
PSYCH-GA 2240 – Fall 2023
Psychophysics

Mondays, 2-4, Room 159

Prof. Michael Landy – landy@nyu.edu

Often-used textbook:
Kingdom, F. A. A. & Prins, N. (2010). Psychophysics: A Practical Introduction. 

New York: Academic Press.

Other general references:
Baird, J. C. & Noma, E. (1978). Fundamentals of Scaling and Psychophysics. 

New York: Wiley.
Falmagne, J.-C. (1985). Elements of Psychophysical Theory. New York: Oxford.
Lu, Z.-L. & Dosher, B. A. (2014). Visual Psychophysics: From Laboratory to 

Theory. Cambridge, Mass.: MIT Press.
Software:

The Palamedes toolbox: http://www.palamedestoolbox.org

Psignifit: https://www.nip.uni-tuebingen.de/research/software/psignifit.html

Schedule and readings:
9/18: Introduction: Psychophysical tasks and procedures
9/25: Psychometric functions: how to fit, what to estimate, goodness of fit
10/2: Yes/no tasks, signal detection theory and the psychometric function
TUESDAY, 10/10: Adaptive procedures: Staircases, Quest, Pest, Ape, Psi and all 

that
10/16: Rating-scale methods and getting to high d’, Interval bias, detection and 

identification
10/23: Techniques for fitting models: one, two or many parameters
10/30: Parameter estimation and confidence intervals
11/6: Controversies: Wichmann/Hill, Klein, Prins
11/13: Bayesian parameter estimation, Jeffries priors, marginalization
11/20: Model comparison I: Why use Bayesian inference? A cautionary tale
11/27: Model comparison II: Sampling methods
12/4: Model comparison III: Bayesian model comparison
12/11: Practical advice and packages for model comparison

mailto:landy@nyu.edu
http://www.palamedestoolbox.org
https://www.nip.uni-tuebingen.de/research/software/psignifit.html
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9/18: Introduction: Psychophysical tasks and procedures

Reading: Kingdom & Prins, Ch. 1-3

References:
Farell, B. & Pelli, D. G. (1998). Psychophysical methods, or how to measure a 

threshold, and why. In Carpenter, R. H. S. & Robson, J. G. (Eds.), Vision 
Research: A Practical Guide to Laboratory Methods (pp. 129–136). New York: 
Oxford University Press.

Lu, Z.-L. & Dosher, B. A. (2014). Visual Psychophysics: From Laboratory to 
Theory. Cambridge, Mass.: MIT Press. Chapter 7.

Outline of the semester
Software packages for fitting
Textbook, readings
Overlap with other courses: Perception, Gureckis’ Modeling course
Grading, exercises
How to solve exercises

Palamedes
Psignifit
Read their code

Do it yourself (in Matlab, python, R, etc.)

I.  Psychophysics
Definition/Goals
Type A vs. type B experiments, Sensitivity vs. appearance
Detection vs. discrimination
Psychometric function P = f(x)
Ogive curve

50% point, Point of subjective equality (PSE), Threshold
Slope

II. Psychophysical Methodology
Concerns

Bias
Criterion
Attentiveness
Strategy
Artifactual cues
History of stimulation
Who controls stimulation

Threshold methods
Method of adjustment
Method of (ascending/descending) limits
Method of constant stimuli (Yes-No)
Forced choice (2I2AFC, 3AFC, oddity, MAFC, ABX, etc.)
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Method of single stimuli
Sequential testing (staircase methodologies)

Scaling methods
Magnitude estimation, production, cross-modal matching
Stevens power law
Bisection (adjustment or forced-choice)
Paired difference scaling (adjustment or forced-choice)
Maloney’s ML difference scaling procedure



  4

9/25: Psychometric functions: how to fit, what to estimate, goodness of fit

Reading: Kingdom & Prins, Chs. 4, and 8.2.4, 8.3.1-8.3.3 (in the 1st edition) or 9.2.4, 
9.3.1-9.3.3 (2nd edition). I’ll also touch on material in Ch. 7 (2nd edition only)

References:
Carlin, B. P. & Lewis, T. A. (2009). Bayesian Methods for Data Analysis (3rd Ed.). 

New York: CRC Press. Section 2.5.1.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. & Rubin, D. B. 

(2014). Bayesian Data Analysis (3rd Ed.). New York: CRC Press. Chapter 6.
Klein, S. A. (1985). Double-judgment psychophysics: problems and solutions. 

Journal of the Optical Society of America A, 2, 1560–1585.
Lewandowsky, S. & Farrell, S. (2011). Computational Modeling in Cognition 

(Ch. 4). Washington, DC: Sage.
Lu, Z.-L. & Dosher, B. A. (2014). Visual Psychophysics: From Laboratory to 

Theory. Cambridge, Mass.: MIT Press. Chapter 10.
Myung, I. J. (2003). Tutorial on maximum likelihood estimation. Journal of 

Mathematical Psychology, 47, 90–100.
Wichmann, F. A. & Hill, N. J. (2001). The psychometric function: I. fitting, 

sampling and goodness-of-fit. Perception and Psychophysics, 63, 1293–
1313.

Psychometric functions
Basic constraints

Range of dependent variable
Log/linear scale, dB
Chance performance level
Linear vs. circular independent variable
Lapses
Goal is to estimate

Threshold as nominal performance level
Threshold as slope
Independent of lapses
PSE

Models
Random threshold
Noise

Additive
Multiplicative (log law)
Multiple channels (Quick)
Uncertainty (Pelli)

Parametric models

Probit/Cumulative normal:  

, 

P(x) = Φ ( x − μ
σ ) = ∫

x

−∞

1

2πσ
e−(t−μ)2/2σ2dt
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where slope “ ” = , “ ” = 

Log-normal:   

Note that  and  are in  units

Logit/Logistic:   

Weibull:   for positive  only
Quick:   

Probability summation:

Thus, probability summation is like a response summed over
multiple channels (i.e., a vector length with Minkowski
metric, Euclidean if )

Correction for guessing and lapses
What to estimate

Threshold or PSE (  or )
Slope (  or )

Fit criterion
Squared error (leading to  or F tests, variance accounted for, etc.
Maximum likelihood

Parameter vector (e.g.,  )
Likelihood 
For psychophysical data:

Condition , test at level , data are  correct out of  trials
Assume independent trials, stable performance
Choose  that maximizes

β 1/σ α μ

P(x) = Φ ( log x − μ
σ )

μ σ log x
1

1 + e−β(x−α)

1 − e−(x/α)β x
1 − 2−(R(x))β

P(detect) = 1 − P(not detect)

= 1 − ∏
i

P(not detect in channel i )

= 1 − ∏
i

(1 − P (detect in channel i ))

= 1 − ∏
i (1 − (1 − 2−(Ri(x))β))

= 1 − ∏
i

2−(Ri(x))β

= 1 − 2−∑i (Ri(x))β

β = 2

μ α
σ β

χ2

⃗θ(α, β )
l( ⃗θ ) = P(data | ⃗θ )

i xi ni mi

⃗θ
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To avoid computer underflows, equivalently maximize

 

Drop the first term because it does not depend on the parameters
Constrained parameters

Matlab: fmincon
Reparameterize

Half-line: exp/log
Finite interval: logistic  and its inverse

Bayesian methods (a topic for later in the semester)
Note: Maximum likelihood is the same as MAP with a flat prior

