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The human ability to analyze visual motion in general scenes far
exceeds the capabilities of the most sophisticated computer vision
algorithms. Yet psychophysical experiments show that humans also
make some puzzling mistakes, misjudging speed or direction of
very simple stimuli. In this paper, we propose that such mistakes of
human motion perception represent the best solution of a ratio-
nal system designed to operate in the presence of uncertainty.

In both biological and artificial vision systems, motion analy-
sis begins with local measurements such as the output of direc-
tion-selective cells in primary visual cortex1, or of spatial and
temporal derivative operators in artificial systems2,3. These are
then integrated to generate larger, more global motion descrip-
tions. The integration process is essential because the initial local
motion measurements are ambiguous. For example, in the vicin-
ity of a contour, only the motion component perpendicular to
the contour can be determined (a phenomenon referred to as the
‘aperture problem’)2,4–7. Such an integration stage seems to be
consistent with much of the psychophysical8–11 and physiologi-
cal8,12–14 data.

Despite the vast amount of psychophysical data published
over the past two decades, the nature of the integration scheme
underlying human motion perception remains unclear. This is
true even for the simple and widely studied ‘plaid’ stimulus, in
which two superimposed oriented gratings translate (move with-
out changing shape, size or orientation) in the image plane
(Fig. 1a). Due to the aperture problem, each grating’s motion is
consistent with an infinite number of possible translational veloc-
ities lying on a constraint line in the space of all velocities
(Fig. 1b). When viewing a single drifting grating in isolation,
subjects typically perceive it as translating in a direction normal
to its contours (Fig. 1b). When two gratings are presented simul-
taneously, subjects often perceive them as a coherent pattern
translating with a single motion5,7.

How is this coherent pattern motion estimated? Most expla-
nations are based on one of three rules7: intersection of con-
straints (IOC), vector average (VA), or feature tracking (FT). The
IOC solution is the unique translation vector consistent with the
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information of both gratings. Graphically, this corresponds to
the point in velocity space that lies at the intersection of both
constraint lines (Fig. 1b, circle). The VA solution is the average
of the two normal velocities. Graphically, this corresponds to the
point in velocity space that lies halfway between the two normal
velocities (Fig. 1b, square). An FT solution corresponds to the
velocity of some feature of the plaid intensity pattern (for exam-
ple, the locations of maximum luminance at the grating inter-
sections)15,16. For plaids, the FT and IOC solutions both
correspond to the veridical (true) pattern motion.

Which of the three rules best describes human perception? The
answer is not clear: depending on the stimulus, the perceived pat-
tern motion can be nearly veridical (consistent with IOC or FT) or
closer to the VA solution. The relevant stimulus features include
relative grating orientation and speed17–19, contrast20, presenta-
tion time17 and retinal location17.

Similar effects have been reported with stimuli that appear
quite different from plaids16,21. For a moving rhombus (Fig. 2),
as for a plaid pattern, the motion of each opposing pair of sides is
consistent with a constraint line in the space of velocities. As
shown in the velocity space diagrams (Fig. 2c and f), IOC or FT
predicts horizontal motion, whereas VA predicts diagonal motion.
Perceptually, however, the rhombus appears to move horizon-
tally at high contrast and diagonally at low contrast. To further
complicate the situation, the percept depends on the shape. If
the rhombus is fattened (Fig. 2d), it appears to move horizon-
tally at both contrasts. To view these moving stimuli, see
http://www.cs.huji.ac.il/~yweiss/Rhombus.

One might reason that the visual system uses VA for a thin,
low-contrast rhombus, and IOC/FT for a thin, high-contrast
rhombus and for a fat rhombus. Although a model based on this
ad hoc combination of rules certainly fits the data, it is clearly
not a parsimonious explanation. Furthermore, each of the ide-
alized rules is limited to stimuli containing straight structures
at only two orientations, and does not offer a method for com-
puting the normal velocities of those structures. One would pre-
fer a single, coherent model that could predict the perceived
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velocity of any arbitrary spatiotemporal stimulus that appears
to be translating. We have developed such a model based on a
simple formulation of the problem of velocity estimation and
on a few reasonable assumptions.

