Course Description

Instructors: Mike Landy & Eero Simoncelli
FangFang Hong fh862@nyu.edu
Owen Marschall owen.marschall@gmail.com
Theresa Steele theresa.steele@nyulangone.org

Brief Description: A graduate lecture course covering mathematical and computational tools for data analysis and modeling of neural and cognitive systems, including the transformations of raw data into a form in which these tools may be utilized, the choice and implementation of the tool, and the interpretation of such analyses. Lectures on each topic will include some mathematical background, derivation of basic results, and examples relevant to neural science. The course will include weekly problem sets based on the MATLAB software package.

Audience: The course is targeted for CNS and Psychology doctoral students, but is often attended by master’s students and postdocs, as well as students from other NYU departments and other Universities.

Prerequisites: College-level algebra, trigonometry and calculus. Linear algebra and some programming experience in MATLAB are helpful, but not required.

Format: The course consists of two 2-hour lectures per week, and a computer lab session roughly every other week. The course includes a sequence of 5-6 homework assignments, primarily in the form of computer exercises, to examine the lecture topics in the context of concrete and realistic problems. These are essential for learning the material. Grades are based primarily on homework, but also take into account attendance and participation.

Course materials: There is no textbook. Supplementary reading materials will be handed out in class. All materials will be available from the course web site:
http://www.cns.nyu.edu/~eero/math-tools/

Topics:


II. Linear Systems Theory (4 weeks): Convolution and Fourier Transforms (1D and multi-D), sampling, aliasing and the Nyquist theorem.

III. Probability & Statistical inference (5 weeks): Basic probability, summary statistics, parameter estimation, significance tests, model comparison, decision theory, model fitting, comparison, and selection.