Goodness of fit
Basic   and why it’s inappropriate
Deviance and goodness of fit

Saturated model
Likelihood ratio

Deviance   

Nested hypothesis test
Degrees of freedom = # of extra parameters
= # levels - # parameters
Note: parameters must be “meaningful”, i.e., “independent”
Alternative: bootstrapped deviance distribution

Deviance residuals (square root of deviance per datapoint):

 
Look at correlation between  and  to check the quality of the fit (e.g., to 

possibly reject the Weibull as a model for your data)

l( ⃗θ ) = P(data | ⃗θ )

= ∏
i

P(datai | ⃗θ )

= ∏
i (mi

ni ) (P ⃗θ(xi))ni (1 − P ⃗θ(xi))(mi−ni)

log l ( ⃗θ ) = log P (data | ⃗θ )

= ∑
i

log P (datai | ⃗θ )

= ∑
i [log (mi

ni ) + ni log P ⃗θ (xi) + (mi − ni)log (1 − P ⃗θ (xi))]

y = 1/(1 + e−x)
x = − log ((1/y) − 1)

χ2

L = 2 log
l(Msaturated)

l(Mpsychometric; ̂θ

di = sgn(yi − pi) 2 [miyi log
yi

pi
+ mi(1 − yi)log

1 − yi

1 − pi ]
di pi
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Look at correlation between  and  (the index for when that datapoint 
was collected, assuming levels were blocked, not mixed) for evidence 
of learning

Failure to fit and what to do about it

Homework: Please email me the results of the following and, if you like, the Matlab that 
generated them, all folded together as a single PDF. If you are only auditing, please do 
NOT send me anything! ;^) Due: October 16, 2PM

(1) Write Matlab code to simulate an observer in a 2AFC method of constant stimuli 
task. The observer is assumed to conform to a particular parametric form of the 
psychometric function (e.g., log-normal, Weibull, whatever), and you supply a fixed set 
of parameters (guessing=gamma, position alpha and slope beta, for now let lapses = 0). 
Generate a large set of sample psychometric functions (each of which consists of 
something like 40 trials at something like 5 or 7 levels).

(2) Use psignifit, Palamedes, or better yet, write your own Matlab code to fit that same 
parametric psychometric function to data, and run that fit on each simulated dataset.

(3) Plot the histogram of estimated parameters (or a 2-D contour plot of the 2-D 
histogram of  and ) and indicate the veridical value.

(4) For at least one dataset, fit ANOTHER parametric form (e.g., Weibull instead of 
logistic) and plot the two fit psychometric functions together to see where they are close 
and where they diverge.

di ki

α β
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10/2: Yes/no tasks, signal detection theory and the psychometric function

Reading: Kingdom & Prins, Ch. 6

References:
Green, D. M. & Swets, J. A. (1989). Signal Detection Theory and Psychophysics. 

Los Altos Hills, CA: Peninsula Publishing.
Lu, Z.-L. & Dosher, B. A. (2014). Visual Psychophysics: From Laboratory to 

Theory. Cambridge, Mass.: MIT Press. Chapter 8.
Macmillan, N. A. & Creelman, C. D. (2004). Detection Theory: A User’s Guide 

(Chs. 1–2). New York: Psychology Press.
Wickens, T. D. (2001). Elementary Signal Detection Theory. New York: Oxford.

Background: Thurstone
One-dimensional theory

Signal and noise distributions
Maximum likelihood approach, likelihood ratio
Equal variance case

Hits, misses, false alarms, correct rejections
Criterion
Calculating the probabilities
Calculating sensitivity  and criterion/bias 
Varied criterion: the isosensitivity or ROC curve
ROC/AOC/NOC (Barlow)/etc.
Noisy hard threshold and its ROC, high threshold theory, etc.
Optimal criterion

Optimality: maximum percent correct, maximum utility, etc.
Define

 to be the value of saying yes on a signal trial
 to be the cost of saying no on a signal trial

etc.

Say yes if

That is, when

 

Use Bayes rule

 

To derive

 

d′ = z(H ) − z(FA) β

VYs
VNs

E(Y |x) = VYsP(s |x) − VYnP(n |x)
E(N |x) = VNnP(n |x) − VNsP(s |x)

E(Y |x) ≥ E(N |x)

P(s |x)
P(n |x)

≥
VNn + VYn

VNs + VYs

P(s |x) =
P(x |s)P(s)

P(x)

P(s |x)
P(n |x)

=
P(x |s)
P(x |n)

P(s)
P(n)
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In words:
posterior odds = likelihood ratio × prior odds

Thus, say yes if

 

Equal utility, equal priors: 
Effect of priors and payoffs

ROC slope as the ratio of the standard deviations
Gaussian assumption  

 

Double probability paper and fitting
2IFC performance

Area under the ROC
For Gaussian case:

 

Hence,  is a cumulative normal
Area under the ROC and forced choice performance
ROCs from a single rating scale experiment
Unequal variance case

Maximum likelihood versus setting a criterion
ROC asymmetry

Multidimensional theory
Forced choice as two dimensions reduced to one (  factor)

Multivariate Gaussians and statistical decision theory

l(x) =
P(x |s)
P(x |n)

≥
P(n)
P(s)

VNn + VYn

VYs + VNs
= β

β = 1

N(μ, σ)
f (x) =

1

σ 2π
e−(x−μ)2/2σ2

P(C ) = P(N(s, σ2) > N(0,σ2))
= P(N(s, σ2) − N(0,σ2) > 0)
= P(N(s,2σ2) > 0)
= P(N(0,2σ2) < s)

= P (N(0,1) <
s

2σ )
= P (N(0,1) <

d′ 

2 )
P(C )

2
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10/10: Adaptive procedures: Staircases, Quest, Pest, Ape, Psi and all that

Reading: Kingdom & Prins, Ch. 5

References:

Cornsweet, T. N. (1962). The staircase method in psychophysics. American 
Journal of Psychology, 75, 485–491.

Findlay, J. M. (1978). Estimates on probability functions: A more virulent PEST. 
Perception & Psychophysics, 23, 181–185.

García-Pérez, M. A. (1998). Forced-choice staircases with fixed step sizes: 
asymptotic and small-sample properties. Vision Research, 38, 1861-1881.

Hall, J. L. (1981). Hybrid adaptive procedure for estimation of psychometric 
functions. Journal of the Acoustical Society of America, 69, 1763–1769.

Kaernbach, C. (1991). Simple adaptive testing with the weighted up-down 
method. Perception & Psychophysics, 49, 227-229.

Kesten, H. (1958). Accelerated stochastic approximation. Annals of Mathematical 
Statistics, 29, 41-59.

Kontsevich, L. L. & Tyler, C. W. (1999). Bayesian adaptive estimation of 
psychometric slope and threshold. Vision Research, 39, 2729–2737.

Lesmes, L. A., Lu, Z.-L., Baek, J., Tran, N., Dosher, B. A. & Albright, T. D. (2015). 
Developing Bayesian adaptive methods for estimating sensitivity thresholds 
(d’) in Yes-No and forced-choice tasks. Frontiers in Psychology, 6:1070.

Lesmes, L. A., Lu, Z.-L., Tran, N. T., Dosher, B. A. & Albright, T. D. (2006). An 
adaptive method for estimating criterion sensitivity (d’) levels in yes/no tasks. 
Journal of Vision, 6(6), 1097.