In Helmholtz’s view, our percepts are our best guess as to what
is in the world, given both sensory data and prior experience22.
To make this definition more quantitative, one must specify (i)
what is ‘best’ about a best guess, and (ii) the way in which prior
experience should influence that guess. In the engineering liter-
ature, the theory of estimation formalizes these concepts. The
simplest and most widely known estimation framework is based
on Bayes’ rule (see ref. 23 for examples of Bayesian models in
perception and refs. 24 and 25 for Bayesian motion models). Fol-
lowing an approach described in previous work26–29, we devel-
oped an optimal Bayesian estimator (known as an ‘ideal observer’
in the psychophysics literature) for two-dimensional velocity.
Here, as in most studies of the aperture problem, we considered
only cases in which humans see a single global translational
motion (no deformation, rotation, occlusion boundaries, trans-
parency, or the like). Elsewhere, we have developed extensions of
this model that can handle more complicated scenes29.

Our model begins with the standard principle of intensity
conservation: it assumes that any changes in image intensity over
time are due entirely to translational motion of the intensity pat-
tern. We then made two basic assumptions: (i) local image mea-
surements are noisy and (ii) image velocities tend to be slow. We
formulated these assumptions using probability distributions
(see below), and used Bayes’ rule to derive the ideal observer (for
further mathematical details, see Methods).

We instantiated the first assumption using a noise model com-
monly used in engineering because of the tractability of the solu-
tion: measurements are contaminated with additive, independent,
Gaussian noise with a known standard deviation (σ). Although
this simple noise model is unlikely to be correct in detail, we show
that it is sufficient to account for much of the data. This
noise model provides a functional form for the local like-
lihood: a distribution over the space of velocities that is
based on measurements made in a local image patch. We
depicted this likelihood as a gray-level image (Fig. 3) in
which intensity corresponds to probability. For patches
containing a single edge, the likelihood function is similar

Fig. 2. Insufficiency of either VA, IOC or FT rules as an expla-
nation for human perception of a horizontally moving rhombus.
(a) A ‘narrow’ rhombus at high contrast appears to move hori-
zontally (consistent with IOC/FT). (b) A narrow rhombus at
low contrast appears to move diagonally (consistent with VA).
(c) Velocity space constraints for a narrow rhombus. (d,e) A
‘fat’ rhombus at low or high contrast appears to move horizon-
tally (consistent with IOC/FT). (f) Velocity space constraints for
a fat rhombus.

to a ‘fuzzy’ constraint line— velocities on the constraint line have
the highest likelihood, and the likelihood decreases with distance
from the line. The ‘fuzziness’ of the constraint line is governed
by σ, the standard deviation of the assumed noise. At corners,
where local motion measurements are less ambiguous, the like-
lihood no longer has the elongated shape of a constraint line but
becomes tightly clustered around the veridical velocity.

This model of additive Gaussian noise also resulted in a
dependence of the likelihood on contrast. For a fixed value of σ,
the likelihoods were broader at low contrast (Fig. 3, bottom).
This makes intuitive sense: at low contrast there is less informa-
tion about the exact speed of the stimulus, and therefore more
local uncertainty, so the likelihood is more spread out. In the
extreme case of zero contrast, the uncertainty is infinite.

The second assumption underlying our ideal observer model
is that velocities tend to be slow. Suggestions that human observers
prefer the ‘shortest path’, or slowest motion consistent with the
visual input, date back to the beginning of the 20th century (see
ref. 30 and references therein). In particular, Wallach suggested
that humans prefer to see the normal velocity for a single line seg-
ment because that is the slowest velocity consistent with the image
data5. Likewise in apparent motion displays, humans tend to
choose the shortest path or slowest motion that would explain
the incoming information.

We formalized this preference for slow speeds using a prior
probability distribution on the two-dimensional space of veloc-
ities that is Gaussian and centered on the origin. According to
this ‘prior’, in the absence of any image data, the most probable
velocity is zero (no motion), and slower velocities are generally
more likely to occur than fast ones. As with the noise model, we
have no direct evidence (either from first principles or from
empirical measurements) that this assumption is correct. We will
show, however, that it is sufficient to account qualitatively for
much of the perceptual data.

