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Tumor, or not?

P(x|N) P(x|S)

Signal Detection Theory (binary estimation)

For equal-shape, unimodal, symmetric distributions, 
the ML decision rule is a threshold function.
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More generally, decision rule can have multiple thresholds…
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Signal Detection Theory: Potential outcomes
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For threshold t, cumulatives c()
c(t|S) = miss
1-c(t|S) = hit
c(t|N) = correct reject
1-c(t|N) = false alarm
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MAP decision rule?
MAP solution maximizes proportion of correct 
answers, taking prior probability into account.
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Compared to ML threshold, the MAP threshold moves 
away from higher-probability option.
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Bayes decision rule?

Incorporate values for the four possible outcomes:
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Bayes Optimal Criterion
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E(Yes | x) =VS+N
Yes p(S + N | x) +VN

Yesp(N | x)

E(No | x) =VS+N
No p(S + N | x) +VN

Nop(N | x)

Say yes if E(Yes | x) ≥ E(No | x)

Optimal Criterion
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Apply Bayes’ Rule
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Optimal Criterion

  

Say yes if 
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= β

Example, if equal priors and equal payoffs, say yes if the 
likelihood ratio is greater than one:
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Say “yes”Say “no”

• Vision 
• Detection (something vs. nothing) 
• Discrimination (lower vs greater level of: intensity, contrast, depth, slant, size, 

frequency, loudness, ... 
• Memory (internal response = trace strength = familiarity) 
• Neurometric function/discrimination by neurons (internal  

    response = spike count)

Example applications of SDT

From experimental measurements, assuming human is optimal, 
can we determine the underlying distributions and criterion?



Signal Detection Theory: discriminability (d’)
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d’

Internal response: probability of occurrence curves

Discriminability (“d-prime”) is the normalized 
separation between the two distributions 

Error rate is a function of d’

d’ = 
“separation”

“width”

p(x|N) p(x|S)
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Say “yes”Say “no”

Distribution of internal 
responses when no 
tumor

Distribution of internal 
responses when tumor 
present



Signal Detection Theory: Criterion 

SDT: Gaussian case
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0 ′dc

c = z[p(CR)]

′d = z[p(H )]+ z[p(CR)] = z[p(H )]− z[p(FA)]

z[p(CR)] z[p(H)]

G(x;µ,σ ) = 1
2πσ

e−(x−µ )
2 /2σ 2

β = p(x = c | S + N )
p(x = c | N )

= e
−(c− ′d )2 /2

e−c
2 /2

(Fix 𝞂 = 1)
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ROC (Receiver Operating Characteristic)

Criterion #1

Plot anti-cumulatives: 
1-c(t|N)  vs. 1-c(t|S)
as threshold t varies



Internal response
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Criterion #2

ROC (Receiver Operating Characteristic)
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ROC (Receiver Operating Characteristic)

[on board: Area under curve = %correct in a 2AFC task]

Decision/classification in multiple dimensions

• Data-driven:   
• Fisher Linear Discriminant (FLD) - maximize d’ 
• Support Vector Machine (SVM) - maximize margin 

• Statistical: 
• ML/MAP/Bayes under a probabilistic model 
• e.g.: Gaussian, equal covariance (same as FLD) 
• e.g.: Gaussian, unequal covariance (QDA) 

• Examples: 
• Visual gender identification 
• Neural population decoding

mean:  [0.2, 0.8]
cov:  [1.0 -0.3;

 -0.3  0.4]

Multi-D Gaussian densities



Find unit vector ŵ (“discriminant”) that best separates two distributions

Linear Classifier

{ŵT ⃗x n}

class A

class B

ŵ

max

ŵ

⇥
ŵT

(µA � µB)
⇤2

[ŵTCAŵ + ŵTCBŵ]

Fisher Linear 
Discriminant

ŵ = C−1(μA − μB) , where C =
1
2

(CA + CB)

(note: this is “d-prime” !)

optimum:

Support Vector Machine (SVM) 
(widely used in machine learning, has no closed form)

find largest m, and {ŵ, b} s.t. ci(ŵ
T
~xi � b) � m, 8 i

ŵ

ci = 1

ci = �1

Maximize the “margin” (gap between data sets)



ML (or MAP) classifier assuming Gaussians2294 M. Pagan, E. Simoncelli, and N. Rust