Lesmes, L. A., Jeon, S. t., Lu, Z.-L. & Dosher, B. A. (2006). Bayesian adaptive 
estimation of threshold versus contrast external noise functions: the quick 
TvC method. Vision Research, 46, 3160-3176.

Lesmes, L. A., Lu, Z.-L., Baek, J. & Albright, T. D. (2010). Bayesian adaptive 
estimation of the contrast sensitivity function: the quick CSF method. Journal 
of Vision, 10(3):17, 1-21.

Levitt, H. (1971). Transformed up-down methods in psychoacoustics. Journal of 
the Acoustical Society of America, 49, 467–477.

Lu, Z.-L. & Dosher, B. A. (2014). Visual Psychophysics: From Laboratory to 
Theory. Cambridge, Mass.: MIT Press. Chapter 11.

Macmillan, N. A. & Creelman, C. D. (2004). Detection Theory: A User’s Guide 
(Ch. 8). New York: Psychology Press.

Owen, L., Browder, J., Letham, B., Stocek, G., Tymms, C. & Shvartsman, M. 
(2021). Adaptive nonparametric psychophysics. https://arxiv.org/abs/
2104.09549 and https://aepsych.org/

Pentland, A. (1980). Maximum likelihood estimation: The best PEST. Perception 
& Psychophysics, 28, 377–379.

Prins, N. (2013). The psi-marginal adaptive method: How to give nuisance 
parameters the attention they deserve (no more, no less). Journal of Vision, 
13(7):3, 1-17.

https://arxiv.org/abs/2104.09549
https://arxiv.org/abs/2104.09549
https://aepsych.org/
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Robbins, H. & Monro, S. (1951). A stochastic approximation method. Annals of 
Mathematical Statistics, 22, 400-407.

Taylor, M. M. (1971). On the efficiency of psychophysical measurement. Journal 
of the Acoustical Society of America, 49, 505–508.

Taylor, M. M. & Creelman, C. D. (1967). PEST: Efficient estimates on probability 
functions. Journal of the Acoustical Society of America, 41, 782–787.

Treutwein, B. (1995). Adaptive psychophysical procedures. Vision Research, 35, 
2503–2522.

Watson, A. B. (2017). QUEST+: A general multidimensional Bayesian adaptive 
psychometric method. Journal of Vision, 17(3):10, 1-27.

Watson, A. B. & Pelli, D. G. (1983). QUEST: A Bayesian adaptive psychometric 
method. Perception & Psychophysics, 33, 113–120.

Watt, R. J. & Andrews, D. P. (1981). APE: Adaptive probit estimation of 
psychometric functions. Current Psychological Reviews, 1, 205–214.

Wetherill, G. B. (1966). Sequential estimation of points on quantal response 
curves. In Sequential Methods in Statistics (pp. 171–227). London: Methuen.

Wetherill, G. B. & Levitt, H. (1965). Sequential estimation of points on a 
psychometric function. British Journal of Mathematical and Statistical 
Psychology, 18, 1–10.

Staircase procedures
Concerns

Computation during trials
Efficiency/sweat factor/number of trials/trial placement
Subject fatigue (boredom if too easy, frustration if too hard)
Stationarity
Finger errors
Desired estimates: L.5, Lp, slope
Sequential dependencies, interleaved staircases
Estimation bias
Correction for guessing and for finger errors

Assumptions
Monotonic
Threshold approximately known

Slope  known or approximately known
Parametric form of f
Stationary
Independent trials (interleaving)

Basics
How to place trials
When to stop
How to estimate parameters

Procedures
Robbins/Monro, Kesten

 

β

xn+1 = xn +
c
c (p − yn(xn))
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to estimate Lp, biased away from 50%
Up-Down (Dixon/Mood, Cornsweet)
Transformed Up-Down (Levitt/Weatherill)

1-up-2-down, 2-up-1-down, 1-up-3-down, etc.
Halve stepsize every other turnaround and restart at current

threshold estimate
Notion of a transformed response curve

Weighted Up-Down (Kaernbach), Transformed/weighted (García-Pérez)
PEST (Taylor & Creelman, Findlay, Pentland)

Wald test to change levels, changes in step size to deal with
closeness and distance from correct spot, stop at minimum step size

APE (Watt & Andrews)
Method of constant stimuli for blocks of trials, then fit previous 2
blocks and choose a new set of levels ranging over  SD with
momentum based on prior change

QUEST (Watson & Pelli),   as a constant for log scaled stimulus strength
Sweat factor (Taylor/Creelman):  

Ideal sweat factor =  

Don't know T so use maximum a posteriori

Maximize , by Bayes rule

So, maximize Quest function 
Assume independent trials, so

Addend is either 
or  
so precompute these and accumulate over trials

Log likelihood 
where , the log of the prior

Stop based on a likelihood ratio test (a  test)
PSI method (Kontsevich & Tyler)

Estimates both  and 
Assumes independent priors on each
Does a Bayesian update after each trial
Chooses a level to test such that the expected entropy of the posterior

after that trial is minimized, where entropy is:

 

±1.35

β
K = Nσ2

est

p(x)q(x)/( dPT

d x )
2

P(T |D) =
P(D |T )P(T )

P(D)
Q(T ) = log P(T ) + log P(D |T )

log P(D |T ) = log (∏
i

P(Ri |xi, T )) = ∑
i

log P(Ri |xi, T )

log PT(x) = log Ψ(x − T )
log (1 − PT(x)) = log (1 − Ψ(x − T ))

L(T ) = Q(T ) − Q0(T )
Q0(T ) = log P(T )

χ2

α β

H = − ∫ ∫ p(α, β )log p(α, β )dαdβ
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Estimate is the mean of the posterior
Psi-marginal method
Quick methods: q-YN, q-TvC, q-CSF
QUEST+ as a generalization of all of these (Mathematica, Matlab & Python)
AEPsych

When to stop
N trials
N turnarounds
Given standard error of the estimate

Estimation
Probit analysis
Midrun estimates
Maximum likelihood
Final values
Minimum 

Tips
Plot staircases: trial vs. level
Plot psychometric function with symbol area proportional to number of trials 

χ2
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10/16: Rating-scale methods and getting to high d’,
interval bias, history effects, detection and identification

Reading:

Yeshurun, Y., Carrasco, M. & Maloney, L. T. (2008). Bias and sensitivity in two-
interval forced choice procedures: Tests of the difference model. Vision 
Research, 48, 1837–1851 [and corrigendum].

References:
Busse, L., Ayaz, A., Dhruv, N. T., Katzner, S., Saleem, A. B., Schölvinck, M. L., 

Zaharia, A. D. & Carandini, M. (2011). The detection of visual contrast in the 
behaving mouse. Journal of Neuroscience, 31, 11351-11361.

Fründ, I., Wichmann, F. A. & Macke, J. H. (2014). Quantifying the effect of 
intertrial dependence on perceptual decisions. Journal of Vision, 14(7):9, 
1-16.

Klein, S. A. (1985). Double-judgment psychophysics: problems and solutions. 
Journal of the Optical Society of America A, 2, 1560–1585.

Macmillan, N. A. & Creelman, C. D. (2004). Detection Theory: A User’s Guide 
(Chs. 3, 5–7, 9). New York: Psychology Press.

Wickens, T. D. (2001). Elementary Signal Detection Theory (Chs. 5, 6.3 & 7). 
New York: Oxford.