Under the Bayesian framework, the percept of the ideal
observer is based on the posterior probability (the probabili-
ty of a velocity given the image measurements), which is com-
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a b Fig. 1. Intersection of constraints. (a) Drifting gratings superimposed in
the image plane produce a translating ‘plaid’ pattern. (b) Dotted lines
indicate constraint lines; arrows indicate perceived direction of grating
viewed in isolation. The IOC solution (circle) is the unique velocity con-
sistent with the constraint lines of both gratings. The VA solution
(square) is the average of the two normal velocities. There is experi-
mental evidence for both types of combination rule.
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of a computer mouse. The predictions of equation (1) provide
an excellent fit to the human experimental data (Fig. 4d). In
addition, the qualitative predictions remained unchanged while
the free parameter was varied over two orders of magnitude
(Fig. 4d). In fact, no setting of the free parameter could make
the perception of narrow rhombuses more veridical than that
of fat ones. Similarly, there is no setting that would make the
perception of low-contrast rhombuses more veridical than that
of high-contrast rhombuses.

RESULTS
We compared the predictions of the ideal observer (the solu-
tion of equation (1)) to previously published psychophysical
data17–20,31,32. The free parameter was adjusted manually for
each experiment but held constant for all conditions within
each experiment. Different observers probably make different
‘assumptions’ regarding noise, and indeed, substantial individ-
ual differences for these illusions have been reported17. As with
the rhombus example, the value of the free parameter did not
change the qualitative predictions of the model for any of the
stimuli discussed here.

Influence of contrast on perceived grating speed
The perceived speed of a single grating depends on con-
trast31,33–35, with lower-contrast patterns consistently appear-
ing slower than higher-contrast patterns34. This may underlie
the tendency of automobile drivers to speed up in the fog36. In
a psychophysical experiment quantifying this effect31, subjects
were asked to compare the apparent speed of two gratings of
different contrast (Fig. 5a). The low-contrast grating was con-
sistently perceived to be moving slower. This illusion depend-
ed primarily on the ratio of contrasts of the two gratings: the
perceived speed was an approximately linear function of the
contrast ratio, and was approximately independent of absolute
contrast. The ideal observer shows a qualitatively similar con-
trast dependence. At low contrasts, the likelihood is broader
and the prior has a stronger influence on the estimate. Con-
sistent with human perception, the ideal observer also esti-
mates the low-contrast grating as moving slower (Fig. 5a).

puted from the likelihood and prior using Bayes’ rule (see
Methods). We formulated the posterior distribution by mul-
tiplying the prior and the likelihoods at all image locations.
This is correct under the assumptions that the noise in the mea-
surements is statistically independent, and that the likelihoods
being multiplied correspond to image locations that are mov-
ing at the same velocity.

One can calculate the velocity estimate (v∗) of the ideal observ-
er as the mean or maximum of the posterior distribution. Our
posterior distribution is Gaussian, and the mean (which is also
the most likely) velocity was computed analytically using the fol-
lowing matrix equation: 

(1)

where Ix, Iy, It refer to the spatial (two dimensions) and tem-
poral derivatives of the image sequence. The sums were taken
over all locations that translate together (here, we assumed this
included the entire image). This equation allowed us to predict
the ideal observer’s velocity estimate for any image sequence. The
solution of equation(1) has only one free parameter: the ratio of
σ to σp. Changing both of these while holding the ratio constant
changes the width, but not the peak, of the posterior.

We calculated the posterior for the moving rhombus stimuli
(Fig. 4a–c), holding the free parameter (σ/σp) constant. Con-
sistent with human data, the ideal observer predicts horizontal
motion for a narrow, high-contrast rhombus, diagonal motion
for a narrow, low-contrast rhombus and nearly horizontal
motion for a fat, low-contrast rhombus. For a more quantitative
comparison of the ideal observer and human perception, we
showed three subjects a continuum of low-contrast rhombuses
that varied between the extremes of ‘thin’ and ‘fat’, and asked
them to report the perceived direction by positioning the cursor
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Fig. 3. Likelihood functions for three local patches of a horizontally translating diamond stimulus, computed using equation (4). Intensity corresponds
to probability. Top, high-contrast sequence. Bottom, low-contrast sequence, with the same parameter σ. At edges, the local likelihood is a ‘fuzzy’ con-
straint line; at corners, the local likelihood peaks around the veridical velocity. The sharpness of the likelihood decreases with decreasing contrast.
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higher uncertainty and hence the low-contrast grat-
ing has less influence on the estimate.

