
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2019
Mathematical Tools for Neural and Cognitive Science

Homework 4

Due: 12 Nov 2019
(late homeworks penalized 10% per day)

See the course web site for submission details. For each problem, show your work - if you only
provide the answer, and it is wrong, then there is no way to assign partial credit! And, please
don’t procrastinate until the day before the due date... start now!

1. Bayes’ rule and eye color. A male and female chimpanzee have blue and brown eyes, re-
spectively. The brown-eyed allele can be denoted as a capital B, whereas the blue-eyed allele
can be represented as a lowercase b. Assume a simple genetic model in which the gene for
brown eyes is always dominant (so that the trait of blue eyes can only arise from two blue-
eyed genes, but the trait of brown eyes can arise from two brown-eyed genes, or one of each).
You can also assume: i) the probability of the mother being BB is 50% and the probability of
her being Bb is 50%; and ii) the a priori probability that each of the four gene configurations
is equally probable. For each question, provide the math, and explain your reasoning.

(a) Suppose you observe that they have a single child with brown eyes. What is the prob-
ability that the female chimp has a blue-eyed gene?

(b) Suppose you observe that they have a second child with brown eyes. Now what is the
probability?

(c) Generalizing, suppose they have N children with brown eyes... express the probability,
as a function of N .

2. Poisson neurons. The Poisson distribution is commonly used to model neural spike counts:

p(k) =
µke−µ

k!
,

where k is the spike count (over some specified time interval), and µ is the expected number
of spikes over that interval.

(a) We would like to know what the Poisson distribution looks like. Set the expected num-
ber of spikes to µ = 6 spikes/interval then create a vector p of length 21, whose el-
ements contain the probabilities of Poisson spike counts for k = [0...20]. Since we’re
clipping the range at a maximum value of 20, you’ll need to normalize the vector so it
sums to one (the distribution given above is normalized over the range from 0 to infin-
ity) to make the vector p represent a valid probability distribution. Plot p in a bar plot
and mark the mean firing rate. Is it equal to µ?

(b) Generate samples from the Poisson distribution where each sample represents the num-
ber of spike count ranging from 0 to 20. To simplify the problem, use a clipped Poisson
vector p to write a function samples = randp(p, num) that generates num samples
from the probability distribution function (PDF) specified by p. [Hint: use the rand
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function, which generates real values over the interval [0...1], and partition this inter-
val into portions proportional in size to the probabilities in p]. Test your function by
drawing 1,000 samples from the Poisson distribution in (a), plotting a histogram of how
many times each value is sampled, and comparing this to the frequencies predicted by
p. Verify qualitatively that the answer gets closer (converges) as you increase the num-
ber of samples (try 10 raised to powers [2, 3, 4, 5]).

(c) Imagine you’re recording with an electrode from two neurons simultaneously, whose
spikes have very similar waveforms (and thus can’t be distinguished by the spike sort-
ing software). Create a probability vector, q, for the second neuron, assuming a mean
rate of 4 spikes/interval. What is the PDF of the observed spike counts, which will be
the sum of spike counts from the two neurons derived from p and q? [Hint: the output
vector should have length m + n − 1 when m and n are the lengths of the two input
PDFs. This is because the maximum spike count will be bigger than the maximum of
each respective individual neuron.]
Verify your answer by comparing it to the histogram of 1,000 samples generated by
summing two calls to randp (choose a big enough number of samples!).

(d) Now imagine you are recording from a neuron with mean rate 10 spikes/interval (the
sum of the rates from the neurons above). Plot the distribution of spike counts for this
neuron, in comparison with the distribution of the sum of the previous two neurons.
Based on the results of these two experiments, if we record a new spike train, can you
tell whether the spikes you have recorded came from one or two neurons just by looking
at their distribution of spike counts? Comment about the reason why based on the
intuition behind Poisson distribution.

3. Multi-dimensional Gaussians.

(a) Write a function samples = ndRandn(mean, cov, num) that generates a set of
samples drawn from an N-dimensional Gaussian distribution with the specified mean
(an N-vector) and covariance (an NxN matrix). The parameter num should be op-
tional (defaulting to 1) and should specify the number of samples to return. The re-
turned value should be a matrix with num rows each containing a sample of N el-
ements. (Hint: use the MATLAB function randn to generate samples from an N-
dimensional Gaussian with zero mean and identity covariance matrix, and then trans-
form these to achieve the desired mean/cov. Recall that the covariance of Y = MX is
E(Y Y T ) = MCXM

T where CX is the covariance ofX). Please use mean µ = [4, 5] with
CX = [9,−5;−5, 6] to sample and scatterplot 1,000 points to verify your function work
as intended.

