Mathematical Tools for Neural and Cognitive Science

Fall semester, 2019

Section 5:

Statistical Inference and Model Fitting

The sample average

$$
\bar{x}=\frac{1}{N} \sum_{n=1}^{N} x_{n}
$$

What happens as N grows?

- Variance of \bar{x} is σ_{x}^{2} / N (the "standard error of the mean", or SEM), and so converges to zero
[on board]
- "Unbiased": \bar{x} converges to the true mean, $\mu_{x}=\mathbb{E}(x)$ (formally, the "law of large numbers") [on board]
- The distribution $p(\bar{x})$ converges to a Gaussian (mean μ_{x} and variance $\left.\sigma_{x}^{2} / N\right)$: formally, the "Central Limit Theorem"

Central limit for a uniform distribution...

Central limit for a binary distribution...

Classical "frequentist" statistical tests

Classical/frequentist approach $-z$

- In the general population, IQ is known to be distributed normally with - $\mu=100, \sigma=15$
- We give a drug to 30 people and test their IQ
- H_{1} : NZT improves IQ
- H_{0} ("null"): it does nothing

What if the measured effect of NZT had been half that?

- $\mu=100$ (Population mean)
- $\sigma=15$ (Population standard deviation)
- $N=30$ (Sample contains scores from 30 participants)
- $\bar{x}=104.2$ (Sample mean)
- $z=(\bar{x}-\mu) / \mathrm{SE}=(104.2-100) / \mathrm{SE}$
- $\mathrm{SE}=\sigma / \sqrt{ } N=15 / \sqrt{ } 30=2.74$
- $z=4.2 / 2.74=1.53$
- $p=0.061$
- Significant?

Significance levels

- Are denoted by the Greek letter α.
- In principle, we can pick anything that we consider unlikely.
- In practice, the consensus is that a level of 0.05 or 1 in 20 is considered as unlikely enough to reject H_{0} and accept the alternative.
- A level of 0.01 or 1 in 100 is considered "highly significant" or "really unlikely".

Does NZT improve IQ scores or not? Reality	
층 Correct	Type I error α-error False alarm
$\begin{array}{ll} & \begin{array}{l} \text { Type II error } \\ \approx \\ < \end{array} \beta \text {-error } \\ & \text { Miss } \end{array}$	Correct

Test statistic

- We calculate how far the observed value of the sample average is away from its expected value.
- In units of standard error.
- In this case, the test statistic is

$$
z=\frac{\bar{x}-\mu}{S E}=\frac{\bar{x}-\mu}{\sigma / \sqrt{N}}
$$

- Compare to a distribution, in this case z or $N(0,1)$

Common misconceptions

Is "Statistically significant" a synonym for:

- Substantial
- Important
- Big
- Real

Does statistical significance gives the

- probability that the null hypothesis is true
- probability that the null hypothesis is false
- probability that the alternative hypothesis is true
- probability that the alternative hypothesis is false

Meaning of p-value. Meaning of CI.

Student's t-test

- σ not assumed known
- Use $s^{2}=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}{N-1}$
- Why $N-1$? s is unbiased (unlike ML version), i.e., $E\left(s^{2}\right)=\sigma^{2}$
- Test statistic is $t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{N}}$
- Compare to t distribution for CIs and NHST
- "Degrees of freedom" reduced by 1 to $N-1$

The t distribution approaches the normal distribution for large N

The z-test for binomial data

- Is the coin fair?
- Lean on central limit theorem
- Sample is n heads out of m tosses
- Sample mean: $\hat{p}=n / m$
- $\mathrm{H}_{0}: p=0.5$
- Binomial variability (one toss): $\sigma=\sqrt{p q}$, where $q=1-p$
- Test statistic: $z=\frac{\hat{p}-p_{0}}{\sqrt{p_{0} q_{0} / m}}$
- Compare to z (standard normal)
- For CI, use

$$
\pm z_{\alpha / 2} \sqrt{\hat{p} \hat{q} / m}
$$

Many varieties of frequentist univariate
 tests

- χ^{2} goodness of fit
- χ^{2} test of independence
- test a variance using χ^{2}
- F to compare variances (as a ratio)
- Nonparametric tests (e.g., sign, rank-order, etc.)

Lack of correlation is favored in $\mathrm{N}>3$ dimensions

Null Hypothesis: Distribution of normalized dot product of pairs of Gaussian random vectors in N dimensions:

$$
\left(1-d^{2}\right)^{\frac{N-3}{2}}
$$

Estimation, more generally...