Contrast influence on perceived line direction
Subjects tend to misperceive the direction of a mov-
ing line at low contrasts, even when its endpoints are
visible32. We replotted data from an experiment in
which subjects reported the perceived direction of a
‘matrix’ of lines (Fig. 5c). The matrix was con-
structed by replicating a single line at multiple loca-
tions in the visual field. The line was oriented such
that its normal velocity was downward even when
the line was moving upward. At low contrasts, sub-
jects performed far below chance, indicating that
they perceived upward motion while the line actu-
ally moved downward. The authors proposed two
separate mechanisms to explain this finding, one
dealing with terminator (line endpoint) motion and
other with line motion. The terminator mechanism
was assumed to be active primarily at high contrasts
and the line strategy primarily at low contrasts.

We found that at low contrast, the ideal observer
also misperceived the direction of motion because the
likelihoods are broader and the estimator prefers the

normal velocity (which is slower than the true velocity). To obtain
a percentage of correct responses for the ideal observer, we assumed
that v* was corrupted by decision noise, and we calculated the prob-
ability that the corrupted v* was in the upward direction. The deci-
sion noise was Gaussian in velocity space. The standard deviation of
the decision noise determines the sharpness of the psychometric
function and was adjusted manually. The predicted percentage cor-
rect for the ideal observer was in accordance with human perception
(Fig. 5c, solid line).

Type I versus type II plaids: perceived direction
In the plaid literature, a distinction is often made between two
types of configuration: for a ‘type I’ plaid, the direction of the
veridical velocity lies between that of the two normal velocities;
for a ‘type II’ plaid, the veridical direction lies outside the two
normals17. In the latter case, the vector average is quite different
from the veridical velocity.

At low contrast, the perceived direction for type II plaids is
strongly biased in the direction of the vector average, and the
perceived direction of type I plaids is largely veridical. We replot-
ted data from a single subject who reported the perceived direc-
tion of a plaid under five different conditions17 (Fig. 5d, circles).

Fig. 4. Predictions of ideal observer for rhombus stimuli.
(a–c) Construction of the posterior distribution for the
rhombus stimuli. For clarity, likelihood functions for only
two locations are shown; the estimator used in our study
incorporated likelihoods from all locations. (d) Circles
show perceived direction for a single human subject as
rhombus angle was shifted gradually from thin to fat
rhombuses (all three subjects showed a similar effect, and
all gave informed consent to participate in the study).
Each subject was given 100 presentations. Solid line
shows the predictions of the Bayesian estimator com-
puted using equation (1), where the free parameter was
varied manually to fit the data. Dotted lines indicate the
predictions when the free parameter was decreased by a
factor of 10 (top dotted line) or increased by a factor of
10 (bottom line).

The simple ideal observer presented here does not predict
the quasilinear shape of the perceived relative speeds, nor does
it predict the lack of dependence on total contrast (it makes
slightly different predictions for maximum contrasts of 40%
and 70%, Fig. 5a). We also constructed a slightly more elabo-
rate model that can account for these effects in a more quanti-
tative manner (see Discussion).

Influence of contrast on perceived plaid direction
The perceived direction of a plaid depends on the relative con-
trast of the two constituent gratings20. We replotted data from
an experiment in which subjects reported the perceived direc-
tion of motion of symmetric plaids while the contrast ratio of
the two components was varied (Fig. 5b). Perceived direction
was always biased toward the normal direction of the higher-
contrast grating. The magnitude of the bias changed as a func-
tion of the total contrast of the plaid (the sum of the contrasts
of the two gratings). Increasing the contrast of both gratings
(while the ratio of contrasts is held fixed) resulted in a smaller
bias. The ideal observer shows a similar effect (E. P. Simoncelli &
D. J. Heeger, Invest. Opthal. Vis. Sci. Suppl. Abstr. 33, 954, 1992),
which again follows from the fact that at low contrast, there is
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of plaids as a function of this angle, while pattern velocity was
held constant18 (Fig. 5e). The perceived direction is not con-
sistent with a pure VA mechanism or a pure IOC mechanism.
Instead, it shows a gradual shift from the VA to the IOC solu-
tion as the angle between the components increases. The solid
line shows the prediction of the ideal observer (the direction
of v* in equation (1)). This situation is similar to the ‘narrow’
versus ‘fat’ rhombuses (Fig. 4). When two likelihoods whose
constraint lines are nearly identical are multiplied, their prod-
uct will be broad and hence have less of an influence on the
posterior. By contrast, when two likelihoods have widely dif-
fering constraint lines, their product will be narrow and hence
have greater influence on the posterior.

