Mathematical Tools for Neural and Cognitive Science

Fall semester, 2019

Section 2: Least Squares

Least squares regression:

$$
\min _{\beta} \sum_{n}\left(y_{n}-\beta x_{n}\right)^{2}
$$

In the space of measurements:

[Gauss, 1795 - age 18]

\boldsymbol{x}	
	$\min _{\beta} \sum_{n}\left(y_{n}-\beta x_{n}\right)^{2}$

$\min _{\beta} \sum_{n}\left(y_{n}-\beta x_{n}\right)^{2} \quad \begin{aligned} & \text { can solve this with } \\ & \text { calculus... [on board] }\end{aligned}$
... or with linear algebra! $\min _{\beta}\|\vec{y}-\beta \vec{x}\|^{2}$

$\min _{\beta}\|\vec{y}-\beta \vec{x}\|^{2}$
Geometry:

Note: this is not the twodimensional (x, y) measurement space of previous plots!

Note: partition of sum of squared data values:

$$
\|\vec{y}\|^{2}=\left\|\beta_{\mathrm{opt}} \vec{x}\right\|^{2}+\left\|\vec{y}-\beta_{\mathrm{opt}} \vec{x}\right\|^{2}
$$

$\begin{aligned} & \text { Multiple } \\ & \text { regression: }\end{aligned} \quad \min _{\vec{\beta}}\left\|\vec{y}-\sum_{k} \beta_{k} \vec{x}_{k}\right\|^{2}=\min _{\vec{\beta}}\|\vec{y}-X \vec{\beta}\|^{2}$
Observation

Solution via the "Orthogonality Principle":
Construct matrix X, containing columns \vec{x}_{1} and \vec{x}_{2} Orthogonality: $\quad X^{T}(\vec{y}-X \vec{\beta})=\overrightarrow{0}$

2D vector space containing all linear combinations of \vec{x}_{1} and \vec{x}_{2}

Alternatively, can solve using SVD...

$$
\begin{aligned}
\min _{\vec{\beta}}\|\vec{y}-X \vec{\beta}\|^{2} & =\min _{\vec{\beta}}\left\|\vec{y}-U S V^{T} \vec{\beta}\right\|^{2} \\
& =\min _{\vec{\beta}}\left\|U^{T} \vec{y}-S V^{T} \vec{\beta}\right\|^{2} \\
& =\min _{\vec{\beta}^{*}}\left\|\vec{y}^{*}-S \vec{\beta}^{*}\right\|^{2}
\end{aligned}
$$

$$
\text { where } \quad \vec{y}^{*}=U^{T} \vec{y}, \quad \vec{\beta}^{*}=V^{T} \vec{\beta}
$$

Solution: $\quad \beta_{\mathrm{opt}, k}^{*}=y_{k}^{*} / s_{k}, \quad$ for each k
or $\quad \vec{\beta}_{\mathrm{opt}}^{*}=S^{\#} \vec{y}^{*}$
[on board: transformations, elliptical geometry]

Optimization problems

Note: fitting with a line does not guarantee data actually lie along a line...
These 4 data sets give the same regression fit, and same error:

Polynomial regression

Polynomial regression - how many terms?

(to be continued, when we get to "statistics"...)

Weighted Least Squares

$$
\begin{aligned}
& \min _{\beta} \sum_{n}\left[w_{n}\left(y_{n}-\beta x_{n}\right)\right]^{2} \\
&=\min _{\beta} \|
\end{aligned} \begin{aligned}
& \uparrow(\vec{y}-\beta \vec{x}) \|^{2}
\end{aligned}
$$

Solution via simple extensions of basic regression solution (i.e., let $\vec{y}^{*}=W \vec{y}$ and $\vec{x}^{*}=W \vec{x}$ and solve for β)

Outliers

Outliers

Solution 1: "trimming"... discard points with "large" error.
Note: a special case of weighted least squares.

Trimming can be done iteratively (discard outlier, re-fit, repeat), a so-called "greedy" method. When do you stop?

Solution 2: Use a "robust" error metric.
For example:

Note: generally can't obtain solution directly (i.e., requires an iterative optimization procedure).
In some cases, can use iteratively re-weighted least squares (IRLS)...