Figure 1: The nQDA framework. (a) Optimal quadratic discrimination bound-
aries (black lines) for four example pairs of population response distributions.
Hypothetical class distributions are each multivariate gaussian (indicated by
red and gray elliptical regions), with means µ1 and µ2 and covariances !1 and
!2. Top left: A scenario in which the means of the two classes differ and the
covariances are matched. In this special case, the optimal classifier is linear.
Top right: A scenario in which the means of the two classes are similar and a
linear classifier alone is an ineffective decision boundary. Instead, the optimal
classifier uses a pair of parabolic boundaries. Bottom left: An example with dif-
fering mean and covariance, yielding a single parabolic boundary. Bottom right:
An example yielding an elliptical boundary. (b) Depiction of the nQDA model,
which implements the optimal quadratic classifier (equations 2.3 and 2.4) as an
LN-LN model (see equation 2.6). The first LN transformation is achieved with
a bank of linear filters, with all but the first followed by a squaring nonlinearity.
The outputs of these individual LN units are combined via a weighted sum,
followed by a threshold function that determines the class membership.

where Q is an N-by-N symmetric matrix. As with the linear classifier, the
class assignment is determined by the sign of this function. Similar to linear
classifiers, multiple methods exist for fitting the parameters of a quadratic
classifier (Kendall, 1966; Hofmann, Schölkopf, & Smola, 2008). When the
population responses are gaussian distributed the maximum likelihood
solution (known as quadratic discriminant analysis, QDA; Kendall 1966)
corresponds to

Q = 1
2

·
(
!−1

2 − !−1
1

)
; m = !−1

1 µ1 − !−1
2 µ2,

k =−1
2

(
log

∣∣!1

∣∣ − log
∣∣!2

∣∣ + µT
1 !−1

1 µ1 − µT
2 !−1

2 µ2
)
. (2.4)

The incorporation of the quadratic term creates a more pow-
erful classifier, which exploits differences in covariance, generally

[figure: Pagan et al. 2016]

Decision boundary is quadratic, with four possible geometries:  

•200 face images (100 male, 100 female)
•Adjusted for position, size, intensity/contrast
•Labeled by 27 human subjects

[Graf & Wichmann, NIPS*03] 

Perceptual example: Gender identification

Linear classifiers

SVM RVM Prot FLD trained
on

→
W

true
data

→
W

subj
dataw

w

SVM RVM Prot FLD

Four linear classifiers trained on subject data



Model validation/testing

• Cross-validation:  Subject responses [% 
correct, reaction time, confidence] are 
explained 
- very well by SVM 
- moderately well by RVM / FLD
- not so well by Prot

• Curse of dimensionality strongly limits this 
result.  A more direct test: Synthesize 
optimally discriminable faces...

ε=−21 ε=−14 ε=−7 ε=0 ε=7 ε=14 ε=21

SVM

RVM

Prot

FLD

Add classifierSubtract classifier

[Wichmann, et. al; NIPS*04] 
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Amount of classifier image added/subtracted
(arbitrary units)

1.0 2.0 4.0 8.00.50.25

SVM
RVM
Proto
FLD

[Wichmann, et. al; NIPS*04] 



Independent Poisson responses  
[e.g., Seung & Sompolinsky, 1993]
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though their performance is similar, the decoders differ internally in 
their pooling weights (Supplementary Fig. 3).

Discriminating orientations
We modeled estimation from a population of neurons by using the 
peak of the log-likelihood function to extract a single stimulus esti-
mate. We then studied orientation discrimination, which depends on 
the shape of the log-likelihood function. To discriminate two orienta-
tions given a population response, the decoder has to compare the 
likelihoods associated with the alternatives; for example, by comput-
ing the logarithm of the ratio of the likelihoods. This log-likelihood 
ratio is a linear decision function defined by its discrimination weight 
vector w and discrimination offset b 
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The parameters of the log-likelihood ratio (Eq. (2)) are the differ-
ences between the parameters of the log-likelihood representation 
(Eq. (1)) evaluated at the two orientations 1 and 2. The sign of 
the log-likelihood ratio indicates which of 1 or 2 is more likely 
to have elicited the observed population response. We quantified 
discrimination performance with a population neurometric func-
tion that measures the discrimination accuracy as a function of 
the angular difference  between the two orientations. Each point 
of the neurometric function gives the discrimination accuracy 
between  and  + , averaged across all 72 values of . In the 
population neurometric function of the ELD, the discrimination 
accuracy increased monotonically with  (Fig. 4a), as is typical of 
a psychometric function that represents behavioral performance in 
a discrimination task. The PID and CB-ELD yielded less accurate 
discrimination than the ELD, just as they were less accurate for ori-
entation estimation (Fig. 4a). The same was true for the other four 
sets of V1 population responses (Fig. 4b). These results general-
ized across neuronal population subsamples of different sizes from 
our five data sets (Supplementary Fig. 4). In summary, orientation 
discrimination is more accurate when the empirical structure of the 
neuronal response distributions is taken into account, especially 
when including interneuronal correlations.

