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In this note, I review the behavior of a leaky integrate-and-fire (LIF) neuron under different stimulation
conditions. I closely follow chapter 4.1 of Gerstner and Kistler (2002). I consider three different stimulation
conditions below and show how each condition can be implemented in the Brian spiking neural network
simulator for Python (Goodman & Brette, 2008).

Introduction: The leaky integrate-and-fire (LIF) neuron is probably one of the simplest spiking neuron
models, but it is still very popular due to the ease with which it can be analyzed and simulated. In its
simplest form, a neuron is modeled as a “leaky integrator” of its input I(t):

τm
dv

dt
= −v(t) +RI(t) (1)

where v(t) represents the membrane potential at time t, τm is the membrane time constant and R is the
membrane resistance. This equation describes a simple resistor-capacitor (RC) circuit where the leakage
term is due to the resistor and the integration of I(t) is due to the capacitor that is in parallel to the
resistor. The spiking events are not explicitly modeled in the LIF model. Instead, when the membrane
potential v(t) reaches a certain threshold vth (spiking threshold), it is instantaneously reset to a lower
value vr (reset potential) and the leaky integration process described by Equation 1 starts anew with the
initial value vr. To add just a little bit of realism to the dynamics of the LIF model, it is possible to add
an absolute refractory period ∆abs immediately after v(t) hits vth. During the absolute refractory period,
v(t) might be clamped to vr and the leaky integration process is re-initiated following a delay of ∆abs

after the spike.

1. Stimulation by a constant input current: Consider the case of constant input: I(t) = I. We
assume vr = 0. The solution of Equation 1 is then given by:

v(t) = RI[1− exp(−
t

τm
)] (2)

It is easy to understand the behavior of this solution. The asymptotic value of the membrane potential is
RI. If this value is less than the spiking threshold, vth, no spike can be generated. If, however, RI > vth,
then the neuron generates spikes (“fires”) periodically. Assuming v(0) = vr = 0, the time of the first
spike, t(1), can be found by solving:

vth = RI[1− exp(−
t(1)

τm
)] (3)

This yields:

t(1) = τm ln
RI

RI − vth
(4)
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Equation 4 also gives the time between each successive spike the neuron fires (or its period). This is
because we assumed v(0) = vr in deriving Equation 4. If we also add an absolute refractory period, ∆abs,
as discussed above, the period becomes:

T = ∆abs + τm ln
RI

RI − vth
(5)

The mean firing rate of the neuron, f , is then given by 1/T :

f = [∆abs + τm ln
RI

RI − vth
]−1 (6)

Figure 1 (left) shows the simulation of a LIF neuron with a constant input current. In this simulation, we
take vr = 0 mV, vth = 15 mV and stimulate the neuron with a suprathreshold constant current of I = 20
mV (the current is given in units of mV, because we assume R = 1 mΩ; thus, a more accurate way of
expressing this would be RI = 20 mV, but for the sake of brevity we will simply omit R in what follows).
As predicted, the neuron fires regularly. Figure 1 (right) shows the f − I (mean firing rate-input current)
curves for a LIF neuron with (dashed line) and without (solid line) an absolute refractory period. These
curves are calculated analytically using Equation 6. The following Brian code shows how to simulate a
LIF neuron with a constant input current:

1 from brian import *

2 from numpy import *

3

4 if __name__ == ’__main__’:

5

6 N = 1 # number of neurons

7

8 tau_m = 10 * ms # membrane time constant

9 v_r = 0 * mV # reset potential

10 v_th = 15 * mV # threshold potential

11 I_c = 20 * mV # constant input current

12

13 eqs = ’’’

14 dv/dt = -(v-I)/tau_m : volt

15 I : volt

16 ’’’

17

18 lif = NeuronGroup(N, model=eqs, threshold=v_th, reset=v_r)

19 # You can add randomness in initial membrane potential by changing the following line

20 lif.v = v_r * mV + 0 * mV * rand(len(lif))

21 lif.I = I_c

22

23 spikes = SpikeMonitor(lif)

24 v_trace = StateMonitor(lif, ’v’, record=True)

25

26 run(0.1*second)

27

28 figure(1)

29 plot(v_trace.times/ms,v_trace[0]/mV)

30 xlabel(’Time (ms)’, fontsize=24)
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Figure 1: Stimulation of a LIF neuron by a constant input current: the time-course of the membrane
potential, v(t) (left); f -I curve for a LIF neuron with (dashed line: ∆abs = 5 ms) and without (solid line:
∆abs = 0 ms) an absolute refractory period (right). Red line indicates the particular I value used in the
simulation on the left.