Influence of relative speed on type II plaids
The perceived direction of a plaid also depends on the relative
speeds of the components. We plotted data from a single sub-
ject19 who viewed a plaid with IOC and VA directions on oppo-
site sides of upward, and reported whether the motion appeared
to be more leftward or rightward (Fig. 5f). When the speeds of
the two components were similar, the subject answered right-
wards (consistent with the VA solution), but when the speeds
were dissimilar, the subject answered leftwards (consistent with
the IOC solution). We found that the ideal observer described
by equation (1) shows a similar shift from leftward to rightward
velocities. We again calculated a ‘percentage correct’ value for the
ideal observer by assuming decision noise (Fig. 5f, solid line).

DISCUSSION
Research on visual motion analysis has yielded a tremendous
amount of experimental data. When viewed in the context of
existing rules such as IOC and VA, these data seem contradic-

In all five conditions, the angular separation between the two
gratings was 22.3°. In some conditions the two normal velocities
were on different sides of the veridical motion (type I), whereas
in others they were on the same side of the veridical motion (type
II). Subjects saw type I plaids moving in the IOC direction and
type II plaids moving in approximately the VA direction (∼55°
away from veridical direction). The authors of the original study
explained their findings using a contrast-dependent combina-
tion of first-order and second-order motion analyzers37.

The ideal observer also predicted different directions of
motion for the two types of plaids at low contrast (Fig. 5d, solid
line). The ‘misperception’ of type II plaids is similar to the per-
ception of the narrow rhombus: the VA velocity is much slower
than the IOC solution and hence it is favored at low contrasts.
In the ideal observer, this bias toward the VA solution weakens
with increasing contrast, as the likelihoods become narrower.

It has also been reported that the VA bias is more pronounced
with shorter presentation durations17. We based our ideal observ-
er on instantaneous measurements, so it is not affected by dis-
play duration. The formulation can easily be extended so that the
ideal observer integrates information over time. This way,
increased duration acts in a similar fashion to increased contrast:
the longer the duration, the narrower the likelihood. Such an
extended formulation predicts that the VA bias would decrease
with increased duration. A similar effect of duration has been
reported elsewhere32, which would also be predicted by this
extension of our model.

Influence of relative orientation on type II plaids
The perceived direction of a type II plaid depends strongly on
the angle between the components. We replotted data from an
experiment in which subjects reported the perceived direction
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tory, requiring an arbitrary combination scheme that applies
the right rule in the right conditions. Such an approach can
successfully fit the data, but is typically lacking in predictive
power: with a complicated enough combination scheme one
can model any experiment. More importantly, because these
rules are not formulated directly on image measurements, it is
not clear how one should generalize them for application to
arbitrary spatiotemporal stimuli.

Here we have taken an alternative approach. We derived an
optimal estimator for local image velocity using the standard
assumption of intensity constancy and two additional assump-
tions: measurement noise and an a priori preference for slower
velocities. We found, consistent with results in humans, that the
motion estimates of this model include apparent biases and illu-
sions. Moreover, the predicted non-veridical percept is quite sim-
ilar to that exhibited by humans under the same circumstances.
Although the model does not account for all of the existing data
quantitatively, it correctly predicted a wide range of effects.

Our model does not provide a good quantitative fit to the
data of Fig. 5a (see Results), which suggest a quasilinear depen-
dence of perceived grating speed on contrast, and minimal
dependence on total contrast. Our model has been extended by
including a nonlinear ‘gain control’ function to map stimulus
contrast into perceived contrast (F. Hurlimann, D. Kiper & M.
Carandini, Invest. Opthal. Vis. Sci. Suppl. Abstr. 40, 794, 2000).
For each subject in that study, the authors measured a gain con-
trol function from contrast-discrimination experiments. They
then used the perceived contrast rather than stimulus contrast
as input to our model, and found that when these realistic rep-
resentations of contrast were used, the quantitative predictions
of the Bayesian model were in general agreement with the data.
We also found, using a numerical search procedure, that a
monotonic nonlinear gain control function enabled our model
to better fit the results reported here and in ref. 31 (see Supple-
mentary Results online).

