

ETS group meeting

intro to faster matlab code

by

 Rob Young

overview

● motivation
● philosophy
● efficient Matlab techniques (tip of iceberg)
● GPU enabled Matlab functions
● parallel for loops
● MEX
● CUDA

motivation

● You don't want to wait for results
● Your labmates don't want to wait for your

results

philosophy

“Premature optimization is the root of all evil
(or at least most of it) in programming.” --Knuth

● readability is key
● less errors
● reusable

● only optimize bottlenecks
● keep readable code commented

efficient Matlab - profiler

● find bottlenecks:

1) > profile on

2) run your code

3) > profile viewer

Profiler – time spent per line

Profiler – mlint (Code Analyzer)

efficient Matlab - vectorize

For loops are slow in Matlab, so replace with

colon (:) or repmat:

i = 0;

for t = 0:0.001:1
i = i + 1;

y(i) = sin(t);

end

with:

t = 0:0.001:1;

y = sin(t);

efficient Matlab – pre-allocation

● If you are stuck with a for loop then make sure you
preallocate:

foo = zeros(1,N);

for i = 1:N

 foo(i) = baz(i);

end

● otherwise you're reallocating a new array at each
iteration

efficient Matlab - In-place operations

● Many Matlab functions support in-place
operation on data:

x = myfunc(x)
● No memory overhead and no time overhead for

allocation.

efficient Matlab – single precision

● Do you really need double precision?
● If not allocate as single precision:

foo = single(rand(N));
● quick way to cut execution time in half.

(almost anyway)
● cuts internal representation of variables in half

parallel threads of execution

● Matlab >= 7.4 supports CPU multithreading
● CPU usage > 100% == CPU multithreading

● Matlab >= 7.11 supports GPU multithreading
● example: independent iterations of for loop

● pass each job to its own processing core

(CPU or GPU)
● Multiple iterations done at each time step

efficient Matlab – GPU functions

● latest versions of Matlab have limited GPU
support:
● arrayfun, conv, dot, filter, fft, ifft, ldivide, lu,

mldivide, …

● data transfer to and from card is slow
● works best with vectorized code

GPU functions - example

% move data to GPU

X_gpu = gpuArray(im_cpu);

Y_gpu = gpuArray(filt_cpu);

< perform operations on the GPU >

Z_gpu = ifft(fft(X_gpu) .* fft(Y_gpu));

Z_cpu = gather(Z_gpu);% pull data off the GPU

faster for loops - parfor

● have a for loop that you can't vectorize?
● if each loop iteration is independent:

matlabpool open;

parfor i=1:N
< loop body >

end

matlabpool close;

● current maximum # workers (threads) == 8

faster code - MEX

● Running C code in
Matlab

● Standard C except for
matlab interface.

faster for loops - CUDA

when is CUDA the right answer?

● Loop with large number of iterations
● Few if any temporary variables in loop

● Large temporary variables must be duplicated

● For example: summary statistics
● Only memory transfer on to card
● Small temporary variable
● Temporary variable can be shared by threads

nlmeans speed comparison

nlmeans speed comparison

nlmeans speed comparison

nlmeans speed comparison

Summary

Resources
● me – my door's always open!

● Matlab blogs (especially Loren & Steve):

http://blogs.mathworks.com

● general Matlab optimization:

http://www.mathworks.com/matlabcentral/fileexchange/5685-writing-fast-matlab-code

● profiler:

 http://blogs.mathworks.com/desktop/2010/02/01/speeding-up-your-program-through-profiling/

 http://www.mathworks.com/help/techdoc/matlab_env/f9-17018.html

● parfor:

 http://www.mathworks.com/help/toolbox/distcomp/brb2x2l-1.html

 http://blogs.mathworks.com/loren/2007/10/03/parfor-the-course/

● GPU:

 http://www.mathworks.com/discovery/matlab-gpu.html

 http://www.mathworks.com/help/toolbox/distcomp/bsic3by.html

● MEX:

 http://www.mathworks.com/support/tech-notes/1600/1605.html

 Thanks!

 Let's talk about your code!

nlmeans code comparison

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