31 ylabel(’v (mV)’,fontsize=24)

32 yticks([0,4,8,12,16])

33

34 show()

35

36 # plot the f-I curve for a LIF neuron with constant input

37 delta_abs = 5

38 tau_m = 10

39 v_th = 15

40 Is = linspace(0,50,51)

41

42 f1 = 1.0 / (0 + tau_m * log(Is/(Is - v_th)))

43 f2 = 1.0 / (delta_abs + tau_m * log(Is/(Is - v_th)))

44

45 figure(2)

46 plot(Is,f1,’k-’)

47 plot(Is,f2,’k--’)

48 plot([20, 20],[0, 0.3],’r-’)

49 xlabel(’I’,fontsize=24)

50 ylabel(’f (kHz)’,fontsize=24)

51 yticks([0,.1,.2,.3])

52

53 show()

2. Stimulation by a time-varying input current: For a general time-varying input current I(t), the
solution of Equation 1, with the initial condition v(t0) = vr, is given by:

v(t) = vr exp(−
t− t0
τm

) +
R

τm

∫ t−t0

0
exp(−

s

τm
)I(t− s)ds (7)

As in the previous case, this equation describes the dynamics of the membrane potential between successive

3



0 20 40 60 80 100
0

4

8

12

16

v
 (
m
V
)

0 20 40 60 80 100

Time (ms)

0

10

20

30

I(
t)

Figure 2: Stimulation of a LIF neuron by a time-varying input current. The lower panel shows the
time-varying input current, I(t). In this example, at each time step t, I(t) is sampled from a Gaussian
with mean 15 and standard deviation 5. Note that we take R = 1 mΩ, so the input current I and the
membrane potential v have the same scale and the same units. Other parameters are the same as in the
previous simulation: in particular vr = 0, vth = 15 mV. The upper panel shows the time-course of the
membrane potential, v(t). Note that spiking is no longer regular.

spiking events. When the membrane potential reaches the threshold, it is instantaneously reset to vr and
starts to evolve according to Equation 7 again until the next spiking event. It is a simple but very
instructive exercise to show that Equation 2 emerges as a special case of Equation 7 when the input
current is constant: i.e. I(t) = I (note that we assumed vr = 0 and t0 = 0 in deriving Equation 2).

Figure 2 shows the simulation of a LIF neuron with a time-varying input current, I(t). In this example, at
each time step t, I(t) is sampled from a Gaussian distribution with mean 15 mV and standard deviation
5 mV (again we omit R here, so the input current I(t) is specified in units of mV). This condition can
be simulated using the same Brian code given above. The only thing that needs to be changed is line 21:
here, we should substitute a time-varying current for the constant current used in the previous simulation.
One way to do this in Brian is to use a TimedArray:

lif.I = TimedArray((15 + 5*randn(1000))*mV)

This specifies the input current at each time-step of the simulation. We need to specify 1000 values in
total, because our total simulation time is 100 ms and each time-step in the simulation is 0.1 ms, thus the
total number of time-steps in the simulation is 1000. The resulting time-varying input current is shown
in the lower panel of Figure 2 and the time-course of the membrane potential of the LIF neuron is shown
in the upper panel of Figure 2.

3. Stimulation by synaptic currents: Previous sections considered the stimulation of the LIF neuron
by the direct injection of constant or time-varying currents. Now, consider a more realistic situation where
the neuron is stimulated by pre-synaptic spikes arriving at its synapses. Each pre-synaptic spike makes
a stereotyped contribution, described by a function α(t), to the post-synaptic current and contributions
of different pre-synaptic spikes are linearly summed to obtain the total post-synaptic current. Thus, the
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Figure 3: Stimulation of a LIF neuron by synaptic currents: the time-course of the post-synaptic mem-
brane potential, v(t) (left); raster plot of pre-synaptic spikes (middle); the total post-synaptic current,
Ipost(t), due to pre-synaptic spikes (right).