One result33 that is not predicted by our model is the find-
ing that low-contrast gratings actually appear to move faster
than high-contrast gratings for temporal frequencies above 
8 Hz. However, the same author later was unable to reproduce
this result using a forced-choice task31, and concluded that the
original finding was probably “an artifact of the experimental
method with subjects making ‘speed’ matches based on some
other criterion”.

Our Bayesian estimator is meant as a perceptual model, and
does not specify a particular implementation. Nevertheless, the
solution can be instantiated using so-called motion energy mech-
anisms28,38, and detailed models of the physiology of the motion
pathway24,25,28,39–41 suggest that a population of MT cells may
be forming a representation of the local likelihood of velocity. In
addition, we believe it should be possible to refine and justify the
assumptions we have made. In particular, the prior distribution
on velocity could be estimated empirically from the statistics of
motion in the world. In a physiological implementation, the noise
model should be replaced by one that more accurately reflects
the uncertainties of neural responses.

Our model also suggests some future experiments. First, if the
single free parameter is observer dependent (but otherwise con-
stant), the magnitude of different illusions for the same subject
should be correlated. For example, observers who greatly under-
estimate the speed of low-contrast gratings should also show a
larger bias towards VA in type II plaids. Second, in all of our sim-
ulations we used only the maximum (or mean) of the posterior
distribution. It would be interesting to test whether human per-

cepts reflect the shape of the full posterior distribution.
We have focused on an ideal observer for estimating a single

two-dimensional translation. This model cannot estimate more
complicated motions such as rotations and expansions, nor can
it handle scenes containing multiple motions. Elsewhere, we
describe an extended ideal observer for more general scenes with
multiple motions29. We show that an ideal observer that assumes
that velocity fields are ‘slow and smooth’42 can explain an even
wider range of motion phenomena. In particular, the bias toward
slower motions can sometimes account for one of the most crit-
ical issues in motion perception: the question of whether to com-
bine measurements into a single coherent motion or assume that
there are actually multiple motions (H. Farid & E. P. Simoncel-
li, Invest. Opthal. Vis. Sci. Suppl. Abstr. 35, 1271, 1994).

Although the details of our model should certainly be refined
and extended to handle more complicated phenomena, we believe
the underlying principle will continue to hold: that many motion
‘illusions’ are not the result of sloppy computation by various com-
ponents in the visual system, but rather a result of a coherent com-
putational strategy that is optimal under reasonable assumptions.

METHODS
Most models of early motion extraction rely on an assumption of ‘inten-
sity conservation’. Under this assumption, the points in the world, as
measured in the image, move but do not change their intensity over time.
Mathematically, this is expressed as: 

I(x,y,t) = I(x + vx∆t, y + vy∆t, t + ∆t) (2)

where vx and vy are the components of the vector, v, describing the image
velocity. If we assume that the observed image is noisy, then intensity is
not conserved exactly. Thus, equation (2) becomes 

I(x,y,t) = I(x + vx∆t, y + vy∆t, t + ∆t) + η (3)

where η is a random variable representing noise.
We used equation (3) to derive the likelihood at location i,

P(I(xi,yi,t)|vi). This required additional assumptions. We assumed the
noise, η, is Gaussian with standard deviation σ. We further assumed
that the velocity is constant in a small window around xi,yi and that the
intensity surface I(x,y,t) is sufficiently smooth that it can be approxi-
mated by a linear function for small temporal durations. We thus
replaced I(x + vx∆t, y + vy∆t, t + ∆t) with its first-order Taylor series
expansion, which gives: 

P(I(xi,yi,t)|vi) ∝

(4)

where {Ix,Iy,It} denote the spatial and temporal derivatives of the intensity
function I, and wi(x,y) is a window  centered on (xi,yi). The likelihoods
shown in Fig. 3 and Fig. 4 are computed from equation (4) with w(x,y)
a small Gaussian window.

Finally, we assumed a prior favoring slow speeds: 

P(v) ∝ exp(–||v||2/2σp
2). (5)

The posterior probability of a velocity was computed by combining the
likelihood and prior using Bayes’ rule. Because we assumed that the noise
is independent over spatial location, the total likelihood function is just
a product of likelihoods: 

P(v|I) ∝ P(v) Π P(I(xi,yi,t) |v), (6)
i

where the product is taken over all locations i that are moving with a com-
mon velocity (vi = v). Substituting equations (4) and (5) into equaion (6), 


σ

exp    –  —         wi(x,y) (Ix(x,y,t)vx + Iy(x,y,t)vy + It(x,y,t))2 dx dy1
2   2 ∫x,y
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Here we assumed the entire image moves according to a single trans-
lational velocity, and so summed over all spatial positions. In this case,
∑i wi(x,y) is a constant, so the posterior probability is given by: 

To find the most probable velocity, we replaced the integral with a dis-
crete sum, took the logarithm of the posterior, differentiated it with
respect to v and set the derivative equal to zero. The logarithm of the
posterior is quadratic in v so that the solution can be written in closed
form using standard linear algebra. The result is given in equation (1).

