Mathematical Tools for Neural and Cognitive Science

Fall semester, 2019

Section 5a:

Statistical Decision Theory + Signal Detection Theory

Tumor, or not?

Signal Detection Theory (binary estimation)

For equal-shape, unimodal, symmetric distributions, the ML decision rule is a *threshold* function.

MAP decision rule?

MAP solution maximizes proportion of correct answers, *taking prior probability into account*.

Compared to ML threshold, the MAP threshold moves *away* from higher-probability option.

Bayes decision rule?

Incorporate values for the four possible outcomes:

Payoff Matrix

Response

Yes	No

snlr	S+N
Stim	N

V _{S+N}	V_{S+N}^{No}
$V_N^{ m Yes}$	$V_{\scriptscriptstyle N}^{\scriptscriptstyle No}$

Bayes Optimal Criterion

Response

$$E(Yes \mid x) = V_{S+N}^{Yes} p(S+N \mid x) + V_{N}^{Yes} p(N \mid x)$$

$$E(No \mid x) = V_{S+N}^{No} p(S+N \mid x) + V_{N}^{No} p(N \mid x)$$

Say yes if $E(Yes \mid x) \ge E(No \mid x)$

Optimal Criterion

$$E(\text{Yes} \mid x) = V_{S+N}^{\text{Yes}} p(S+N \mid x) + V_{N}^{\text{Yes}} p(N \mid x)$$

$$E(No \mid x) = V_{S+N}^{No} p(S+N \mid x) + V_{N}^{No} p(N \mid x)$$

$$E(No \mid x) = V_{S+N}^{No} p(S+N \mid x) + V_{N}^{No} p(N \mid x)$$

Say yes if $E(Yes \mid x) \ge E(No \mid x)$

Say yes if
$$\frac{p(S+N\mid x)}{p(N\mid x)} \ge \frac{V_N^{No} - V_N^{\text{Yes}}}{V_{S+N}^{\text{Yes}} - V_{S+N}^{No}} = \frac{V(\text{Correct}\mid N)}{V(\text{Correct}\mid S+N)}$$

Posterior odds

Apply Bayes' Rule

Posterior Likelihood
$$p(S + N \mid x) = p(x \mid S + N)p(S + N)$$

Prior

$$p(X \mid S + N)p(S + N)$$
Nuisance normalizing term

$$p(N \mid x) = \frac{p(x \mid N)p(N)}{p(x)}$$
, hence

$$\frac{p(S+N\mid x)}{p(N\mid x)} = \left(\frac{p(x\mid S+N)}{p(x\mid N)}\right) \left(\frac{p(S+N)}{p(N)}\right)$$
Posterior odds

Likelihood ratio

Optimal Criterion

Say yes if
$$\frac{p(S+N \mid x)}{p(N \mid x)} \ge \frac{V(\text{Correct} \mid N)}{V(\text{Correct} \mid S+N)}$$

i.e., if
$$\frac{p(x \mid S + N)}{p(x \mid N)} \ge \frac{p(N)}{p(S + N)} \frac{V(\text{Correct} \mid N)}{V(\text{Correct} \mid S + N)} = \beta$$

Example, if equal priors and equal payoffs, say yes if the likelihood ratio is greater than one:

Example applications of SDT

- Vision
- Detection (something vs. nothing)
- Discrimination (lower vs greater level of: intensity, contrast, depth, slant, size, frequency, loudness, ...
- Memory (internal response = trace strength = familiarity)
- Neurometric function/discrimination by neurons (internal response = spike count)

From experimental measurements, assuming human is optimal, can we determine the underlying distributions and criterion?

Internal response: probability of occurrence curves

 $d' = \frac{\text{"separation"}}{\text{"width"}}$

Discriminability ("d-prime") is the normalized separation between the two distributions

Error rate is a function of d'

SDT: Gaussian case

$$d' = z[p(H)] + z[p(CR)] = z[p(H)] - z[p(FA)]$$

$$c = z[p(CR)] \qquad G(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$$

$$\beta = \frac{p(x = c \mid S + N)}{p(x = c \mid N)} = \frac{e^{-(c-d')^2/2}}{e^{-c^2/2}} \qquad (\text{Fix } \sigma = 1)$$

ROC (Receiver Operating Characteristic)

ROC (Receiver Operating Characteristic)

[on board: Area under curve = %correct in a 2AFC task]

Decision/classification in multiple dimensions

- Data-driven:
 - Fisher Linear Discriminant (FLD) maximize d'
 - Support Vector Machine (SVM) maximize margin
- Statistical:
 - ML/MAP/Bayes under a probabilistic model
 - e.g.: Gaussian, equal covariance (same as FLD)
 - e.g.: Gaussian, unequal covariance (QDA)
- Examples:
 - Visual gender identification
 - Neural population decoding

Multi-D Gaussian densities

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$p(\vec{x}) = \frac{1}{\sqrt{(2\pi)^N |C|}} e^{-(\vec{x} - \vec{\mu})^T C^{-1} (\vec{x} - \vec{\mu})/2}$$

mean: [0.2, 0.8] cov: [1.0 -0.3; -0.3 0.4]

Linear Classifier

Find unit vector $\hat{\boldsymbol{w}}$ ("discriminant") that best separates two distributions

Fisher Linear Discriminant

$$\max_{\hat{w}} \frac{\left[\hat{w}^T(\mu_A - \mu_B)\right]^2}{\left[\hat{w}^T C_A \hat{w} + \hat{w}^T C_B \hat{w}\right]} \quad \text{ (note: this is "d-prime" !)}$$

optimum: $\hat{w} = C^{-1}(\mu_A - \mu_B)$, where $C = \frac{1}{2}(C_A + C_B)$

Support Vector Machine (SVM)

(widely used in machine learning, has no closed form)

Maximize the "margin" (gap between data sets)

find largest m, and $\{\hat{w}, b\}$ s.t. $c_i(\hat{w}^T \vec{x}_i - b) \geq m, \quad \forall i$

ML (or MAP) classifier assuming Gaussians

Decision boundary is *quadratic*, with four possible geometries:

Perceptual example: Gender identification

- •200 face images (100 male, 100 female)
- Adjusted for position, size, intensity/contrast
- •Labeled by 27 human subjects

[Graf & Wichmann, NIPS*03]

Linear classifiers SVM RVM Prot FLD W Four linear classifiers trained on subject data

Model validation/testing

- Cross-validation: Subject responses [% correct, reaction time, confidence] are explained
 - very well by SVM
 - moderately well by RVM / FLD
 - not so well by Prot
- Curse of dimensionality strongly limits this result. A more direct test: Synthesize optimally discriminable faces...

[Wichmann, et. al; NIPS*04]