Iteratively Re-weighted Least Squares (IRLS)

initialize: $w_{n}^{(0)}=1$
iterate $\beta^{(i)}=\arg \min _{\beta} \sum_{n} w_{n}^{(i)}\left(y_{n}-\beta^{(i)} x_{n}\right)^{2}$
$w_{n}^{(i+1)}=\frac{f^{\prime}\left(y_{n}-\beta^{(i)} x_{n}\right)}{\left|y_{n}-\beta^{(i)} x_{n}\right|}$ (one of many variants)

Constrained Least Squares

Linear constraint:

$$
\min _{\vec{\beta}}\|\vec{y}-X \vec{\beta}\|^{2}, \quad \text { where } \vec{c} \cdot \vec{\beta}=\alpha
$$

Quadratic constraint:

$$
\min _{\vec{\beta}}\|\vec{y}-X \vec{\beta}\|^{2}, \quad \text { where }\|\beta\|^{2}=1
$$

Both can be solved exactly using linear algebra (SVD)...
[on board, with geometry]

Constrained Least Squares

$$
\bar{\beta}_{\text {opt }, c}^{*}=\bar{\beta}_{\text {opt }, u}^{*}-\gamma \bar{c}^{*}
$$ and satisfies the constraint

$$
\begin{aligned}
& \bar{\beta}_{o p, c}^{*} \cdot \vec{c}^{\prime \prime}=\alpha \\
& =\bar{\beta}_{\text {opt }, u}^{*} \cdot \bar{c}^{\prime \prime}-\gamma \bar{c}^{\prime \prime} \cdot \bar{c}^{\prime \prime} \\
& \gamma=\frac{\bar{\beta}_{o p t, u}^{\prime \prime} \cdot \vec{c}^{\prime \prime}-\alpha}{\bar{c}^{*} \cdot \vec{c}^{\prime \prime}}=\frac{\bar{y}^{\prime \prime} \cdot \vec{c}^{\prime \prime}-\alpha}{\vec{c}^{*} \cdot \vec{c}^{\prime \prime}}
\end{aligned}
$$

Solution: $\gamma \rightarrow \bar{\beta}_{\text {opt }, c}^{*}$. Stetch by $\mathrm{s}^{-1} \vec{\beta}_{\text {opt }, c} \xrightarrow{\text { Rotate by } V} \bar{\beta}_{\text {opt }, c}$

Standard Least Squares regression

Error is vertical distance (in the "dependent variable") from the fitted line...

Total Least Squares Regression

(a.k.a "orthogonal regression")

Error is squared distance from the fitted line...

expressed as: $\min _{\hat{u}}\|D \hat{u}\|^{2}, \quad$ where $\|\hat{u}\|^{2}=1$
Note: "data" matrix D now includes both x and y coordinates

Variance of data D, projected onto axis \hat{u} : $\left\|U S V^{T} \hat{u}\right\|^{2}=\left\|S V^{T} \hat{u}\right\|^{2}=\left\|S \hat{u}^{*}\right\|^{2}=\left\|\vec{u}^{* *}\right\|^{2}$, where $D=U S V^{T}, \quad \hat{u}^{*}=V^{T} \hat{u}, \quad \vec{u}^{* *}=S \hat{u}^{*}$

Set of \hat{u} 's of length 1
(i.e., unit vectors)

Set of \hat{u}^{*} s of length 1 (i.e., unit vectors)

First two components of $\vec{u}^{* *}$ (rest are zero!), for three example S 's.

Olympic gold medalists (Rio, 2016)

Thomas Röhler (Germany)

3D geometry:
Javelin, Discus, Shotput

Sandra Perković (Croatia)

Eigenvectors/eigenvalues

Define symmetric matrix:

$$
\begin{aligned}
C & =D^{T} D \\
& =\left(U S V^{T}\right)^{T}\left(U S V^{T}\right) \\
& =V S^{T} U^{T} U S V^{T} \\
& =V\left(S^{T} S\right) V^{T}
\end{aligned}
$$

- "rotate, stretch, rotate back"
- matrix C "summarizes" the shape of the data with an ellipsoid: principal axes are columns of V, dimensions are elements of S
\hat{v}_{k}, the k th column of V, is an eigenvector of C :

$$
\begin{aligned}
C \hat{v}_{k} & =V\left(S^{T} S\right) V^{T} \hat{v}_{k} \\
& =V\left(S^{T} S\right) \hat{e}_{k} \\
& =s_{k}^{2} V \hat{e}_{k} \\
& =s_{k}^{2} \hat{v}_{k}
\end{aligned}
$$

- eigenvectors are vectors that are rescaled by the matrix (i.e., direction is unchanged) - this is true for all columns of V
- scale factor s_{k}^{2} is called the eigenvalue associated with \hat{v}_{k}

Principal Component Analysis (PCA)

The shape of a data cloud can be summarized with an ellipse (ellipsoid) using a simple procedure:
(1) Subtract mean of all data points, to re-center around origin
(2) Assemble centered data vectors in rows of a matrix, D
(3) Compute the SVD of D :

$$
D=U S V^{T}
$$

or compute eigenvectors of $C=D^{T} D$:

$$
C=V \Lambda V^{T}
$$

(4) Columns of V are the principal components (axes) of the ellipsoid, diagonal elements s_{k} or $\sqrt{\lambda_{k}}$ are the corresponding sizes of the ellipsoid

Example: PCA for dimensionality reduction and visualization