(b) Now consider the marginal distribution of a generalized 2-D Gaussian with mean µ
and covariance Σ in which samples are projected onto a unit vector û to obtain a 1-D
distribution. Write a mathematical expression for the mean, µ̂, and variance, σ̂2, of this
marginal distribution as a function of û and check it for a set of 48 unit vectors spaced
evenly around the unit circle. For each of these, compare the mean and variance pre-
dicted from your mathematical expression to the sample mean and variance estimated
by projecting your 1,000 samples from part (a) onto û. Stem plot the mathematically
computed mean and the sample mean (on the same plot), and also plot the mathemati-
cal variance and the sample variance.

(c) Now scatterplot 1,000 new samples of a 2-dimensional Gaussian using µ and CX in
part (a). Measure the sample mean and covariance of your data points, comparing to
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the values that you requested when calling the function. Plot an ellipse on top of the
scatterplot by generating unit vectors equi-spaced around the circle, and transforming
them with a matrix as in part (a) to have the same mean and covariance as the data. Try
this on three additional random data sets with different means and covariance matrices.
Does this ellipse capture the shape of the data?

(d) How would you, mathematically, compute the direction (unit vector) that maximizes
the variance of the marginal distribution? Compute this direction and verify that it is
consistent with your plot.

4. Analyzing and simulating experimental data. An international coffee conglomerate re-
cruits you to characterize the neuropsychology underlying their customers’ adoration of
pumpkin spice. You devise a blood-oxygen level dependent (BOLD) FMRI pilot experi-
ment in which you present one of two classes of odorants to an individual while monitoring
the activity of three key voxels located in the amygdala, a structure known to be associ-
ated with emotional responses. The file experimentData.mat contains: a (N × 3) matrix
data, where each row is the BOLD response of the three voxels on a given trial relative to
some baseline; and a (N × 1) vector trialConds indicating the experimental condition of
each trial. Condition 1 are trials in which you present an odorant selected randomly from
a library of possible control odorants, and condition 2 are trials in which the trade secret
pumpkin spice odorant is presented.

(a) Before doing anything quantitative with your data, it is always good practice to visual-
ize it. First, determine how many trials of each trial condition were completed. Display
this information as a 2-bin histogram with each bin representing each of the two pos-
sible trial conditions, and their heights representing their respective trial counts. Next,
plot a 3D scatter plot of the recorded responses, with each point color-coded according
to its associated trial condition (use the function scatter3 in Matlab and be sure to
label your axes). Describe your data qualitatively using this figure. Is there a noticeable
difference between the two trial conditions? What geometric shape are these ’response
clouds’, and what distribution would you use to model them?

(b) Quantify the response statistics of each individual trial condition. Calculate the means
of each response cloud, as well as their respective covariance matrices. Compute the
covariance matrices of each response cloud using matrix multiplication (remember to
center the data first). Verify your calculation is correct by comparing with the output
given by the cov function. How do the covariance matrices compare (are they similar
at all or wildly different)?

(c) Next, compute the SVD of each covariance matrix. Plot the three singular vectors orig-
inating from the center of each response cloud and scale their amplitude by the square
root of the singular values. Relative to how similar the covariance matrices were be-
fore computing their SVD, how do each trial condition’s respective set of singular val-
ues compare? Describe what this tells us about the relationship between the two trial
conditions and, more fundamentally, the relationship between the three voxels across
conditions.

(d) A powerful method to validate a model is by generating (i.e. simulating) new data
matching your quantitative description of the real data, and then comparing them with
real data. Create a function
simResponses = odorExperiment(numTrials1,numTrials2)
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where numTrials1 and numTrials2 are the number of trials in a simulated experi-
ment for condition 1 and 2, respectively. simResponses is a (N ×3) matrix containing
simulated responses of each of your 3 voxels duringN = numTrials1 + numTrials2
trials. [Hint: use ndRandn from the previous problem]. Plot the simulated and real
responses in the same figure (use subplots if you wish) to compare the two. Is your
simulated response data a good characterization of the real amygdala voxel responses?


