

Color - what is it good for?
-improved discrimination, grouping
-signaling
-remote sensing of surface properties

Color Outline

Wavelength encoding (trichromacy)

Three cone types with different spectral sensitivities. Each cone outputs only a single number that depends on how many photons were absorbed. If two physically different lights evoke the same responses in the 3 cones then the two lights will look the same (metamers). Explains when two lights will look the same, not what they will look like.

Color appearance

Color opponency: appearance depends on the differences between cone responses ($R-G$ and $B-Y$).
Chromatic adaptation: color appearance also depends on context because the each cone adapts (like light and dark adaptation) to the ambient illumination.
Color constancy: visual system infers surface color, despite changes in illumination.

Color matching: additivity

Color matching: scaling

Scaling the input by α scales the output by α.

$$
\begin{aligned}
& \begin{array}{l}
\text { Color match } \\
\text { settings }
\end{array} \\
& \left.\qquad \begin{array}{c}
\alpha R \\
\alpha G \\
\alpha B
\end{array}\left|=\left(\begin{array}{llll}
r\left(\lambda_{1}\right) & r\left(\lambda_{2}\right) & \ldots & r\left(\lambda_{N}\right) \\
g\left(\lambda_{1}\right) & g\left(\lambda_{2}\right) & \cdots & g\left(\lambda_{N}\right) \\
b\left(\lambda_{1}\right) & b\left(\lambda_{2}\right) & \cdots & b\left(\lambda_{N}\right)
\end{array}\right)\right| \begin{array}{c}
\alpha t\left(\lambda_{1}\right) \\
\alpha t\left(\lambda_{2}\right) \\
\cdot \\
\cdot \\
\cdot \\
\alpha t\left(\lambda_{N}\right)
\end{array}\right)
\end{aligned}
$$

Color matching as matrix multiplication

$$
\begin{gathered}
\begin{array}{c}
\text { Color match } \\
\text { settings }
\end{array} \\
\left.\qquad \begin{array}{l}
R \\
G \\
B
\end{array}\right) \left.=\left(\begin{array}{llll}
r\left(\lambda_{1}\right) & r\left(\lambda_{2}\right) & \ldots & r\left(\lambda_{N}\right) \\
g\left(\lambda_{1}\right) & g\left(\lambda_{2}\right) & \cdots & g\left(\lambda_{N}\right) \\
b\left(\lambda_{1}\right) & b\left(\lambda_{2}\right) & \cdots & b\left(\lambda_{N}\right)
\end{array}\right) \right\rvert\, \begin{array}{c}
\text { SPD of } \\
\text { test light }
\end{array} \\
\left.\underbrace{t\left(\lambda_{2}\right)}_{\substack{\text { Intensities of } \\
\text { the three } \\
\text { primary lights }}} \begin{array}{c}
\\
\cdot \\
\cdot \\
t\left(\lambda_{N}\right)
\end{array} \right\rvert\,
\end{gathered}
$$

Color matching: additivity

Adding two the inputs gives the sum of the two outputs.

$$
\begin{aligned}
& \left.\left(\begin{array}{l}
R_{1} \\
G_{1} \\
B_{1}
\end{array}|=| \begin{array}{l}
r(\lambda) \\
g(\lambda) \\
b(\lambda)
\end{array}\right)\left|t_{1}(\lambda)\right| \begin{array}{l}
R_{2} \\
G_{2} \\
B_{2}
\end{array}\right) \left.=\left(\begin{array}{l}
r(\lambda) \\
g(\lambda) \\
b(\lambda)
\end{array}\right) \right\rvert\,\left(t_{2}(\lambda) \mid\right. \\
& \left.\left(\begin{array}{c}
R_{1}+R_{2} \\
G_{1}+G_{2} \\
B_{1}+B_{2}
\end{array}\right)=\left\lvert\, \begin{array}{l}
r(\lambda) \\
g(\lambda) \\
b(\lambda)
\end{array}\right.\right) \mid t_{1}(\lambda)+t_{2}(\lambda)
\end{aligned}
$$

Standardized color matching functions

Physiology of color matching

Measuring rod spectral sensitivity
(wavelength-dependence of rhodopsin absorption)

Rod spectral sensitivity

Let's say you have a 500 nm light with intensity 10 . Can you match it's appearance with a 550 nm light? If so, what will be the intensity of the matching light?

The principle of univariance

The response of a photoreceptor is a function of just one variable (namely, the number of photons absorbed).
Thus, the response can be identical for:

- a weak light at the wavelength of peak sensitivity
- few incident photons, a large fraction of them absorbed
- a strong light at a wavelength of lower sensitivity
- many incident photons, a small fraction of them absorbed

Color display equation

Color blindness

normal

red/green color blind

blue-yellow color blind

- Dichromats: missing one of the three photopigment/cone types. - Can match with 2 primaries in the color matching experiment
- Will accept trichromat's match but trichromat will not always accept dichromats match.

Color matching and trichromacy caveats

2. For any set of primaries, there are test lights that are out of range such that the primary intensities must be higher than achievable or "negative (which is physically impossible).
3. Trichromacy determines when two lights look the same, not what they look like.
4. Additive vs "subtractive" color mixtures.

People with color deficiencies may have difficulty distinguishing certain color (e.g., a red/green color deficiency means that reds and greens are more difficult to distinguish). But as this photo demonstrates, many other colors are just as distinguishable to a person with a color deficiency as to someone with normal color vision

red/green color blind

blue/yellow color blind

1. The 3 primary lights must be linearly independent:

RGB

red, green, blue-used in TVs Additive mixing of light sources

cyan, magenta, yellow, black-used in printing Subtractive mixing of absorbing pigments

"Subtractive" color mixture: surface reflectance

Color calculations in matlab

