
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2023
Mathematical Tools for Neural and Cognitive Science

Homework 2

Due: 17 Oct 2023
(late homeworks penalized 10% per day)

See the course web site for submission details. Reminder: rather than using the functions pinv()
and norm(), use the linear algebra tools we learned in class. Please: don’t wait until the day before
the due date... start now!

1. Trichromacy. Load the file colMatch.mat in your MATLAB environment (or use
scipy.io.loadmat for Python). This file contains matrices and vectors related to the color
matching experiment presented in class. In particular, the variable P is an N × 3 matrix
containing wavelength spectra for three “primary” lights, that could be used in a color-
matching experiment. For these problems N = 31, corresponding to samples of the visible
wavelength spectrum from 400 nm to 700 nm in increments of 10 nm.

The function humanColorMatcher.p simulates a normal human observer in a color matching
experiment. For Python, download the file and use from trichromacy import human color matcher.
The input variable light should contain the wavelength spectrum of a test light (a 31-
dimensional column vector). The input variable primaries should contain the wavelength
spectra of a set of primary lights (typically, a 31×3 matrix, as for matrix P described above).
The function returns a 3-vector containing the observer’s “knob settings” - the intensities
of each of the primaries that, when mixed together, appear identical to the test light. The
function can also be called with more than one test light (by passing a matrix whose columns
contain 31-dimensional test lights), in which case it returns a matrix whose columns are the
knob settings corresponding to each test light.

(a) Create a test light with an arbitrary wavelength spectrum, by generating a random
column vector with 31 positive components (use rand in MATLAB or np.random.rand
in Python). Use humanColorMatcher to “run an experiment”, asking the “human” to
set the intensities of the three primaries in P to match the appearance of the test light.
Compute the 31-dimensional wavelength spectrum of this combination of primaries, plot
it together with the original light spectrum, and explain why the two spectra are so
different, even though they appear the same to the human.

(b) Now characterize the human observer as a linear system that maps 31-dimensional lights
to 3-dimensional knob settings. Specifically, run a set of experiments to estimate the
contents of a 3 × 31 color-matching matrix M that can predict the human responses.
Verify on a few random test lights that this matrix exactly predicts the responses of the
function humanColorMatcher.

(c) The variable Cones contains (in the rows) approximate spectral sensitivities of the
three color photoreceptors (cones) in the human eye: Cones(1,:) is for the L (long-
wavelength, or red) cones, Cones(2,:) the M (green) cones, and Cones(3,:) the S
(blue) cones (for Python users, the indexing starts from 0). Applying the matrix Cones

to any light l⃗ yields a 3-vector containing the average number of photons absorbed by
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that cone (try plot(Cones’) to visualize them!). Verify that the cones provide a physi-
ological explanation for the matching experiment, in that the cone absorptions are equal
for any pair of lights that are perceptually matched. First, do this informally, by check-
ing that randomly generated lights and their corresponding 3-primary matching lights
produce equal cone absorptions. Then, provide a few lines of matlab code that provide
a more mathematical demonstration, along with an extended comment explaining your
reasoning using concepts from linear algebra. [Hints for two possible approaches: (1)
write math/code that computes cone responses for any test light and then computes the
weighted combination of primaries that would produce the same cone responses - show
that this is numerically the same as the color-matching matrix; (2) convince yourself,
and explain why, it is sufficient to show that M and Cones have the same nullspace. Then
use SVD to demonstrate that this is true!]

(d) The function altHumanColorMatcher(light,primaries) simulates a color-deficient hu-
man observer in a standard color matching experiment. (i) for a random test light,
compare the knob settings for this observer with those of the normal human. Do this for
several runs. How do they differ? (ii) Compute cone absorptions for the test light, and
for the mixture of three matching primaries (by applying the Cones matrix). Do this
for both the normal human observer, and for multiple runs of the abnormal observer.
Try this for several different test lights. How do the cone responses of the normal and
abnormal observers differ? Can you offer a diagnosis of the underlying cause of color
deficiency in the abnormal observer?

2. 2D polynomial regression. Load the file regress2.mat into your MATLAB environment.
The matrix D contains 3 columns of data, which we’ll refer to as X, Y , and Z respectively.
The corresponding elements of these vectors, (Xk, Yk, Zk), represent 3D data points. X and
Y are uniformly distributed on a square grid.

(a) plot Z as a function of X and Y using surf [note: you’ll need to reshape the three
column vectors into square matrices, but the X and Y values lie on a square grid, so
that isn’t difficult]. Execute the command rotate3d on, and use the mouse to rotate
the 3D space and view the data at different angles.