Thurstone and  scaling
How to summarize discriminability (or detectability) when noise depends on signal

, area under the ROC, and its variants
The relationship of detection (of A or of B) and discrimination (of A vs. B): univariate vs. 

independent vs. similar stimuli
Identification of multiple stimulus levels using the M-AFC task (Klein)
Klein (1985): 2x2 task

Single knob task and monopolar and bipolar mechanisms
I/D ratio and available mechanisms
2 knob summation task (blank, S1, S2, S1+S2)
Usefulness of using a rating-scale task
Criterion bias vs. correlated noise vs. inhibition vs. fluctuating attention.

2IFC vs. Yes-no
In forced choice, the subject gets two noisy samples  which can be drawn

from (S,N) or (N,S), whereas in yes-no, the subject gets one sample 
drawn either from S or N. In standard yes-no, we get a hit rate and false-
alarm rate and estimate what I now notate as . In 2IFC, we can treat
(S,N) as the “signal” and (N,S) as “target” and compute a hit rate
(proportion of correct on interval-1 trials, ) and a false-alarm rate
(proportion of incorrect on interval-2 trials, 1- PC2), resulting in .

Case 1: constant noise, no interval bias:
.

d′ 

da

(x1, x2)
x

d′ YN

PC1
d′ FC

d′ FC = 2d′ YN = z(PC1) + z(PC2) = 2z(PC2IFC)
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Case 2: interval bias, it’s still true that ,

an interval-bias-corrected estimate of d’. It is incorrect to ignore interval
bias, i.e., to set .

Case 3: possible interval bias and the noise for S+N differs from the noise for N.
For this case, as with yes-no, a single criterion (or in the 2-d 
space, a single criterion line) is suboptimal. The optimal observer, in fact,
uses two criterion lines, or four decision regions. One criterion line is what
Yeshurun et al. call the difference observer (a criterion on ). The
other flips the decision if  is sufficiently small. However, if you
ignore that subtlety (as does the Wickens book), since so few samples 
end up in that region, and assume noise SD is 1 and signal mean and SD 

are , then it’s easy to show that .

Possibly false assumptions underlying interpretation of 2IFC (Yeshurun et al., note that 
there are published errata):
Four false assumptions:

1)  (i.e., 2IFC is often biased)
2)  (i.e., the procedure affects sensitivity)
3)  (where  depends on the two sensitivities  and , so 

2IFC performance cannot be predicted from individual Yes-No 
performances)

4)  (2IFC is not always more sensitive than Yes-No)
Estimating  in the presence of history effects using a GLM

Busse et al.: decision variable with bias terms (to stay or switch) based on 
previous trial’s success or failure

Fründ et al.: decision variable with bias terms based on previous n responses 
and actual stimulus values

Geometry and ideal-observer analysis of more complex tasks: Same-different, ABX, 
Oddity vs. 3AFC

Homework: Simulate datasets for 2AFC tasks with method of constant stimuli for 
observers without and with interval bias, with either constant noise or possibly with 
signal-dependent noise (as in some models of Weber’s Law) and, if you are motivated 
to do so, history effects. Then, analyze the psychometric functions using the tools you 
developed last time. Things you can try: (1) plot psychometric functions using the  
formula that ignores interval bias, and the  formula that corrects for bias. Note, here I 
am referring to a psychometric function with d’ on the y-axis rather than percent correct. 
(2) Scatterplot the  values against one another. (3) Fit the  psychometric functions 
(think about what function makes sense to fit to these) calculated both ways. 
(4) Scatterplot the estimates of the fit curves against one another. How large an interval 
bias is required for significant effects on d’ estimation? Due 11/13, 2PM.

d′ FC = 2d′ YN = z(PC1) + z(PC2) =
d′ 1 + d′ 2

2

d′ YN = 2z(PC2IFC)

(x1, x2)

x1 − x2
x1 + x2

(μS, σS) d′ FC =
2μS

1 + σ2
S

p1 = p2
d′ 1 = d′ 2
d′ FC = τd′ 1 τ > 1 d′ 1 d′ 2

d′ FC = d′ YN
d′ 

d′ 
d′ 

d′ d′ 
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10/23: Techniques for fitting models: one, two or many parameters

References:
Lewandowsky, S. & Farrell, S. (2011). Computational Modeling in Cognition 

(Section 3.1). Washington, DC: Sage.

Numerical analysis
Efficiency
Accuracy
Dealing with quantization (roundoff) errors and underflows

Example: Finding a zero (Newton’s method)
Finding a minimum or maximum (e.g., maximum-likelihood estimation)

Gradient descent
Convexity, multiple local minima
Random starting points

1d, gradient in n dimensions  

How to compute: discrete derivatives, e.g.,  
Matlab: DERIVEST/HESSIAN suite

Gridding, variants with random jitter, etc.
Nelder-Mead simplex method
Simulated annealing
Mostly for discrete models: Genetic algorithms
Stochastic gradient descent
Issues with stochastic error functions

Fancier methods: EM, MCMC (later!)

∇f = ( ∂f
∂x1

,
∂f

∂x2
, ⋯,

∂f
∂xn )

(−2xn + xn−1 + xn+1)/δ
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10/30: Parameter estimation and confidence intervals

References:
Kärnbach, C. (2001). Slope bias of psychometric functions derived from adaptive 

data. Perception & Psychophysics, 63, 1389-1398.
Lewandowsky, S. & Farrell, S. (2011). Computational Modeling in Cognition 

(Section 5.1). Washington, DC: Sage.
Prins, N. (2012). The psychometric function: The lapse rate revisited. Journal of 

Vision, 12(6):25, 1-16.
Sivia, D. S. & Skilling, J. (2006). Data Analysis: A Bayesian Tutorial (2nd Ed.). 

Oxford, UK: Oxford University Press. Section 2.2.

How does one get an error bar on a parameter after a maximum-likelihood fit?
SE across sessions
SE across subjects (with a different meaning of error)
Bootstrapping

Nonparametric and problems with adaptive methods
Parametric using visited levels
Parametric using same adaptive method
Problems with across-trial correlations in adaptive methods (Prins, 

Kärnbach)
Parametric and even non-parametric ML estimation depends on 

independent trials and responses
Adaptive methods, e.g., staircases, place stimuli on trial n+1 based on 

response on trial n, so are dependent in placement and in response
The result is slope bias: estimates are biased to be too steep. The bias 

is respectably high for 100 trials, and very high for 50 trials or fewer
The bias is not due to uneven trial placement as demonstrated by 

double-trial simulations (one for placement, a second for 
estimation)

The bias is due to re-test or test-at-all probability dependent on 
previous trial (examples of “do 2nd trial only if first is negative” and 
two-trial 1-up-1-down staircase visits level L-1 only if response at L 
was positive)

This is repaired if using an adaptive procedure that also places trials 
based on learning about slope (Kärnbach), and the problem returns 
when using adaptive procedures in the presence of lapses without 
explicitly trying to estimate them using the procedure (Prins)

Maximum-likelihood vs. Bayesian approaches (from posterior, 2 classes hence)
Curvature of the log-likelihood function: intuition
Curvature as 2nd derivative

Hessian matrix  

Hessian and Fisher information

H = [ ∂2 log L(θ |y)
∂θi∂θj ]
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Covariance matrix  
Square root of diagonal elements of  are standard errors
Correlated parameters, effective number of parameters (see DIC, later)
Off-diagonal elements give covariance of parameters
Like a Taylor series approximation at the mode. This is a quadratic approximation 

to the log-likelihood, thus a Gaussian approximation to the likelihood itself. 
For a posterior, this effectively approximates the posterior with a normal. 