(2)(2)

The function of both the PID and ELD derives from how they lin-
early pool sensory responses to approximate the log-likelihood func-
tion. To understand how these decoders assign weights to neurons 
with different response characteristics, we examined the weighting 
profile of each decoder in a series of discrimination tasks covering a 
range of values of . We averaged the discrimination weights (w in 
Eq. (2)) across neurons with respect to the discrimination boundary,  
which we varied in steps of 5 degrees around the clock to sample  
all possible discriminations. For coarse discriminations (  =  
90 degrees), the most positive and negative average weights matched 
the target orientations (Fig. 5a–c). Thus, when discriminating 
between very different orientations, neurons whose preferred orienta-
tions are aligned with the discriminanda are most strongly recruited; 
discrimination is facilitated because the responses of these neurons 
differ strongly. However, for fine discriminations (  = 5 degrees), 
this mechanism is ineffective because neurons tuned for one of the 
discriminated orientations respond almost as well to the other. To 
overcome this, the decoders emphasize neurons with preferred orien-
tations further apart from the discriminanda (Fig. 5a–c), effectively 
assigning the highest weights to neurons for which the stimuli are 
located at the flanks, rather than the peaks, of the tuning curve (also 
illustrated in Supplementary Fig. 5). Thus, when decoding sensory 
responses according to a linear representation of the log-likelihood 
function, the neuronal pooling mechanisms change automatically 
and adaptively with the perceptual task. The importance of off- 
optimal neurons in fine discriminations is an automatic consequence of  
likelihood-based decision-making and does not require ad hoc com-
putations to create a particular decision rule.

The average discrimination weights empirically derived from 
the data (ELD and CB-ELD) were qualitatively similar to weights 
based on parametric assumptions on the neuronal response distri-
butions (PID). However, the superiority of the ELD over the PID 
in orientation discrimination tasks (Fig. 4a,b) must be a conse-
quence of the different discrimination weights the two decoders 
assign to individual neurons (as reflected in Supplementary Fig. 3 
by the differences between their pooling weights W from which 
the discrimination weights w are derived). The ELD made adjust-
ments to the PID weights and we suppose that the difference in their 
 discrimination weights varies from neuron to neuron in a way that 
may be obscured when considering only the average across neurons 
(as in Fig. 5a–c).

To study the differences in neuronal pooling mechanisms for ori-
entation discrimination on the level of single neurons, we asked how 
the discrimination weights (w in Eq. (2)) depended on the respon-
siveness of individual neurons. For fine discriminations, the weights 
associated with the ELD, CB-ELD and PID were largely independent 

Figure 4 Orientation discrimination accuracy 
for the ELD, the CB-ELD and the PID. (a) The 
population neurometric functions represent the 
discrimination accuracy (mean  s.e.m. across 
orientations) as function of the orientation 
difference. The interpolations were done 
using a cumulative Weibull distribution fitted 
using maximum likelihood. To avoid showing 
a neurometric function that mainly covers the 
asymptotic regime (accuracies close to 1), we 
averaged the discrimination accuracies across 
random subsets of 20 neurons from data set 3. 
The orientation discrimination threshold yielding an accuracy of 0.75 (mean  s.e.m. estimated by bootstrap) was 2.58  0.16, 3.70  0.17 and 5.99   
0.20 degrees for the ELD, CB-ELD and PID, respectively. (b) We evaluated the discrimination accuracy across data sets by comparing their orientation 
discrimination thresholds (mean  s.e.m. estimated by bootstrap) computed using entire populations.
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[Graf, Kohn, Jazayeri, Movshon, 2011]
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