- An "estimator" is a function of the data, intended to provide an estimate of the "true" value of a parameter
- Traditionally, one evaluates estimator quality in terms of mean error ("bias") and variance (note: MSE $=$ bias $^{\wedge} 2+$ variance $)$
- Classical statistics generally aims for an unbiased estimator, with minimal variance ("MVUE")
- Modern view: trade off the bias and variance, through model selection, "regularization", or Bayesian priors

The maximum likelihood estimator (MLE)

Sample average is appropriate when one has direct measurements of the thing being estimated. But one may want to estimate something (e.g., a model parameter) that is indirectly related to the measurements...

Natural choice: assuming a probability model $p(\vec{x} \mid \theta)$
find the value of θ that maximizes this "likelihood" function
$\hat{\theta}\left(\left\{\vec{x}_{n}\right\}\right)=\arg \max _{\theta} \prod_{n} p\left(\vec{x}_{n} \mid \theta\right)$

$$
=\arg \max _{\theta} \sum_{n} \log p\left(\vec{x}_{n} \mid \theta\right)
$$

Example: Estimate the bias (probability of heads) of a coin flip

[^0]
Convergence

Example ML Estimators - discrete

Binomial: $\quad p(H \mid N, \theta)=\binom{N}{H} \theta^{H}(1-\theta)^{N-H}$
$\hat{\theta}=\frac{H}{N}$

Poisson: $\quad p\left(\left\{k_{n}\right\} \mid \lambda\right)=\prod_{n=1}^{N} \frac{\lambda^{k_{n}} e^{-k_{n}}}{k_{n}!}$
(k's are measured event counts, lambda is mean)

$$
\hat{\lambda}=\frac{1}{N} \sum_{n=1}^{N} k_{n}
$$

Example ML Estimators - Continuous

Gaussian: $\quad p\left(\left\{x_{n}\right\} \mid \mu, \sigma\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

$$
\hat{\mu}=\frac{\sum_{n=1}^{N} x_{n}}{N} \quad \hat{\sigma}^{2}=\frac{\sum_{i=1}^{N}\left(x_{n}-\hat{\mu}\right)^{2}}{N}
$$

(Note: this is biased!)
[on board]

Uniform: $\quad p\left(\left\{x_{n}\right\} \mid \theta\right)= \begin{cases}\frac{1}{\theta} & 0 \leq x \leq \theta \\ 0 & \text { otherwise }\end{cases}$ $\hat{\theta}=\arg \max _{n}\left\{x_{n}\right\}$

Properties of the MLE

- In general, the MLE is asymptotically unbiased, and Gaussian, but note can only rely on this if:
- the likelihood model is correct
- the MLE can be computed
- you have lots of data
- Confidence:
- SEM (relevant for direct estimates of mean)
- inverse of second deriv of NLL (multi-D: "Hessian")
- simulation (resample from $p(x \mid \hat{\theta})$)
- bootstrapping (re-sample from the data, with replacement)

Bootstrapping

- "The Baron had fallen to the bottom of a deep lake. Just when it looked like all was lost, he thought to pick himself up by his own bootstraps"
[Adventures of Baron von Munchausen, by Rudolph Erich Raspe]
- A (re)sampling method for computing estimator distribution (incl. stdev error bars or confidence intervals)
- Idea: instead of looking at distribution of estimates across repeated experiments, look across repeated resampling (with replacement) from the existing data ("bootstrapped" data sets)

	strokes	subjects
aspirin group:	119	11037
placebo group:	98	11034

(1.3)

For strokes, the ratio of rates is

$$
\begin{equation*}
\widehat{\theta}=\frac{119 / 11037}{98 / 11034}=1.21 \tag{1.4}
\end{equation*}
$$

It now looks like taking aspirin is actually harmful. However the interval for the true stroke ratio θ turns out to be

$$
\begin{equation*}
.93<\theta<1.59 \tag{1.5}
\end{equation*}
$$

with 95% confidence. This includes the neutral value $\theta=1$, at which aspirin would be no better or worse than placebo vis-à-vis strokes. In the language of statistical hypothesis testing, aspirin was found to be significantly beneficial for preventing heart attacks, but not significantly harmful for causing strokes.