Note: maximum-likelihood estimates need not be unbiased
Example: 1-d Gaussian. The data are 

  

At the maximum, the partial derivatives vanish:

 

From which we derive , the usual sample mean

From which we derive

Note that this is the biased version of a sample-variance estimate
FYI: Note that the maximum-likelihood estimate of  gives effectively the same 
answer as the maximum-likelihood estimate of , because there is no re-
parameterizing of a distribution of  for ML estimation. 

= H−1

H−1

x1, x2, ⋯, xN

log L(μ, σ | ⃗x ) = log (
n

∏
i=1

1

2πσ
e−(xi−μ)2/2σ2)

=
n

∑
i=1

(−log ( 2πσ) − (xi − μ)2 /2σ2)
= − N log ( 2πσ) −

1
2σ2

n

∑
i=1

(xi − μ)2

0 =
∂ log L

∂μ
=

−1
2σ2

N

∑
i=1

− 2(xi − μ) =
1
σ2 (

N

∑
i=1

xi − Nμ)

̂μ =
N

∑
i=1

xi /N = x̄

0 =
∂ log L

∂σ
=

−N

2πσ
2π −

∑N
i=1 (xi − x̄)2

2
(−2)σ−3

=
−N
σ

+ σ−3
N

∑
i=1

(xi − x̄)2

̂σ2 =
∑N

i=1 (xi − x̄)2

N

σ
σ2

σ
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11/6: Controversies: Wichmann/Hill, Prins

References/Readings:
Kärnbach, C. (2001). Slope bias of psychometric functions derived from adaptive 

data. Perception & Psychophysics, 63, 1389-1398.
Prins, N. (2012). The psychometric function: The lapse rate revisited. Journal of 

Vision. 12(5):25, 1–16.
Wichmann, F. A. & Hill, N. J. (2001). The psychometric function: I. fitting, 

sampling and goodness-of-fit. Perception and Psychophysics, 63, 1293–
1313.

Wichmann, F. A. & Hill, N. J. (2001). The psychometric function: II. bootstrap-
based confidence intervals and sampling. Perception and Psychophysics, 63, 
1314–1329.

Wichmann & Hill’s two-paper sequence introduces the theory behind psignifit:
Maximum-likelihood fits, MOCS, several stimulus-level regimes tested
Include lapse rate, constrained to lie between 0 and 6%
Without lapse rate, lapses are confounded with lower slope/higher threshold

leading to bias: Errors near p = 0 or 1 get huge weight, so a single error at
high stimulus strength forces fit away from 1.0 at that stimulus level (and
the same for a psychometric function asymptote at p = 0)

Goodness of fit: 
Pearson’s  goodness-of-fit test vs. 

 deviance test (nested hypothesis test vs. saturated model) vs.
p-value from bootstrapping deviance

Pearson’s isn’t optimized at ML parameters and is useless
for model comparison

Deviance should be  with d.o.f. equal to the number of MOCS
levels minus the number of curve parameters, but often isn’t,
 so use Monte Carlo to get the deviance distribution. That is,
asymptotic deviance  p-values can be quite wrong

reminder: deviance 
overdispersion due to wrong model (e.g., wrong F)

Precision estimated by bootstrapped WCI68, they recommend parametric
bootstrap, but WCI68 based on  can be biased (too small) compared to
one based on , i.e., the bootstrap bridging assumption (that the size of
the CI is stable near ) is often incorrect. They suggest using a 9-point
grid around  of width based on WCI68 to check for potential bias and
possibly, conservatively, substitute the max (MWCI68). Choosing a
different form of F than that which generated the data can result in huge
differences in precision.

Prins’s failed replication
3D log-likelihood plots
A high lapse rate will be affected little by a single actual lapse whereas a low/zero 

lapse rate and a single lapse will result in a much shallower estimate of slope

χ2

χ2

χ2

χ2

= 2(log L(saturated) − log L(fit))

̂θ
θ

θ
̂θ
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If no level is included for which the predicted p(yes) is near asymptote, get a 
ridge in the log-likelihood plot with slope trading off with lapse rate and the 
estimated lapse rate bounces back and forth between the ends of its 
constrained range independent of the generating lapse rate

If include such a high level and if get 100% yes at that level then the estimate of 
the lapse rate will be zero. But, if the lapse rate is high, then you will get 
errors at that level and again fits will bounce between high lapse rate/high 
percentage correct and low lapse rate/low slope

Kärnbach points out that with staircases there is a bias in the slope estimate because 
the choice of visited levels depends on the data. The psi method, which 
simultaneously estimates threshold and slope, improves on this

Prins: if you don’t design the method to estimate the lapse rate, there will be bias. 
Therefore, he suggests adding a very high stimulus level to pin the lapse rate (either 
using its percentage correct to estimate the lapse rate separately (assuming the 
underlying psychometric function equals 1 there) before fitting the rest of the curve, 
or doing both jointly)  



  21

11/13: Bayesian parameter estimation, Jeffries priors, marginalization

Reading: Kingdom & Prins, 4.3.3.2

References:
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York: 

Springer. Chapters 9 and 11.
Carlin, B. P. & Lewis, T. A. (2009). Bayesian Methods for Data Analysis (3rd Ed.). 

New York: CRC Press. Sections 2.2 and 5.2.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. & Rubin, D. B. 

(2014). Bayesian Data Analysis (3rd Ed.). New York: CRC Press. Sections 
1.3, 2.4, 2.8, 3.1-3.5 and Chapter 13.

Leonard, T. & Hsu, J. S. J. (1999). Bayesian Methods: An Analysis for 
Statisticians and Interdisciplinary Researchers. New York: Cambridge.

Schütt, H. H., Harmeling, S., Macke, J. H. & Wichmann, F. A. (2016). Painfree 
and accurate Bayesian estimation of psychometric function for (potentially) 
overdispersed data. Vision Research, 122, 105-123.

Sivia, D. S. & Skilling, J. (2006). Data Analysis: A Bayesian Tutorial (2nd Ed.). 
Oxford, UK: Oxford University Press. Chapters 2-3.

Bayes, take II
Given vector of data y and of unknown parameters  associated with model M

Posterior , where

Prior predictive distribution is  normalizes 

the posterior but can be ignored for determining best value of  
Posterior predictive distribution, for sampling/bootstrapping/etc., is

Can report MAP, posterior mean, percentiles, shortest error bar (asymmetric error 
bars either way)

Posterior is a compromise between the prior and the data. Posterior’s variance is 
always smaller than prior’s variance

Types of priors
Flat prior. Depends on parameterization: If  then 

 Example: If prior on  is flat, corresponding 
distribution on  isn’t.

θ

p(θ |y, M ) =
p(y |θ, M )p(θ |M )

p(y |M )
p(y |M ) = ∫ p(y |θ, M )p(θ |M )dθ

θ

p(ỹ |y, M ) = ∫ p(ỹ, θ |y, M )dθ

= ∫ p(ỹ |θ, y, M )p(θ |y, M )dθ

= ∫ p(ỹ |θ, M )p(θ |y, M )dθ

ϕ = h(θ )
p(ϕ) = p(θ ) |h′ (θ ) |−1 σ

σ2
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Proper vs. improper (e.g., flat on infinite domain) priors. Improper priors can lead 
to proper posteriors, but be careful.

