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Section Sa:

Statistical Decision Theory
+

Signal Detection Theory

Tumor, or not?

Signal Detection Theory (binary estimation)
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For equal-shape, unimodal, symmetric distributions,
the ML decision rule is a threshold function.




More generally, decision rule can have multiple thresholds...
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Signal Detection Theory: Potential outcomes

Doctor responds | Doctor responds

“no” “yes®
Tumor miss hit

present

Tumor correct false
absent reject alarm
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For threshold t, cumulatives c()

c(tlS) = miss

: X 1-c(tlS) = hit
decision c(tIN) = correct reject
threshold 1-c(tIN) = false alarm

MAP decision rule?

MAP solution maximizes proportion of correct
answers, taking prior probability into account.
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Compared to ML threshold, the MAP threshold moves
away from higher-probability option.




Bayes decision rule?

Incorporate values for the four possible outcomes:
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E(Yes| x)=V%p(S+N|x)+V*p(N| x)

S+N/

E(No | x) =V p(S+N| x)+V®p(N | x)

Say yes if E(Yes | x) 2 E(No| x)

Optimal Criterion
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S+N

E(No | x)=V.2,p(S+N|x)+V°p(N | x)

Say yes if E(Yes | x) > E(No | x)
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Apply Bayes’ Rule

Posterior Likelihood Prior
DS +N|X)= p(x| S+pl(\l)3;>(8 +N)

"~ Nuisance normalizing term
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Example, if equal priors and equal payoffs, say yes if the
likelihood ratio is greater than one:

Example applications of SDT

* Vision
* Detection (something vs. nothing)
« Discrimination (lower vs greater level of: intensity, contrast, depth, slant, size,

frequency, loudness, ...
« Memory (internal response = trace strength = familiarity)
« Neurometric function/discrimination by neurons (internal
response = spike count)

From experimental measurements, assuming human is optimal,
can we determine the underlying distributions and criterion?
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Signal Detection Theory: discriminability (d’)

High noise,
lots of overlap

Low noise,
not much overlap

Internal response: probability of occurrence curves

Probability

Internal response

, _ “separation”

“width”
Discriminability (“d-prime”) is the normalized
separation between the two distributions
Error rate is a function of d’
Criterion
Criterion
Pe‘:;l:: Suetsiwhzii:;ernal Distribution of internal
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Signal Detection Theory: Criterion

Hits = 97.5%

False alarms = 84%
Hits = 84%

False alarms = 50%
Hits = 50%

False alarms = 16%

SDT: Gaussian case
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ROC (Receiver Operating Characteristic)
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Plot anti-cumulatives:
1-c(tIN) vs. 1-c(tIS)
as threshold t varies
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ROC (Receiver Operating Characteristic)

Criterion #2
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ROC (Receiver Operating Characteristic)

Criterion #3

A

Probability

Internal rgsponse

Hits

False Alarms

ROC (Receiver Operating Characteristic)
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ROC (Receiver Operating Characteristic)

/AN AGN

d' =1 (lots of overlap) d' = 3 (not much overlap)

d'=4

ROC curves

False alarms

[on board: Area under curve = %correct in a 2AFC task]

Decision/classification in multiple dimensions

® Data-driven:
e Fisher Linear Discriminant (FLD) - maximize d’
® Support Vector Machine (SVM) - maximize margin

e Statistical:
® ML/MAP/Bayes under a probabilistic model
® c.g.: Gaussian, equal covariance (same as FLD)
e c.g.: Gaussian, unequal covariance (QDA)

® Examples:
e Visual gender identification

® Neural population decoding

Multi-D Gaussian densities

p(%) = NGl € mean: [0.2,0.8]
cov: [1.0-0.3;
-0.3 04]




Linear Classifier

Find unit vector 0 (“discriminant”) that best separates two distributions
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Support Vector Machine (SVM)

(widely used in machine learning, has no closed form)

Maximize the “margin” (gap between data sets)
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ML (or MAP) classifier assuming Gaussians

Decision boundary is quadratic, with four possible geometries:
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[figure: Pagan et al. 2016]

Perceptual example: Gender identification

0200 face images (100 male, 100 female)
® Adjusted for position, size, intensity/contrast
e[ abeled by 27 human subjects

[Graf & Wichmann, NIPS*03]

Linear classifiers

SVM RVM Prot FLD

Four linear classifiers trained on subject data




Model validation/testing

® Cross-validation: Subject responses [%
correct, reaction time, confidence] are

explained

- very well by SVM
- moderately well by RVM / FLD

- not so well by Prot
® Curse of dimensionality strongly limits this

result. A more direct test: Synthesize
optimally discriminable faces...

Subtract classifier Add classifier

SVM

RVM

Prot

FLD

[Wichmann, et. al; NIPS*04]
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[Wichmann, et. al; NIPS*04]




Population decoding

Independent Poisson responses Tuning curves, hy,(s)
[e.g., Seung & Sompolinsky, 1993]
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[Graf, Kohn, Jazayeri, Movshon, 2011]




