G89.2223 Perception Maloney

October 5, 2009

Color Perception

Acknowledgments (slides) David Brainard David Heeger Color – What's it good for?

Color – what is it good for? •improved discrimination, grouping •signaling

•remote sensing of surface properties

Color Outline

Wavelength encoding (trichromacy)

Three cone types with different spectral sensitivities. Each cone outputs only a single number that depends on how many photons were absorbed. If two physically different lights evoke the same responses in the 3 cones then the two lights will look the same (metamers). Explains when two lights will look the same, not what they will look like.

Color appearance

Color opponency: appearance depends on the differences between cone responses (R-G and B-Y).

Chromatic adaptation: color appearance also depends on context because the each cone adapts (like light and dark adaptation) to the ambient illumination.

Color constancy: visual system infers surface color, despite changes in illumination.

Color, Where does it come from?

Image Formation

Nassau, K. (2001), The physics and chemistry of color, 2nd Edition. New York: Wiley.

Color matching: scaling

Scaling the input by
$$\alpha$$
 scales the output by α .

Color match settings Color matching functions test light

$$\begin{pmatrix}
\alpha R \\
\alpha G \\
\alpha B
\end{pmatrix} = \begin{pmatrix}
r(\lambda_1) & r(\lambda_2) & \dots & r(\lambda_N) \\
g(\lambda_1) & g(\lambda_2) & \dots & g(\lambda_N) \\
b(\lambda_1) & b(\lambda_2) & \dots & b(\lambda_N)
\end{pmatrix} \begin{pmatrix}
\alpha t(\lambda_1) \\
\alpha t(\lambda_2) \\
\vdots \\
\alpha t(\lambda_N)
\end{pmatrix}$$

Color matching: additivity

Adding two the inputs gives the sum of the two outputs.

$$\begin{pmatrix} R_{1} \\ G_{1} \\ B_{1} \end{pmatrix} = \begin{pmatrix} r(\lambda) \\ g(\lambda) \\ b(\lambda) \end{pmatrix} \begin{pmatrix} r_{1}(\lambda) \\ t_{1}(\lambda) \end{pmatrix} \begin{pmatrix} R_{2} \\ G_{2} \\ B_{2} \end{pmatrix} = \begin{pmatrix} r(\lambda) \\ g(\lambda) \\ b(\lambda) \end{pmatrix} \begin{pmatrix} r_{2}(\lambda) \\ r_{2}(\lambda) \\ r_{3}(\lambda) \end{pmatrix}$$

Measuring the color matching functions

Color match settings Color matching functions 5PD of test light

$$\begin{pmatrix} r(\lambda_1) \\ g(\lambda_1) \\ b(\lambda_1) \end{pmatrix} = \begin{pmatrix} r(\lambda_1) & r(\lambda_2) & \dots & r(\lambda_N) \\ g(\lambda_1) & g(\lambda_2) & \dots & g(\lambda_N) \\ b(\lambda_1) & b(\lambda_2) & \dots & b(\lambda_N) \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

monochromatic test ligh

Repeat with monochromatic test lights of each wavelength, always using the same 3 primary lights.

Standardized color matching functions

Commission Internationale d'Eclairage (CIE) standard set in 1931 using 3 monochromatic primaries at wavelengths of 435nm, 546nm, and 700nm.

Physiology of color matching

The eye

The principle of univariance

The response of a photoreceptor is a function of just one variable (namely, the number of photons absorbed).

Thus, the response can be identical for:

- a weak light at the wavelength of peak sensitivity
 - few incident photons, a large fraction of them absorbed
- a strong light at a wavelength of lower sensitivity
 - many incident photons, a small fraction of them absorbed

Trichromacy equations

Wavelength encoding equation

Response Cone responsivity
$$\begin{pmatrix} L \\ M \\ S \end{pmatrix} = \begin{pmatrix} \cdots & l(\lambda) & \cdots \\ \cdots & m(\lambda) & \cdots \\ \cdots & s(\lambda) & \cdots \end{pmatrix} \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix}$$

