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overview

● motivation
● philosophy
● efficient Matlab techniques (tip of iceberg)
● GPU enabled Matlab functions
● parallel for loops
● MEX
● CUDA



  

motivation

● You don't want to wait for results
● Your labmates don't want to wait for your 

results



  

philosophy

“Premature optimization is the root of all evil  
(or at least most of it) in programming.”  --Knuth

● readability is key
● less errors
● reusable

● only optimize bottlenecks
● keep readable code commented



  

efficient Matlab - profiler

● find bottlenecks:

1) > profile on

2) run your code

3) > profile viewer

 



  

Profiler – time spent per line



  

Profiler – mlint (Code Analyzer)



  

efficient Matlab - vectorize

For loops are slow in Matlab, so replace with

colon (:) or repmat:

i = 0;

for t = 0:0.001:1
i = i + 1;

y(i) = sin(t);

end

with:

t = 0:0.001:1;

y = sin(t);



  

efficient Matlab – pre-allocation

● If you are stuck with a for loop then make sure you 
preallocate:

foo = zeros(1,N);

for i = 1:N

    foo(i) = baz(i);

end

● otherwise you're reallocating a new array at each 
iteration



  

efficient Matlab - In-place operations

● Many Matlab functions support in-place 
operation on data:

x = myfunc(x)
● No memory overhead and no time overhead for 

allocation.



  

efficient Matlab – single precision

● Do you really need double precision?
● If not allocate as single precision:                   

foo = single(rand(N));
● quick way to cut execution time in half.

(almost anyway)
● cuts internal representation of variables in half



  

parallel threads of execution

● Matlab >= 7.4 supports CPU multithreading
● CPU usage > 100%  ==  CPU multithreading

● Matlab >= 7.11 supports GPU multithreading
● example: independent iterations of for loop

● pass each job to its own processing core 

(CPU or GPU)
● Multiple iterations done at each time step



  

efficient Matlab – GPU functions

● latest versions of Matlab have limited GPU 
support:
● arrayfun, conv, dot, filter, fft, ifft, ldivide, lu, 

mldivide, …

● data transfer to and from card is slow
● works best with vectorized code



  

GPU functions - example

% move data to GPU

X_gpu = gpuArray(im_cpu);

Y_gpu = gpuArray(filt_cpu);

< perform operations on the GPU >

Z_gpu = ifft( fft(X_gpu) .* fft(Y_gpu) );

Z_cpu = gather(Z_gpu);% pull data off the GPU



  

faster for loops - parfor

● have a for loop that you can't vectorize?
● if each loop iteration is independent:

matlabpool open;

parfor i=1:N
< loop body >

end

matlabpool close;

● current maximum # workers (threads) == 8

 



  

faster code - MEX

● Running C code in 
Matlab

● Standard C except for 
matlab interface.



  

faster for loops - CUDA



  

when is CUDA the right answer?

● Loop with large number of iterations
● Few if any temporary variables in loop

● Large temporary variables must be duplicated

● For example: summary statistics
● Only memory transfer on to card
● Small temporary variable
● Temporary variable can be shared by threads



  

nlmeans speed comparison



  

nlmeans speed comparison
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nlmeans speed comparison



  

Summary



  

Resources
● me – my door's always open!

● Matlab blogs (especially Loren & Steve):

http://blogs.mathworks.com

● general Matlab optimization:

http://www.mathworks.com/matlabcentral/fileexchange/5685-writing-fast-matlab-code

● profiler:

        http://blogs.mathworks.com/desktop/2010/02/01/speeding-up-your-program-through-profiling/

        http://www.mathworks.com/help/techdoc/matlab_env/f9-17018.html

● parfor:

        http://www.mathworks.com/help/toolbox/distcomp/brb2x2l-1.html

        http://blogs.mathworks.com/loren/2007/10/03/parfor-the-course/

● GPU:

        http://www.mathworks.com/discovery/matlab-gpu.html

        http://www.mathworks.com/help/toolbox/distcomp/bsic3by.html

● MEX:

        http://www.mathworks.com/support/tech-notes/1600/1605.html



  

                       Thanks!

      Let's talk about your code!



  

nlmeans code comparison
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