Mathematical Tools
for Neural and Cognitive Science
Fall semester, 2019
Section 3:
Linear Shift-Invariant Systems

Linear shift-invariant (LSI) systems

- Linearity (previously discussed):
"linear combination in, linear combination out"
- Shift-invariance (new property):
"shifted vector in, shifted vector out"
- These two properties are independent (think of some examples that have both, one, or neither)

LSI system

॥

LSI systems are characterized by their "impulse response"

Convolution

\vec{x}

$$
\begin{aligned}
y(n) & =\sum_{k} r(n-k) x(k) \\
& =\sum_{k} r(k) x(n-k)
\end{aligned}
$$

- Sliding dot product
- Structured matrix
- Boundaries? zero-padding, reflection, circular
- Examples: impulse, delay, average, difference

Feedback LSI system

\vec{x}

- Response depends on input, and previous outputs
- Infinite impulse response (IIR)
- Recursive => possibly unstable
$y(n)=\sum_{k} f(n-k) x(k)+\sum_{k} g(n-k) y(k)$
(For this class, we'll stick to feedforward (FIR) systems)

2D convolution

"sliding window"

"separable" filter

- Outer product
- Simple design/implementation
- Efficient computation

Discrete Sinusoids

Shifting Sinusoids

$A \cos (\omega n-\phi)=A \cos (\phi) \cos (\omega n)+A \sin (\phi) \sin (\omega n)$
... via a well-known trigonometric identity:

$$
\cos (a-b)=\cos (a) \cos (b)+\sin (a) \sin (b)
$$

We'll also need conversions between polar and rectangular coordinates:

$$
\begin{array}{ll}
x=A \cos (\phi), & y=A \sin (\phi) \\
A=\sqrt{x^{2}+y^{2}}, & \phi=\tan ^{-1}(y / x)
\end{array}
$$

Shifting Sinusoids

Any scaled and shifted sinusoidal vector can be written as a weighted sum of two fixed $\{\sin , \cos \}$ vectors!

Shifting Sinusoids

$$
A \cos (\omega n-\phi)=\underline{A \cos (\phi)} \underline{\cos (\omega n)}+\underline{A \sin (\phi)} \underline{\sin (\omega n)}
$$

Any scaled and shifted sinusoidal vector can be written as a weighted sum of two fixed $\{\sin , \cos \}$ vectors!

Shifting Sinusoids

Any scaled and shifted sinusoidal vector can be written as a weighted sum of two fixed $\{\sin , \cos \}$ vectors!

LSI response to sinusoids

$x(n)=\cos (\omega n) \quad$ (input)
$y(n)=\sum_{m} r(m) \cos (\omega(n-m)) \quad$ (convolution formula)

LSI response to sinusoids

$x(n)=\cos (\omega n)$

LSI response to sinusoids

$x(n)=\cos (\omega n)$

LSI response to sinusoids

$x(n)=\cos (\omega n)$
$y(n)=\sum_{m} r(m) \cos (\omega(n-m))$
$=\sum_{m} r(m) \cos (\omega m) \cos (\omega n)+\sum_{m} r(m) \sin (\omega m) \sin (\omega n)$
$\left.=\quad c_{r}(\omega) \quad \cos (\omega n)+\begin{array}{c}s_{r}(\omega) \\ \downarrow \\ \downarrow i n \\ \hline\end{array} \omega n\right)$
$=A_{r}(\omega) \cos \left(\phi_{r}(\omega)\right) \cos (\omega n)+A_{r}(\omega) \sin \left(\phi_{r}(\omega)\right) \sin (\omega n)$
(rectangular $->$ polar coordinates)

LSI response to sinusoids

$x(n)=\cos (\omega n)$
$y(n)=\sum_{m} r(m) \cos (\omega(n-m))$
$=\sum_{m} r(m) \cos (\omega m) \cos (\omega n)+\sum_{m} r(m) \sin (\omega m) \sin (\omega n)$
$=\quad c_{r}(\omega) \quad \cos (\omega n)+\quad s_{r}(\omega) \quad \sin (\omega n)$
$=A_{r}(\omega) \cos \left(\phi_{r}(\omega)\right) \cos (\omega n)+A_{r}(\omega) \sin \left(\phi_{r}(\omega)\right) \sin (\omega n)$
$=A_{r}(\omega) \cos \left(\omega n-\phi_{r}(\omega)\right) \quad$ (trig identity, in the opposite direction)

"Sinusoid in, sinusoid out" (with modified amplitude \& phase)

LSI response to sinusoids

More generally, if input has amplitude A_{x} and phase ϕ_{x},

$$
x(n)=A_{x} \cos \left(\omega n-\phi_{x}\right)
$$

then linearity and shift-invariance tell us that

"Sinusoid in, sinusoid out" (with modified amplitude \& phase)

The Discrete Fourier transform (DFT)

- Construct an orthogonal matrix of sin/cos pairs, covering different numbers of cycles
- Frequency multiples of $2 \pi / N$ radians/sample, (specifically, $2 \pi k / N$, for $k=0,1,2, \ldots N / 2$)
- For $k=0$ and $k=N / 2$, only need the cosine part (thus, $N / 2+1$ cosines, and $N / 2-1$ sines)
- When we apply this matrix to an input vector, think of output as paired coordinates
- Common to plot these pairs as amplitude/phase
[details on board...]