Note: Supplementary information is available on the Nature Neuroscience website.

Acknowledgments
Y.W. and E.H.A. were supported by US National Eye Institute R01 EY11005 to
E.H.A. E.P.S. was supported by the Howard Hughes Medical Institute and the
Sloan-Swartz Center for Theoretical Visual Neuroscience at New York
University. We thank J. McDermott, M. Banks, M. Landy, W. Geisler and the
anonymous referees for comments on previous versions of this manuscript.

Competing interests statement
The authors declare that they have no competing financial interests.

RECEIVED 19 FEBRUARY; ACCEPTED 15 APRIL 2002

1. Nakayama, K. Biological image motion processing: a review. Vision Res. 25,
625–660 (1985).

2. Horn, B. K. P. & Schunck, B. G. Determining optical flow. Artif. Intell.
17(1–3), 185–203 (1981).

3. Lucas, B. D. & Kanade, T. An iterative image registration technique with an
application to stereo vision. in Proceedings of the 7th International Joint
Conference on Artificial Intelligence 674–679 (Morgan-Kaufmann, San
Fransisco, 1981).

4. Wuerger, S., Shapley, R. & Rubin, N. On the visually perceived direction of
motion by Hans Wallach: 60 years later. Perception 25, 1317–1367 (1996).

5. Wallach, H. Ueber visuell whargenommene bewegungrichtung. Psychol.
Forsch. 20, 325–380 (1935).

6. Marr, D. & Ullman, S. Directional selectivity and its use in early visual
processing. Proc. R. Soc. Lond. B Biol. Sci. 211, 151–180 (1981).

7. Adelson, E. & Movshon, J. Phenomenal coherence of moving visual patterns.
Nature 300, 523–525 (1982).

8. Movshon, A., Adelson, E., Gizzi, M. & Newsome, W. The analysis of moving
visual patterns. Exp. Brain Res. 11, 117–152 (1986).

9. Welch, L. The perception of moving plaids reveals two processing stages.
Nature 337, 734–736 (1989).

10. Morgan, M. Spatial filtering precedes motion detection. Nature 355, 344–346
(1992).

11. Schrater, P., Knill, D. & Simoncelli, E. Mechanisms of visual motion
detection. Nat. Neurosci. 3, 64–68 (2000).

12. Rodman, H. & Albright, T. Single-unit analysis of pattern motion selective
properties in the middle temporal visual area MT. Exp. Brain Res. 75, 53–64
(1989).

σ
σ
1

2   2 ∫
x,y

P(v|I) ∝ exp      –||v||2/2   p
2 –  —          (I(x,y) vx + Iy(x,y)vy + It)

2 dx dy

σ
σ
1

2   2 ∫x,y      i

P(v|I) ∝ exp      –||v||2/2   p
2 –  —           wi(x,y) (Ix(x,y)vx + Iy(x,y)vy + It)

2 dx dy   .Σ

13. Movshon, J. A. & Newsome, W. T. Visual response properties of striate
cortical neurons projecting to area MT in macaque monkeys. Vis. Neurosci.
16, 7733–7741 (1996).

14. Okamoto, H. et al. MT neurons in the macaque exhibited two types of
bimodal direction tuning as predicted by a model for visual motion
detection. Vision Res. 39, 3465–3479 (1999).

15. Ferrera, V. & Wilson, H. Perceived direction of moving two-dimensional
patterns. Vision Res. 30, 273–287 (1990).

16. Mingolla, E., Todd, J. & Norman, J. The perception of globally coherent
motion. Vision Res. 32, 1015–1031 (1992).

17. Yo, C. & Wilson, H. Perceived direction of moving two-dimensional patterns
depends on duration, contrast, and eccentricity. Vision Res. 32, 135–147 (1992).