Conjugate priors (especially convenient)
Definition: a prior is conjugate for a given likelihood if it results in a 

posterior from the same distributional family
Example I: Beta distribution for coin flips

Assuming a flat prior for the m
oment: , i.e., 

Hence, conjugate prior is  
which acts like  and  extra coin flips. It’s flat when 

.
Example II: Normal distribution

Conjugate prior is normal,  
 and hence

 where  and  i.e., the usual 

optimal cue integration equations. For multiple observations, 
you get the same answer except substituting  and . 

Example III: Exponential families of distributions:
 

which includes many standard distributions: Normal, Bernoulli,
binomial, Poisson, exponential, Weibull, Laplace,
chi-squared, log-normal, gamma, beta, etc.

After  observations , 

 i.e., 

 is a sufficient  statistic (like the sample average).

The conjugate prior is , 
which, when combined with the  samples, yields a 
posterior of the form 

p(θ |m, n) ∝ p(n |θ, m) ∝ θn(1 − θ )m−n

Beta(n + 1,m − n + 1)
θ ∼ Beta(α, β ) ∝ θα−1(1 − θ )β−1

α − 1 β − 1
α = β = 1

p(y) ∝ exp (−(y − θ )2 /2σ2)
p(θ ) ∝ exp (−(θ − μ0)2 /2τ2

0)
p(θ |y) ∝ exp (−

1
2 [ (y − θ )2

σ2
+

(θ − μ0)2

τ2
0 ])

∝ exp (−
(θ − μ1)2

2τ2
1 ),

1
τ2

1
=

1
τ2

0
+

1
σ2

μ1 =

1
τ2
0

μ0 + 1
σ2 y

1
τ2
0

+ 1
σ2

,

ȳ σ2 /n

p(y |θ ) = h(y)g(θ )exp (η(θ )T(y))

N yi

p( ⃗y |θ ) = ∏
i

h(yi)g(θ )Nexp (η(θ )∑
i

T(yi)),

∑
i

T(yi)

p(θ | χ, ν) ∝ f ( χ, ν)g(θ )νexp(νθT χ),
N
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That is, the prior acts like a set of  pseudo-observations, 
each of which has sufficient statistic .

Informative priors (e.g., using knowledge of the population) vs. noninformative
Jeffreys priors – use a rule so that after a change of parameterization you still get 

a Jeffreys prior. The resulting constraint is to have the prior proportional to the 
square root of the Fisher information (of the data concerning the parameter), 

thus:  

Example I: The Jeffreys prior for a mean or any location parameter is flat
Example II: The Jeffreys prior for  or any scale parameter is  
Both of these are improper priors if over an infinite range
Example III: Binomial. Jeffreys prior is  (i.e., not flat)

Maximum entropy priors given constraints (e.g., normal is MaxEnt given  and )  
Marginalizing and why
Example: Schütt et al. (2016) – psignifit 4
Nuisance parameters

Example: Suppose your model is a normal distribution, but you only care about  
not . You carry out your experiment and determine the joint posterior 
distribution . You could report the value of  corresponding to the 
joint MAP estimate, i.e., the pair  that has maximal posterior probability. 
But, that effectively gives too much credence to the particular value of  in 
which you have little belief. So, it makes more sense to integrate out this 

“nuisance parameter”: , 

which can be computed analytically, numerically, or using sampling 
procedures such as MCMC (see: next week).

Finding the posterior or marginal mode
Conditional maximization: split parameter set into mutually exclusive subsets. 

One subset at a time, maximize posterior for that subset while holding the 
others constant. Iterate. If it’s one single parameter at a time, you can find the 
local maximum from the current value using Newton-Raphson (approximating 
the curve as a quadratic and jumping to its maximum), using numerical 
estimates of the first and second derivative

EM (expectation/maximization) algorithm
Distinguish parameters from latent variables, where the latter might be 

missing data (for which guesses can be made based on the 
parameters) or hidden, unobservable variables

Most useful when the log likelihood cannot be factored when both 
parameters and latent variables are unknown (e.g., the equation 
contains a log of a sum), but is simple to factor and maximize when 

p(θ |y, χ, ν) ∝ g(θ )ν+Nexp (θT (∑
i

T(yi) + νχ)) .

ν
χ

p(θ ) ∝ J(θ ) = Ey ( d2 log p(y |θ )
dθ2

|θ)
σ 1/σ

Beta(1/2,1/2)
μ σ

μ
σ

p(μ, σ |y) μ
( ̂μ, ̂σ)

̂σ

p(μ |y) = ∫ p(μ, σ |y)dσ = ∫ p(μ |σ, y)p(σ |y)dσ
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either the latent variables or parameters are fixed. So, it’s like 
conditional maximization in the sense of holding one set fixed at a time 
and iterating.

Example: Gaussian mixture model (see Bishop Fig. 9.5, and Ng teaching 
notes)
Multivariate data 
Model: mixture of  multivariate Gaussians  with probability 

Latent variables are , which is an indicator variable, set to one if  
belongs to cluster (Gaussian) 

Simple non-parametric algorithm: K-means clustering (Bishop Fig. 9.1)
Start: Pick  (possibly arbitrary) means  
Iterate:

1. Assign each  to the nearest  
2. Recompute each  as the mean of the  assigned to it

EM (Expectation-maximization) algorithm applied to Gaussian mixtures is 
like K-means except: estimates both the means and covariances of 
each cluster as it proceeds, and does a soft assignment of each data 
point to the clusters rather than picking a single cluster
Issues for maximum-likelihood

Singularities (shrinking around a data point), so infinite likelihood
Identifiability (permuting the clusters), so multiple identical peaks

EM Gaussian-mixture algorithm (Bishop Fig. 9.8)
Start: Pick initial values of 
Iterate:

1. E Step: Evaluate the “responsibilities” using current 

parameters:  

2. M Step: Re-estimate the parameters using current 
responsibilities:

 

 

, where

3. Evaluate log likelihood 

X = ⃗x1, ⃗x2, ⋯, ⃗xN
K N(μk, Σk)

πk
znk ⃗xn

k

K μk

⃗xn μk
μk ⃗xn

{μk, Σk, πk}

γ(znk) =
πk p( ⃗xn |μk, Σk)

∑N
j=1 πj p( ⃗xn |μj, Σj)

μnew
k =

1
Nk

N

∑
n=1

γ(znk) ⃗xn

Σnew
k =

1
Nk

N

∑
n=1

γ(znk)( ⃗xn − μnew
k )( ⃗xn − μnew

k )T

πnew
k =

Nk

N

Nk =
N

∑
n=1

γ(znk)
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and check for convergence (parameters or log likelihood 
stopped changing)

Bishop Fig. 9.8: EM algorithm for Gaussian mixture

General EM: (1) Expectation: Update the estimates of the distribution of 
latent variable values ( ) conditional on the current estimate of the 
parameters , i.e., compute the expected sufficient statistics. 
(2) Maximize the posterior density to determine a new estimate of the 
parameters .