Bayesian Inference

$p(\theta \mid$ data $)=\frac{p(\text { data } \mid \theta) p(\theta)}{p(\text { data })}$

Example: Posterior for coin

infer whether a coin is fair by flipping it repeatedly
here, x is the probability of heads (50% is fair)
$y_{1 . \ldots n}$ are the outcomes of flips

Consider three different priors:
suspect fair

suspect biased

Posteriors after observing 75 heads, 25 tails

\rightarrow prior differences are ultimately overwhelmed by data

Bayesian confidence intervals

CDFs, and 95% confidence intervals

MAP estimation - Gaussian case

For measurements with Gaussian noise, and assuming a Gaussian prior, posterior is Gaussian.

- MAP estimate is a weighted average of prior mean and measurement
- posterior is Gaussian, allowing sequential updating
- explains "regression to the mean", as shrinkage toward the prior

MAP with Gaussians

$$
\begin{aligned}
& y=x+n, \quad x \sim N\left(\mu_{x}, \sigma_{x}\right), n \sim N\left(0, \sigma_{n}\right) \\
& \underline{p(x \mid y)} \propto \underline{p(y \mid x) p(x)} \\
& \propto e^{-\frac{1}{2}\left[\frac{1}{\sigma_{n}^{2}}(x-y)^{2}\right] e^{-\frac{1}{2}\left[\frac{1}{\sigma_{x}^{2}}\left(x-\mu_{x}\right)^{2}\right]}} \\
&=e^{-\frac{1}{2}\left[\left(\frac{1}{\sigma_{n}^{2}}+\frac{1}{\sigma_{x}^{2}}\right) x^{2}-2\left(\frac{y}{\sigma_{n}^{2}}+\frac{\mu_{x}}{\sigma_{x}^{x}}\right) x+\ldots\right]}
\end{aligned}
$$

Completing the square shows that this posterior is also Gaussian, with

$$
\begin{aligned}
\frac{1}{\sigma^{2}} & =\frac{1}{\sigma_{n}^{2}}+\frac{1}{\sigma_{x}^{2}} \\
\mu & =\left(\frac{y}{\sigma_{n}^{2}}+\frac{\mu_{x}}{\sigma_{x}^{2}}\right) /\left(\frac{1}{\sigma_{n}^{2}}+\frac{1}{\sigma_{x}^{2}}\right)
\end{aligned}
$$

The average of y and μx, weighted by inverse variances (a.k.a. "precisions")!

Two noisy measurements of the same variable:

$$
\begin{aligned}
& y_{1}=x+n_{1} \\
& y_{2}=x+n_{2}
\end{aligned}
$$

$$
x \sim N\left(0, \sigma_{x}\right)
$$

$n_{k} \sim N\left(0, \sigma_{n}\right)$, independent

Joint measurement distribution: $\quad \vec{y} \sim N\left(\overrightarrow{0}, \sigma_{x}^{2}+\sigma_{n}^{2} I\right)$
LS Regression:

$$
\begin{aligned}
\hat{\beta} & =\arg \min _{\beta}\left\|y_{2}-\beta y_{1}\right\|^{2} \\
& =\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{n}^{2}}
\end{aligned}
$$

$$
\mathbb{E}\left(y_{2} \mid y_{1}\right)=\hat{\beta} y_{1}
$$

"regression
to the mean"

Regression to the mean

"Depressed children treated with an energy drink improve significantly over a three-month period. I made up this newspaper headline, but the fact it reports is true: if you treated a group of depressed children for some time with an energy drink, they would show a clinically significant improvement...."
"It is also the case that depressed children who spend some time standing on their head or hug a cat for twenty minutes a day will also show improvement."

- D. Kahneman

Hierarchy of statistically-motivated estimators

- Maximum likelihood (ML): $\quad \hat{x}(\vec{d})=\arg \max _{x} p(\vec{d} \mid x)$
- Maximum a posteriori (MAP): $\quad \hat{x}(\vec{d})=\arg \max _{x} p(x \mid \vec{d})$ (requires prior, $p(x)$)
$\begin{aligned} & \text { - Bayes estimator (general): } \\ & \text { (requires loss, } L(x, \hat{x}) \text {) }\end{aligned} \hat{x}(\vec{d})=\arg \min _{\hat{x}} \mathbb{E}(L(x, \hat{x}) \mid \vec{d})$
- Bayes least squares (BLS): $\quad \hat{x}(\vec{d})=\arg \min _{\hat{x}} \mathbb{E}\left((x-\hat{x})^{2} \mid \vec{d}\right)$ (special case)

$$
=\mathbb{E}(x \mid \vec{d})
$$

[^0]: Likelihoods, $p(H, T \mid \theta)$
 $\mathrm{T}=0$ \qquad

 1

 2

 3