18. Burke, D. & Wenderoth, P. The effect of interactions between one-
dimensional component gratings on two dimensional motion perception.
Vision Res. 33, 343–350 (1993).

19. Bowns, L. Evidence for a feature tracking explanation of why type II plaids
move in the vector sum directions at short durations. Vision Res. 36,
3685–3694 (1996).

20. Stone, L., Watson, A. & Mulligan, J. Effect of contrast on the perceived
direction of a moving plaid. Vision Res. 30, 1049–1067 (1990).

21. Rubin, N. & Hochstein, S. Isolating the effect of one-dimensional motion
signals on the perceived direction of moving two-dimensional objects. Vision
Res. 33, 1385–1396 (1993).

22. Helmholtz, H. Treatise on Physiological Optics (Thoemmes, Bristol, UK, 2000;
original publication 1866).

23. Knill, D. & Richards, W. Perception as Bayesian Inference (Cambridge Univ.
Press, Cambridge, 1996).

24. Ascher, D. & Grzywacz, N. A Bayesian model for the measurement of visual
velocity. Vision Res. 40, 3427–3434 (2000).

25. Koechlin, E., Anton, J. L. & Burnod, Y. Bayesian inference in populations of
cortical neurons: a model of motion integration and segmentation in area
MT. Biol. Cybern. 80, 25–44 (1999).

26. Simoncelli, E., Adelson, E. & Heeger, D. in Proc. IEEE Conf. Comput.
Vision Pattern Recog. 310–315 (IEEE, Washington DC, 1991).

27. Heeger, D. J. & Simoncelli, E. P. in Spatial Vision in Humans and Robots Ch.
19 (eds. Harris, L. & Jenkin, M.) 367–392 (Cambridge Univ. Press, 1994).

28. Simoncelli, E. P. Distributed Representation and Analysis of Visual Motion.
Thesis, Massachusetts Institute of Technology (1993).

29. Weiss, Y. Bayesian Motion Estimation and Segmentation. Thesis,
Massachusetts Institute of Technology (1998).

30. Ullman, S. The Interpretation of Visual Motion (MIT Press, Cambridge,
Massachusetts, 1979).

31. Stone, L. & Thompson, P. Human speed perception is contrast dependent.
Vision Res. 32, 1535–1549 (1990).

32. Lorenceau, J., Shiffrar, M., Wells, N. & Castet, E. Different motion sensitive
units are involved in recovering the direction of moving lines. Vision Res. 33,
1207–1217 (1992).

33. Thompson, P. Perceived rate of movement depends on contrast. Vision Res.
22, 377–380 (1982).

34. Thompson, P., Stone, L. & Swash, S. Speed estimates from grating patches are
not contrast normalized. Vision Res. 36, 667–674 (1996).

35. Blakemore, M. & Snowden, R. The effect of contrast upon perceived speed: a
general phenomenon? Perception 28, 33–48 (1999).

36. Snowden, R. N., Stimpson, N. & Ruddle, S. Speed perception fogs up as
visibility drops. Nature 392, 450 (1998).

37. Wilson, H., Ferrera, V. & Yo, C. A psychophysically motivated model for two-
dimensional motion perception. Vis. Neurosci. 9, 79–97 (1992).

38. Weiss, Y. & Fleet, D. in Probabilistic Models of the Brain Ch. 4 (eds. Rao, R.,
Olshausen, B. & Lewicki, M.) 77–96 (MIT Press, Cambridge, Massachusetts,
2002).

39. Nowlan, S. J. & Sejnowski, T. J. A selection model for motion processing in
area MT of primates. J. Neurosci. 15, 1195–1214 (1995).

40. Simoncelli, E. & Heeger, D. A model of neuronal responses in visual area MT.
Vision Res. 38, 743–761 (1998).

41. Pouget, A., Dayan, P. & Zemel, R. Information processing with population
codes. Nat. Rev. Neurosci. 1, 125–32 (2000).

42. Grzywacz, N. & Yuille, A. Theories for the visual perception of local velocity
and coherent motion. in Computational Models of Visual Processing (eds.
Landy, J. & Movshon, J.) 231–252 (MIT Press, Cambridge, Massachusetts,
1991).

©
20

02
 N

at
ur

e 
Pu

bl
is

hi
ng

 G
ro

up
  h

ttp
://

ne
ur

os
ci

.n
at

ur
e.

co
m