More specifically:
E-step: Evaluate 
M-step: Pick new parameters to maximize based on the just-computed 

distribution of :

Standard error from percentiles of the marginal of the posterior

log p(X |μ, Σ, π) =
N

∑
n=1

log {
K

∑
k=1

πk p( ⃗xk |μk, Σk)}

⃗z
θold

θ

p( ⃗z |X, ⃗θold )

⃗z⃗θnew = arg max ∑⃗
z

p( ⃗z |X, ⃗θold )log p(X, ⃗z |θ )
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11/20-12/11: Model checking and comparison: Goodness of fit vs. overfitting,
likelihood ratio, cross-validation, AIC, BIC, DIC, Bayes factor

Reading: Kingdom & Prins, Ch. 8 (1st edition) or 9 (2nd edition)

References:
Andrieu, C., De Freitas, N., Doucet, A. & Jordan, M. I. (2003). An introduction to 

MCMC for machine learning. Machine Learning, 50, 5–43.
Bem, D. J. (2011). Feeling the future: Experimental evidence for anomalous 

retroactive influences on cognition and affect. Journal of Personality and 
Social Psychology, 100, 407–425.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York: 
Springer. Sections 1.3, 3.4, 4.4.1 and Chapters 8 and 11.

Bretthorst, G. L. (1996). An introduction to model selection using probability 
theory as logic. In Heidbreder, G. R. (Ed.), Maximum Entropy and Bayesian 
Methods (pp. 1–42). New York: Springer.

Burnham, K. P. & Anderson, D. R. (2002). Model Selection and Multimodel 
Inference: A Practical-Theoretic Approach. New York: Springer.

Carlin, B. P. & Lewis, T. A. (2009). Bayesian Methods for Data Analysis (3rd Ed.). 
New York: CRC Press. Chapters 2-4.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. & Rubin, D. B. 
(2014). Bayesian Data Analysis (3rd Ed.). New York: CRC Press. Chapters 7 
and 10-12.

Gelman, A. & Rubin, D. B. (1995). Avoiding model selection in Bayesian social 
research. Discussion of “Bayesian model selection in social research,” by A. 
Raftery. In Marsden, P. V. (Ed.), Sociological Methodology 1995 (pp. 165–
173). New York: Blackwell.

Gelman et al. (2020). Bayesian workflow. https://arxiv.org/abs/2011.01808 (soon 
to be a book).

Hudson, T. E. & Landy, M. S. (2012). Measuring adaptation with a sinusoidal 
perturbation function. Journal of Neuroscience Methods, 208, 48–58.

Kruschke, J. K. (2010a). What to believe: Bayesian methods for data analysis. 
Trends in Cognitive Sciences, 14, 293–300.

Kruschke, J. K. (2010b). Bayesian data analysis. Wiley Interdisciplinary Reviews: 
Cognitive Science, 1(5), 658–676.

Kruschke, J. K. (2012). Bayesian estimation supersedes the t test. Journal of 
Experimental Psychology: General, 142, 573-603.

Lewandowsky, S. & Farrell, S. (2011). Computational Modeling in Cognition 
(Sections 5.2–5.5). Washington, DC: Sage.

Lu, Z.-L. & Dosher, B. A. (2014). Visual Psychophysics: From Laboratory to 
Theory. Cambridge, Mass.: MIT Press. Chapter 10.

MacKay, D. J. C. (2003). Information Theory, Inference and Learning Algorithms 
(Ch. 28-30). Cambridge, UK: Cambridge Univ. Press. Sections 3.2-3.3 and 
Chapters 28-30.

Pitt, M. A. & Myung, I. J. (2002). When a good fit can be bad. Trends in Cognitive 
Science, 6, 421–425.

https://arxiv.org/abs/2011.01808
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Rigoux, L., Stephan, K. E., Friston, K. J. & Daunizeau, J. (2014). Bayesian model 
selection for group studies — Revisited. Neuroimage, 84, 971-985.

Rouder, J. N. & Morey, R. D. (2011). A Bayes factor meta-analysis of Bem’s ESP 
claim. Psychonomic Bulletin & Review, 18, 682-689.

Sivia, D. S. & Skilling, J. (2006). Data Analysis: A Bayesian Tutorial (2nd Ed.). 
Oxford, UK: Oxford University Press. Chapters 4 and 9.

Stephan, K.E., Penny, W.D., Daunizeau, J., Moran, R.J. & Friston, K.J. (2009). 
Bayesian model selection for group studies. Neuroimage, 46, 1004–1017.

Wagenmakers, E.-J., Wetzels, R., Borsboom, D. & van der Maas, H. L. J. (2011). 
Why psychologists must change the way they analyze their data: The case of 
Psi: Comment on Bem (2011). Journal of Personality and Social Psychology, 
100, 426–432.

I. Why use Bayesian methods for inference? A cautionary example.
Bem: presents a slew of experiments with small, but p < 0.5 effects consisting with 

rejecting the null hypothesis of no effect in 9 “time-reversed” experiments 
(precognition, retroactive priming, etc.)

Wagenmakers et al.: Several problems with interpreting these p-values: (1) Exploratory 
vs. confirmatory studies. (2)  is not the same a , i.e., with healthy 
skepticism about ESP, these results aren’t convincing. (3) Null-hypothesis tests only 
estimate evidence against H0, not evidence for H1. A default Bayesian t-test shows 
weak to no evidence for H0 over H1 in these experiments.

Rouder: Finds fault with the separate tests made by Wagenmakers
Lindley’s paradox: If the null is true, the distribution of p-values is flat. If a 

particular, small effect-size alternative is true, the distribution of p-values is 
tight around small values. For modest sample sizes a p-value of 0.04 may be 
a bit more likely under H1 than under H0 although nowhere near as more likely 
as that p-value might make you believe. But, with a much larger sample size, 
that p-value will be evidence for H0.

Suggests a meta-analysis that combines the studies for a single Bayes factor 
and results in moderately strong evidence (49:1) for H1. This still is strongly 
outweighed by a sensible prior, but less so than Wagenmakers suggested.

II. Sampling parameters from the posterior
Why do we need sampling?

1. Want to compute a confidence interval for a parameter from a posterior.
2. Want to do model comparison and need to integrate over the posterior. 

This can be computationally infeasible, so summing over a sample can be 
a much easier approximation. For example, the Bayesian calculation of 
model probability requires such an integral:  
and the latter likelihood requires such an integration: 

.

Inverse cdf method
Rejection sampling: Sample from easy-to-sample  and accept the sample 

if a uniform sample (uniform from 0 to 1) is less than .

P(D |H ) P(H |D)

p(Mi |y) ∝ p(Mi)p(y |Mi)

p(y |Mi) = ∫ p(y |θ, Mi)p(θ |Mi)dθ

Mg(x)
f (x)/Mg(x)



  28

Importance sampling (for calculating ): Sample from  but weight 

samples by , so you don’t need to figure out how to sample from p nor 

how to normalize p or q.
MCMC: Markov Chain Monte Carlo methods

Gibbs sampling: iteratively draw a new value of  conditional on current 
values of  for a fixed order of visiting different values of .

Metropolis algorithm:
(1) Draw initial parameter set  for which  from rough 

approximate distribution  
(2) For  

a. Sample a proposal  from a symmetric “jump” 
distribution  

b. Set , note that unnormalized posteriors 

suffice for this step

c. Set  

Metropolis-Hastings algorithm corrects for asymmetric jump distribution
Sampling datasets from the posterior: Sample  as above, then sample from 
Model checking: compare predicted y’s to data
III. Bayesian model comparison, Bayes factor, and Occam factor

Compare model posterior probabilities:

 , i.e., the posterior odds are the prior 

odds times the likelihood ratio of the models. The latter term is called 
the Bayes factor. Note that each term (e.g., ) is the 
normalizing term that we chose to ignore when estimating model 
parameters (Bayesian parameter estimation; previous lecture). We 
refer to these terms as the evidence for each model, and their ratio is 
the Bayes factor.

