
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2019
Mathematical Tools for Neural and Cognitive Science

Homework 6

Due: 13 Dec 2019
(late homeworks penalized 10% per day)

See the course web site for submission details. For each problem, show your work - if you only
provide the answer, and it is wrong, then there is no way to assign partial credit! And, please don’t
procrastinate until the day before the due date... start now!

1. Fitting a psychometric function. In HW5-Q4, we simulated a subject performing a
2-alternative forced choice psychophysics experiment. We will now simulate the inverse (sci-
entific) side of the problem, and use this probabilistic model as a means of fitting/analyzing
a simulated data set.

(a) Write a function nll = nloglik(mu,sigma,I,T,C) that returns the negative log likeli-
hood of parameters mu and sigma, for data set I,T,C (we’re negating it because we will
be minimizing this function to solve for the optimal parameters).

(b) Generate a contour plot (function contour, using 50 lines) of the negative log likelihood
of the data set from part (c) of the previous problem, for all pairs of mu from muall

= [2:0.2:10] and a sigma from sigmaall = [0.5:0.2:6]. What is the approximate
location of the best fitting pair of parameters from this plot?

(c) Use the matlab function fminsearch to get a more precise estimate of values mu,sigma
that minimize the function nloglik(mu,sigma,...). Two comments: first, the syntax
for calling nloglik within fminsearch is a bit odd:
fminsearch(@(x) nloglik(x(1),x(2),I,T,C), <startpoint>).
Here, the @ notation is used to create a temporary function, with argument x a vector
containing the two variables being optimized (mean and stdev). Second, you’ll need to
specify a start point for the search – for this problem, [2,2] is a reasonable choice.

(d) A variant of fminsearch, fminunc, also returns the Hessian (the matrix of second
derivatives) of the negative log likelihood at the optimal mu and sigma. (Note: fminunc
is less robust than fminsearch, and if the optimizer strays too far from the true values,
there may be numerical problems due to overflow of the likelihood; in this case, try a
different starting point.) The inverse of the Hessian provides an estimate of the covari-
ance matrix of the parameter estimates. Use this to determine 95% confidence intervals
on each parameter (Hint: a 95% confidence interval is the mean ±1.96 standard devia-
tions of the parameter estimate. Compute the standard deviation of a marginal of the
2-D Gaussian that has covariance equal to the inverse Hessian.) Do the true parameter
values (4 and 1) fall within these confidence intervals?

(e) Produce a second set of confidence intervals for the parameters using a bootstrap method.
For each of the 7 intensities, resample 100 trials (correct or incorrect) from the 100 trials
of that intensity in the original data, with replacement. Refit the model to the resampled
data using fminsearch. Plot the histograms (function hist) of mu and sigma estimates
obtained over 500 such resampled datasets, and define your confidence intervals as the
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region between the 2.5th and 97.5th percentiles of these distributions. How well do these
values agree with those from part (d)?

2. Classification (decision) in a 2-dimensional space. Load the file fisherData.mat into
your MATLAB environment. The file contains two data matrices, data1 and data2, whose
rows contain hypothetical normalized responses of 2 mouse auditory neurons to different
stimuli – The first matrix contains responses to dogs barking, and the second are responses
to cat vocalizations. You would like to know whether the responses of these two neurons
could be used by the mouse to differentate the two types of sound. We’ll implement three
classifiers.

(a) First consider the linear discriminant corresponding to the difference in means of the two
data sets (sometimes called the “prototype classifier”). Writek the math to show that
this solution is the Maximum Likelihood classifier under the assumption that the data are
drawn from Gaussian distributions with different means and identity covariance (or any
scalar multiple of the identity matrix). Now compute the discriminant vector (compute
the difference of the means of each data set, and normalize to unit length). Scatter plot
the data (using different colors for the two data sets), and plot the discriminant vector
and the decision boundary on top of this. What fraction of the points are correctly
classified by this classifier?

(b) Now use Fisher’s Linear Discriminant, which maximizes the average squared between-
class mean distance, while minimizing the sum of within-class squared distances (see
Notes on regression). Write the math to show that this classifier is the ML solution
when the data are drawn from Gaussian distributions with different means, but the
same covariance matrix (which need not be a multiple of the identity!). Estimate the
common covariance, ΣData, by averaging together the covariances of the two data ma-
trices. Repeat the plotting exercises of part (a) to visualize the solution. Again, what
fraction of the points are correctly classified by this classifier?