Fourier Transform matrix

$\cos \left(\frac{2 \pi k}{N} n\right) \quad \sin \left(\frac{2 \pi k}{N} n\right) \quad$ (plotted sinusoids are continuous, $\mathrm{N}=32$)

Reminder: LSI response to sinusoids

$x(n)=\cos (\omega n)$
$y(n)=\sum_{m} r(m) \cos (\omega(n-m))$
$=\sum_{m=1}^{m} r(m) \cos (\omega m) \cos (\omega n)+\sum_{m} r(m) \sin (\omega m) \sin (\omega n)$
$=\quad c_{r}(\omega) \quad \cos (\omega n)+\quad s_{r}(\omega) \quad \sin (\omega n)$
$=A_{r}(\omega) \cos \left(\phi_{r}(\omega)\right) \cos (\omega n)+A_{r}(\omega) \sin \left(\phi_{r}(\omega)\right) \sin (\omega n)$
$=A_{r}(\omega) \cos \left(\omega n-\phi_{r}(\omega)\right)$

These dot products are the Discrete Fourier Transform of the impulse response, $r(m)$!
Fourier \& LSI

Fourier \& LSI

II
$c_{x}(0) \longrightarrow$

note: only 3 (of many) frequency components shown

Fourier \& LSI

$\vec{x} \sim \sim$ WW $\rightarrow \mathrm{L} \rightarrow$
II
$A_{x}(0)$ \qquad
$A_{x}(1) \xrightarrow{\phi_{x}}$ $\phi_{x}(1)$
$A_{x}(2) \stackrel{\phi_{x}(2)}{\sim}$
note: only 3 (of many) frequency components shown

The "convolution theorem"

convolve with \vec{r}

The "convolution theorem"

The "convolution theorem"

Recap...

- Linear system
- defined by superposition
- characterized by a matrix
- Linear Shift-Invariant (LSI) system
- defined by superposition and shift-invariance
- characterized by a vector, which can be either:
» the impulse response
»the frequency response (amplitude and phase). Specifically, the Fourier Transform of the impulse response specifies an amplitude multiplier and a phase shift for each freauency.

Discrete Fourier transform

(with complex numbers)
$\tilde{r}_{k}=\sum_{n=0}^{N-1} r_{n} e^{-i \omega_{k} n} \quad$ where $\quad \omega_{k}=\frac{2 \pi k}{N}$
$r_{n}=\frac{1}{N} \sum_{k=0}^{N-1} \tilde{r}_{k} e^{i \omega_{k} n} \quad$ (inverse)

[on board: why minus sign? why 1/N?]

Visualizing the (Discrete)
 Fourier Transform

- Two conventional choices for frequency axis:
- Plot frequencies from $\mathrm{k}=0$ to $\mathrm{k}=\mathrm{N} / 2$
(in matlab: 1 to $\mathrm{N} / 2-1$)
- Plot frequencies from $\mathrm{k}=-\mathrm{N} / 2$ to $\mathrm{N} / 2-1$
(in matlab: use fftshift)
- Typically, plot amplitude (and possibly phase, on a separate graph), instead of the real/ imaginary (cosine/sine) components

Some examples

- constant
- sinusoid (see next slide)
- impulse
- Gaussian - "lowpass"
- DoG (difference of 2 Gaussians) - "bandpass"
- Gabor (Gaussian windowed sinusoid) - "bandpass"

$$
\begin{gathered}
e^{i \omega n}=\cos (\omega n)+i \sin (\omega n) \quad e^{-i \omega n}=\cos (\omega n)-i \sin (\omega n) \\
=>\quad \begin{aligned}
\cos (\omega n) & =\frac{1}{2}\left(e^{i \omega n}+e^{-i \omega n}\right) \\
\sin (\omega n) & =\frac{-i}{2}\left(e^{i \omega n}-e^{-i \omega n}\right)
\end{aligned}
\end{gathered}
$$

Example for $\mathrm{k}=2, \mathrm{~N}=32$ (note indexing and amplitudes):

What do we do with Fourier Transforms?

- Represent/analyze periodic signals
- Analyze/design LSI systems. In particular, how do you identify the nullspace?

Retinal ganglion cells (1D)

Effect of sampling on the Fourier Transform:
Sum of shifted copies

Pre-filtering to avoid spectral overlap ("aliasing")