total post-synaptic current to the i-th neuron can be expressed as follows:

Ii(t) =
∑
j

wij

∑
f

α(t− t
(f)
j ) (8)

where t
(f)
j represents the time of the f -th spike of the j-th pre-synaptic neuron; wij is the strength of

synaptic efficacy between neuron i and neuron j. Common choices for α include (1) the instantaneous
Dirac δ-pulse:

α(t) = qδ(t) (9)

where q is the total charge injected into the synapse; (2) the alpha synapse (I use the expressions in Brian’s
documentation below, Gerstner & Kistler (2002) use slightly different expressions for these synapses):

α(t) = α
t

τ
exp(1−

t

τ
) (10)

or (3) the bi-exponential synapse:

α(t) = β
τ2

τ2 − τ1
[exp(−

t

τ1
)− exp(−

t

τ2
)] (11)

where α and β are normalizing constants and τ , τ1 and τ2 are the time constants of the synapses.

Figure 3 shows the simulation a LIF neuron with 25 pre-synaptic inputs arriving at an alpha synapse
(Equation 10). In this example, we modeled the pre-synaptic inputs as independent Poisson processes
with a common rate of 40 Hz. The synaptic efficacies wij (see Equation 8) were randomly drawn from a
Gaussian distribution with mean 1.62 mV and standard deviation 0.5 mV. Other parameters of the LIF
neuron were the same as in previous simulations (in particular, vr = 0, vth = 15 mV).

The following Brian code shows how to perform the simulation demonstrated in Figure 3. Here, we used
the alpha synapse function (line 18 below) from the brian.library.synapses module which contains
a few useful built-in synapses such as the alpha synapse and the bi-exponential synapse. For a bi-
exponential synapse, we would use the biexp synapse function from the same module: i.e. something
like biexp synapse(input=’I in’,tau1=10*ms,tau2=5*ms,unit=mV,output=’ge’) on line 18 below.
For a Dirac δ-pulse synapse, simply removing the line 18 entirely would be enough (why?).

1 from brian import *

2 from brian.library.synapses import alpha_synapse

3 from brian.library.IF import leaky_IF
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4 from numpy import *

5

6 if __name__ == ’__main__’:

7

8 N_pre = 25 # number of presynaptic neurons

9 N_post = 1 # number of postsynaptic neurons

10

11 tau_m = 10 * ms # membrane time constant

12 v_r = 0 * mV # reset potential

13 v_th = 15 * mV # threshold potential

14 W = 1.62 * mV + 0.5*randn(N_pre,N_post) * mV # synaptic efficacies

15

16 # Leaky IF neuron with alpha synapses

17 eqs = leaky_IF(tau=tau_m,El=v_r)+Current(’I=ge:mV’)+\

18 alpha_synapse(input=’I_in’,tau=10*ms,unit=mV,output=’ge’)

19

20 lif_pre = PoissonGroup(N_pre, rates=40*Hz)

21 lif_post = NeuronGroup(N_post, model=eqs, threshold=v_th, reset=v_r)

22 C = Connection(lif_pre, lif_post, ’ge’, weight=W)

23

24 spikes_pre = SpikeMonitor(lif_pre)

25 spikes_post = SpikeMonitor(lif_post)

26 v_trace = StateMonitor(lif_post, ’vm’, record=True)

27 I_trace = StateMonitor(lif_post, ’ge’, record=True)

28

29 run(0.1*second)

30

31 figure(1)

32 plot(v_trace.times/ms,v_trace[0]/mV)

33 xlabel(’$\mathrm{Time \; (ms)}$’,fontsize=30)

34 ylabel(’$\mathrm{v \; (mV)}$’,fontsize=30)

35

36 figure(2)

37 plot(I_trace.times/ms,I_trace[0]/mV)

38 xlabel(’$\mathrm{Time \; (ms)}$’,fontsize=30)

39 ylabel(’$\mathrm{I_{post}(t)}$’,fontsize=30)

40

41 figure(3)

42 raster_plot(spikes_pre)

43 xlabel(’$\mathrm{Time \; (ms)}$’,fontsize=30)

44 ylabel(’$\mathrm{Neuron \; no}$’,fontsize=30)

45 show()
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