To compute evidence, suppose we consider a single-parameter model and 
write out the evidence term as before: 

. This integral computes the 

area under the curve (as a function of the parameter ) 
. Recall that the posterior 

. Often, this posterior is tightly 
concentrated around the MAP estimate . Thus, the integral is of a 
curve that is the curve of the prior  shrunk by the likelihood 

E (f (x)) q(x)
P*(x)
Q*(x)

θi

{θj≠i} i

θ0 p(θ0 |y) > 0
p0(θ )

t = 1,2,⋯
θ*

Jt(θ* |θt−1)

r =
p(θ* |y)

p(θt−1 |y)

θt = {θ* with probability min(r,1)
θt−1 otherwise

θ p(y |θ )

p(M1 |y)
p(M2 |y)

=
p(M1)
p(M2)

×
p(y |M1)
p(y |M2)

p(y |M1)

p(y |M1) = ∫ p(y |θ, M1)p(θ |M1)dθ

θ
p(y |θ, M1)p(θ |M1)
p(θ |y, M1) ∝ p(y |θ, M1)p(θ |M1)

̂θ
p(θ |M1)
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term  so that it now peaks at the MAP estimate. This area 
can then be approximated by the height of the integrand at  times the 

width, i.e., . In 

this approximation, the first term is the likelihood of the MAP estimate. 
This likelihood is reduced by the product of the next two terms, the 
Occam factor. Now, suppose the prior  was flat over a region 
with width . In this case , so that the Occam factor 
becomes , i.e., it is the degree to which the effective parameter 
space shrank when the data arrived, thus penalizing evidence for 
models with too large a parameter space. This calculation will penalize 
models with large numbers of parameters, and those with larger 
effective ranges (widths of the prior) of those parameters.

In the multiple-parameter case, we can approximate the log-likelihood 
function as a quadratic by measuring the Hessian matrix (the matrix of 

second derivatives .  This is the multiple-

parameter generalization of the curvature we measured to derive 
Fisher information last time. It just measures how the log-likelihood 
curves. If you then approximate the entire log-likelihood function based 
on this quadratic, you are effectively saying the likelihood function itself 
is Gaussian: 

 with 

covariance matrix . The Occam factor becomes 

, where  is the number of parameters, which is the 

“volume” under the exponential above.
A “non-Bayesian” alternative: cross-validation and the notion of overfitting

Leave-one-out cross validation
Symptom of overfitting: error of prediction begins to increase with more 
parameters (i.e., fitting noise).
The applicability of this method to binomial data seems poor

Example: Hudson/Landy
Approximations and other ad hoc model-comparison methods

Nested models and the nested-hypothesis test 

( , where  is the number of 

additional parameters in the complex model. Problem: only useful for rejecting 
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the simple model, but does not tell you when the simple model is better, so 
not useful for model comparison

Gelman suggests the DIC (Deviance Information Criterion):
Deviance is simply a measure of fit: . Before, we

compared deviance of a psychometric function to that of the saturated
model. Here we use deviance to compare models.

 , where  is the average deviance of the data 
averaged over draws of  from the posterior, and  is the deviance 
based on a point estimate (usually the posterior mean) of . Stated differently, 

. The first term is the average 
deviance of the model. The second term is an estimate of the effective 
number of parameters of the model (effective in the sense of taking into 
account how much of a constraint on  is imposed by the prior). Models may 
be compared by difference in DIC values.

Akaike’s Information Criterion (AIC)
Want to rate model by Kullback-Leibler (KL) divergence (distance) of 

model-predicted from true probabilities:

 

First term is independent of model and parameters, so use 2nd term to do 
model comparison.

Second term is expected log likelihood. Measured log likelihood 
approaches its expectation with large amounts of data, so use that 
instead. KL distance is based on , but model fitting uses the same 
data to estimate , so measured log likelihood using  is a biased 
estimate. The AIC tries to correct for this.

 where  is the number of model 
parameters

Compare models by computing the difference in AIC values
For small sample sizes or large numbers of parameters, the corrected AIC 

is recommended:  , where  denotes the 

sample size.
Bayesian Information Criterion (BIC)

The BIC is an attempt to estimate the evidence for a model without 
integrating over possible values of  based on a particular choice of 
prior distribution .

 where  is the number of 
datapoints on which the log likelihood is based.

As an estimate of log model evidence, one can use the BIC to compute an 
estimated Bayes factor:

Dθ(y) = − 2 log p(y |θ, M )

DIC = 2D̂avg(y) − D ̂θ(y) D̂avg(y)
θ D̂ ̂θ(y)

θ
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θ
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dy = ∫ p(y)log p(y)dy − ∫ p(y)log p(y |θ, M )dy

θ
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AIC = = 2 log p(y | ̂θ, M ) + 2K K

AICc = AIC +
2K(K + 1)
N − K − 1

N

θ
p(θ |M )

BIC = − 2 log p(y | ̂θ, M ) + K log N N
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Group studies and the protected exceedance probability
Graphical models and hidden parameters. Difficulty of inference and estimation in such 

models.
Bayesian workflow
Software aids: WinBUGS, RBUGS, JAGS, MatJAGS, Stan/RStan

Homework (due 12/18, 2PM): Simulate a set of observers in a motion-adaptation task. 
You have four conditions: adaptation direction (adapt to leftward or rightward motion) 
combined factorially with attentional condition (attention on the adapter or diverted from 
the adapter). For each, you collect a psychometric function for left-right discrimination, 
without feedback, as a function of motion coherence of a brief test stimulus (where -1.0 
means all the dots go to the left, 0.0 means the dots are moving in random directions, 
1.0 means all the dots go to the right and, e.g., 0.5 means that half the dots go to the 
right and the other half move in random directions). Assume a cumulative normal 
psychometric function. You will compare models that allow for inter-subject differences 
(in effect size for adaptation aftereffect, i.e., change in PSE, and also in slope/sigma and 
possibly in left/right bias). (Note: a PSE here is the coherence value that leads to 
indifference as to whether the stimulus moves left or right.) You want to compare 
several models:

M1: There is no adaptation effect (i.e., the slopes in the four conditions for a 
subject are identical, and the PSEs in the four conditions for a given subject 
are identical)

M2: There is an effect on PSE from adaptation, but no attentional effect (thus, 
there are two PSEs per subject, shifted from each other in the appropriate 
way expected for a motion after-effect)

M3: There is also an effect of attention, enhancing the motion after-effect. Thus, 
there are four distinct PSEs per subject, in the order left-adapt-with-attention, 
left-adapt-without-attention right-adapt-without-attention right-adapt-with-
attention

M4: There is also an effect of attention on slope, but you aren't sure what that 
effect is in advance. This is the same as model M3 except that you are 
allowing two values of slope per subject (with and without attention during 
adaptation).

So: in the grand scheme of things, simulate data from N subjects for one of the models, 
then do a Bayesian comparison of all models using Jeffreys priors (as constrained by 
each model) for slope and PSE. You can also do maximum-likelihood fits and compare 
models using AIC and/or BIC and compare those results to a true Bayesian model 
comparison. This is a huge assignment and I don’t expect anyone to do all of it, but see 

Bayes factor ≈ exp (−
1
2

(BIC1 − BIC2))
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how far you get and try to learn a bit about practical Bayesian model comparison along 
the way.