(c) Fisher’s discriminant suffers when there’s not enough data to estimate the covariance
matrices. Compute the regularized Fisher’s discriminant, by estimating the covariance
matrix as ΣEstimated = (1−λ)ΣData+λI, where ΣData is the mean covariance matrix es-
timated from the data (as in part (b)), I is the identity matrix. The parameter λ controls
the regularization term, allowing the solution to transition between the prototype clas-
sifier (λ = 1) and Fisher’s Discriminant (λ = 0). Test the classifier for λ = [0 : 0.05 : 1]
using 95%-5% cross-validation (i.e., sample without replacement and train on 95% of the
data from each class, and test classification performance on the remaining 5%). Plot
your cross-validated test-set performance (with error bars) as a function of λ and justify
which λ you think is best.

(d) Finally, consider the Quadratic Classifier that computes the ML decision rule for the
general case of two Gaussian distributions (i.e., each with its own mean and covariance).
Specifically, estimate the mean and covariance of data measured for each condition, and
calculate the classifier that chooses the class of each data point based on which of the
two Gaussians has higher probability at that location (write out the math). Repeat the
plotting exercises of part (a) leaving out the discriminant vector (which doesn’t exist
for the quadratic classifier). Calculate the fraction of correctly classified data points.
Which of the four classifiers (prototype, LDA, regularized LDA, or QDA) is best? Are
there data scenarios in which you might prefer to use one of the inferior classifiers?
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3. Revisiting old problems with new tools.

(a) From HW 2: you sequentially fit models of increasing polynomial order to a dataset
and assessed what the ‘best’ model was by eye. Let’s do that more objectively with
regularization and cross-validation. Implement least-squares regression using the full
polynomial model (up to 5th order) regularized by a term that penalizes large coefficients.
For this penalty, try using both L2 (ridge) and L1 (LASSO) regularization terms, and
determine the strength of the regularization using 95−5 cross-validation. Are the models
that you settled on via these regularizers different than the optimal models we found
in HW2 and in the lab using cross-validation? Why? Explain in what ways these two
regularization methods differ in terms of both their implementation and the resultant
fits.

(b) From HW 2: Professors Bell and Zell were given a mix of answers from Math Tools
students informing them that their extracellular neural recordings arose from three or
four neurons. Provide a more objective answer by implementing the (soft) K-means clus-
tering algorithm. First, reduce the dimensionality of the data from 150 to 3 dimensions
using PCA (using the SVD). Then, run the clustering algorithm with K = 1, 2, . . . 7,
repeating the estimation procedure from multiple random starting points for each K.
For each K-iteration, compute the Euclidean distance of each point to its respective
cluster centroid. Plot the average of point-to-centroid distances as a function of K. This
plot should have a decreasing trend; however, increasing K yields diminishing returns
in the reduction of point-to-centroid distances. Determine the number of clusters by
choosing the K at which these distances stop decreasing substantially (This method is
called the ”elbow method”). For this hand-optimized value of K, plot a 3D scatter plot
of your data with each point colored according to its assigned cluster. Using your new
quantitative results, what would you now say to the professors about their data?

(c) From HW 4: The research and development team at the international coffee conglomer-
ate found your pilot experimental results too good to be true: They simply do not believe
the scent of pumpkin spice evokes an increased response relative to control odorants in
the amygdala, the structure associated with emotional responses in the brain. In order
to validate your findings, the company performed the same experiment and collected
100 trials of their own, and now want you to classify their recorded responses (located
in the file newMeasurements.mat). They ask you to train a prototype (nearest centroid)
classifier on your pilot study data and use this trained model to classify the company’s
data as either control or pumpkin spice (they know the ground truth). Given what you
know about the geometry of the data, what classifier would you propose the company
use instead of the prototype classifier? This classifier likely has more free parameters
than the prototype classifier, and so it wouldn’t be surprising if it performs better; how
can you justify the use of a more complicated classifier? Train this classifier on your
pilot data and classify the company’s data.


