightness and glossiness. Motoyoshi

et al. proposed a biologically plausible model in which the

perception of surface reflectance properties is based on outputs

of units in the visual system that are sensitive to image statistics.

If the visual system relies on simple, image-based statistics in

judging a surface property such as gloss, then changes in other

surface properties or viewing conditions that affect these image

statistics may lead to errors in estimating the surface property in

question. In a previous study, we found that human observers’

estimates of surface roughness were affected by image statistics

that varied not only with surface roughness, but also with

lighting conditions and viewpoint (Ho et al., 2006, 2007). We

proposed that the observed failures in ‘‘roughness constancy’’

were due to erroneous cue learning, and, indeed, it has been

shown that associative learning can affect perceptual appear-

ance (for a review, see Haijiang, Saunders, Stone, & Backus,

2006). We advance a similar hypothesis here, suggesting that the

observed interactions were the result of imperfect cue learning,

an error that could perhaps be reduced with further training

involving both visual and haptic assessment of a range of bumpy,

glossy surfaces.

Judgments of glossiness, bumpiness, and global shape all

provide information about the structural properties of the orange

in Figure 1, but at very different spatial scales. The conjoint-

measurement procedure we employed in this study allowed us to

simultaneously estimate the visual perception of two properties

at two different scales, the meso- and microscales, and assess

how information at one scale affected perception at the other. We

found that both the derived perceptual scales and the interaction

could be modeled in a remarkably simple form. Conjoint mea-

surement is one type of scaling procedure that is potentially a

powerful tool for analyzing the perception of surface material

and, more generally, the perception of more complex visual

scenes.

Acknowledgments—This research was supported by National

Institutes of Health Grants EY16165 and EY08266. We thank

Victoria Sconzo for help with this study.

REFERENCES

Beck, J., & Prazdny, K. (1981). Highlights and the perception of

glossiness. Perception & Psychophysics, 30, 407–410.

Berzhanskaya, J., Swaminathan, G., Beck, J., & Mingolla, E. (2005).

Remote effects of highlights on gloss perception. Perception, 34,

565–575.

Billmeyer, F.W., & O’Donnell, F.X.D. (1987). Visual gloss scaling and

multidimensional scaling analysis of painted specimens. Color
Research Applications, 12, 315–326.

Blake, A., & Bülthoff, H. (1990). Does the brain know the physics of

specular reflection? Nature, 343, 165–168.

Blake, A., & Bülthoff, H. (1991). Shape from specularities: Compu-

tation and psychophysics. Philosophical Transactions of the Royal
Society B: Biological Sciences, 331, 237–252.

Braje, W.L., & Knill, D.C. (1994). Apparent surface shape affects

perceived specular reflectance of curved surfaces. Investigative
Ophthalmology and Visual Science, 35, S1628.

Chen, T., Goesele, M., & Seidel, H.-P. (2006). Mesostructure from

specularity. In Proceedings of IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (pp. 1825–1832).

Washington, DC: IEEE Computer Society.

Ferwerda, J.A., Pellacini, F., & Greenberg, D.P. (2001). A psycho-

physically-based model of surface gloss perception. In B.E.

Rogowitz & T.N. Pappas (Eds.), Human vision and electronic
imaging VI (proceedings volume) (pp. 291–301). Bellingham,

WA: SPIE Press.

Fleming, R.W., Dror, R.O., & Adelson, E.H. (2003). Real-world illu-

mination and the perception of surface reflectance properties.

Journal of Vision, 3, 347–368.

Fleming, R.W., Torralba, A., & Adelson, E.H. (2004). Specular re-

flections and the perception of shape. Journal of Vision, 4, 798–

820.

Haijiang, Q., Saunders, J.A., Stone, R.W., & Backus, B.T. (2006).

Demonstration of cue recruitment: Change in visual appearance

by means of Pavlovian conditioning. Proceedings of the National
Academy of Sciences, USA, 103, 483–486.

Ho, Y.-X., Landy, M.S., & Maloney, L.T. (2006). How direction of il-

lumination affects visually perceived surface roughness. Journal
of Vision, 6, 634–648.

Ho, Y.-X., Maloney, L.T., & Landy, M.S. (2007). The effect of viewpoint

on perceived visual roughness. Journal of Vision, 7, 1–16.

Hunter, R.S., & Harold, R.W. (1987). The measurement of appearance
(2nd ed.). New York: Wiley.

Koenderink, J.J., & Van Doorn, A. (1996). Illuminance texture due to

surface mesostructure. Journal of the Optical Society of America
A, 13, 452–463.

Krantz, D.H., Luce, R.D., Suppes, P., & Tversky, A. (1971). Founda-
tions of measurement: Vol. 1. Additive and polynomial represen-
tations. New York: Academic Press.

Landy, M.S., Maloney, L.T., Johnston, E.B., & Young, M. (1995).

Measurement and modeling of the depth cue combination: In

defense of weak fusion. Vision Research, 35, 389–412.

Luce, R.D., & Tukey, J.W. (1964). Simultaneous conjoint measure-

ment. Journal of Mathematical Psychology, 1, 1–27.

Mingolla, E., & Todd, J.T. (1986). Perception of solid shape from

shading. Biological Cybernetics, 53, 137–151.

Mood, A.M., Graybill, F.A., & Boes, D.C. (1974). Introduction to the
theory of statistics (3rd ed.). New York: McGraw-Hill.

Motoyoshi, I., Nishida, S., Sharan, L., & Adelson, E.H. (2007). Image

statistics and the perception of surface qualities. Nature, 447,

206–209.

Nefs, H.T., Koenderink, J.J., & Kappers, A.M.L. (2006). Shape-from-

shading for matte and glossy objects. Acta Psychologica, 121,

297–316.

Volume 19—Number 2 203

Yun-Xian Ho, Michael S. Landy, and Laurence T. Maloney



Nishida, S., & Shinya, M. (1998). Use of image-based information in

judgments of surface-reflectance properties. Journal of the Op-
tical Society of America A, 15, 2951–2965.

Norman, J.F., Todd, J.T., & Orban, G.A. (2004). Perception of three-

dimensional shape from specular highlights, deformations of

shading, and other types of visual information. Psychological
Science, 15, 565–570.
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