Mathematical Tools for Neural and Cognitive Science

Fall semester, 2019

Section 1a: Trichromacy (an extended linear algebra example)

Trichromacy

A spectacular multi-disciplinary scientific story...

- Physics: spectral nature and additivity of light [Newton, and others, 1600's]
- Perception: Trichromatic matching [Grassman, Young, and others, 1850's]
- Mathematical theory: Color matching is explained by a 3-dimensional linear mechanism [late 1800 's]
- Engineering: Devices for color reproduction require only three color channels [early 1930's]
- Neurobiology: Trichromacy in humans (and some other primates) arises from 3 cone types [late 1900's]

Spectral nature of light

Representing spectra with vectors

$$
\mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\bullet \\
\bullet \\
b_{31}
\end{array}\right]
$$

Intensity adjustment (scalar multiplication)

Additive mixtures

Color perception: what's it for?

Perceptual color matching experiment

Perceptual color matching experiment

Grassmann's
Laws (1853)

1) Any light can be matched with a mixture of 3 primaries
2) Rescaling the light results in a rescaled mixture
3) Adding two lights results in a sum of their mixtures
\Rightarrow Color matching can be described by an Nx3 linear system*

* Fine print: i) Normal human observer; ii) photopic intensity levels, not too bright, not too dim; iii) independent primaries; iv) negative primary amplitude $=$ add to test light.

Characterization

Stiles-Burch Data, Monochromatic RGB Primaries of 645, 526, and 444 nm .

Implications

- If P is an $N x 3$ matrix containing the primary spectra, and H is an $3 x N$ "matching matrix" that captures human color matching responses (mapping a spectrum to 3 "knob settings"), then for any light (spectrum) vector \vec{l} :

$$
\vec{l} \sim P H \vec{l}
$$

where \sim means "looks the same as"

- Two lights look the same if (and only if) they produce the same match settings:

$$
\vec{l}_{1} \sim \vec{l}_{2} \quad \Leftrightarrow \quad H \vec{l}_{1}=H \vec{l}_{2}
$$

Useful calculations

- Scientific: given results of one matching experiment, predict the results of another one (with different primaries).
- Practical: calibrate a display device, so as to generate mixtures of three colors that match the appearance of any desired real-world spectrum.
[derive on board]

In summary:

Theory: the visual system projects the wavelength spectra of light onto a 3-dimensional subspace

- Predicts/explains perceptual "metamers" - lights that appear identical, but have physically distinct wavelength spectra (mid/late 1800's).
- Codified in CIE standards for color representation in 1931.
- Underlying mechanism (cones) verified in 1987!

\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