(b) Fit the Z values with polynomials in X and Y , up to order 3: p0(X,Y ) = β0, p1(X,Y ) =
β0 + β1X + β2Y , p2(X,Y ) = β0 + β1X + β2Y + β3X

2 + β4XY + β5Y
2, etc. Compute

this using svd and basic linear algebra manipulations that you’ve learned in class!

(c) For each of the polynomials, (a) plot the fitted surface (use surf) and data points
(use plot3) in the same figure, and rotate it around to convince yourself that the fit
is reasonable. (b) compute the error for each element of Z, plot a histogram of these
values, and compute the mean of the squared errors. How does the error behave as you
increase the order of the polynomial? Which polynomial do you think gives the “best”
fit? Explain.

3. Constrained Least Squares Optimization. Load the file constrainedLS.mat into a
MATLAB or Jupyter notebook. This contains an N × 2 data matrix, data, whose columns
correspond to horizontal and vertical coordinates of a set of 2D data points, d⃗n (note that
each d⃗n is a column vector but is a row of the matrix data). It also contains a 2-vector w.
Consider a constrained optimization problem:

min
β⃗

∑
n

(
β⃗T d⃗n

)2
, s.t. β⃗T w⃗ = 1.
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There is a family of possible vectors β⃗ that satisfy the constraint β⃗T w⃗ = 1. Geometrically,
any β⃗ whose arrow-tip lies on a specific line perpendicular to w⃗ will satisfy the constraint.
The perpendicular distance of this constraint line from the origin will be 1/||w⃗|| from the
origin (think about the dot product, draw the vector w⃗ and the constraint line to prove this
to yourself). Thus, this is a new contrained optimization that is a bit like total least squares,
except that β is forced to satisfy a linear constraint, rather than forced to be a unit vector.

(a) Rewrite the optimization problem in matrix form. Then rewrite the problem in terms of
a new optimization variable, β̃ (i.e. ’beta tilde’, a linear transformation of β⃗), such that
the quantity to be minimized is now ||β̃||2. Note: you must also rewrite the constraint
in terms of β̃.

(b) The transformed problem is one that you should be able to solve. In particular, you
must find the shortest vector β̃ that lies on the constraint line. Compute the solution
for β̃, and plot the solution vector, the constraint line and the transformed data points.

(c) Transform the solution back into the original space (i.e., solve for β⃗). Plot β⃗, the original
constraint line, and the original data points. Is the optimal vector β⃗ perpendicular to
the constraint line? On the same graph, plot the total least squares solution (i.e., the
vector that minimizes the same objective function, but that is constrained to be a unit
vector). Are the two solutions the same?

4. Principal components. Load the file PCA.mat into your MATLAB environment. You’ll
find a matrix M containing responses of a population of 14 neurons, under 150 different
experimental conditions (each column contains the estimated firing rate of one neuron under
each of the conditions). The conditions correspond to an animal reaching for a target in a
different directions, and different distances away from a central resting position. We cannot
directly visualize data of this many dimensions, but we can use linear algebra to project them
into a lower dimensional space.

(a) Compute the principal components of the 14-dimensional population responses (these
will each be vectors with 14 components, i.e., one weight per neuron, thus treating
conditions as 150 samples of 14-dimensional neural population responses). First, center
the data by subtracting the mean response mean(M) from every row of the matrix (hint:
you might find the function repmat helpful). Call this re-centered data matrix M̃ . Then
compute the eigenvectors and eigenvalues of M̃T M̃ (alternatively, you can compute the
singular values of M̃). Plot the eigenvalues (or singular values). What do you think is
the “true” dimensionality of the responses?

(b) Project the data in M̃ onto the first principal component (i.e., the eigenvector corre-
sponding to the maximal eigenvalue). Plot a histogram (using hist) of these values.
Verify that the sum of squares of these values is equal to the first eigenvalue λ1. What
proportion of the total variability of the data (the sum of squares of all entries of M̃)
does this component account for?

(c) Show a scatter plot of the data projected onto the first two principal components (that
is, plot the inner product of the data with the first component versus the inner product
with the second component). You can use plot (with circular plot symbols and no
connecting lines), or use scatter. Use axis(’equal’) to set the two axes to use equal
scales. Show that the sum of the squared lengths of these projected vectors is equal to
λ1 + λ2. What proportion of the total variability of the data do these two components
account for?
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(d) It appears that much of the response in this 14-neuron population can be explained
in terms of these two components. Let’s visualize this, by projecting the population
response for each condition back onto these two axes, and plotting these as points in a
2D scatter plot.


