Mathematical Tools for Neural and Cognitive Science

Fall semester, 2019

Section 1: Linear Algebra

Linear Algebra

"Linear algebra has become as basic and as applicable as calculus, and fortunately it is easier"

- Gilbert Strang, Linear Algebra and its Applications

Vectors

$$
\vec{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{N}
\end{array}\right)
$$

Vector operations

- scalar multiplication
- addition, vector spaces
- length, unit vectors
- inner product (a.k.a. "dot" product)
- properties: commutative, distributive
- geometry: cosines, orthogonality test

Inner product with a unit vector

- projection
- distance to line

- change of coordinates
[on board: geometry]

Vectors as "operators"

- "averager"
- "windowed averager"
- "gaussian averager"
- "local differencer"
- "component selector"

Linear System

S is a linear system if (and only if) it obeys the principle of superposition:
$S(a \vec{x}+b \vec{y})=a S(\vec{x})+b S(\vec{y})$

For any input vectors $\{\vec{x}, \vec{y}\}$, and any scalars $\{a, b\}$, the two diagrams at the right must produce the same response:

Linear Systems

- Very well understood (150+ years of effort)
- Excellent design/characterization toolbox
- An idealization (they do not exist!)
- Useful nevertheless:
- conceptualize fundamental issues
- provide baseline performance
- good starting point for more complex models

Implications of Linearity

Implications of Linearity

"impulse" vectors
"standard basis"
"axis vectors"

Implications of Linearity

Response to any input can be predicted from responses to impulses This defines the operation of matrix multiplication

Matrix multiplication

- Two interpretations of $M \vec{v}$ (see next slide):
- input perspective: weighted sum of columns (from diagrams on previous slides)
- output perspective: inner product with rows
- distributive property (directly from linearity!)
- associative property: cascade of two linear systems defines the product of two matrices
- transpose A^{T}, symmetric matrices $\left(A=A^{T}\right)$
- generally not commutative $(A B \neq B A)$, but note that $(A B)^{T}=B^{T} A^{T}$
- Vectors: Inner products, Outer products

Matrix multiplication

Two interpretations of $M \vec{v}$:

Matrix multiplication: dimensional consistency

Singular Value Decomposition (SVD)

- can express any matrix as $M=U S V^{T}$
"rotate, stretch, rotate"
- columns of V are basis for input coordinate system
- columns of U are basis for output coordinate system
- S rescales axes, and determines what "gets through"
- interpretation: sum of "outer products"
- non-uniqueness? permutations, sign flips
- nullspace and rangespace
- inverse and pseudo-inverse

SVD geometry (in 2D)

Consider applying M to four vectors (colored points)

$M \vec{w}=\sum_{k} s_{k}\left(\vec{v}_{k}^{T} \vec{w}\right) \vec{u}_{k}=\sum_{k} s_{k}\left(\vec{u}_{k} \vec{v}_{k}^{T}\right) \vec{w}$

orthogonal basis for output space

