Section 2: Least Squares

Least squares regression:

$$\min_\beta \sum_n (y_n - \beta x_n)^2$$

“Objective” or “error” function

In the space of measurements:

$$\hat{\beta} = \arg \min_\beta \sum_n (y_n - \beta x_n)^2$$
can solve this with calculus… *(on board)*

... or, with linear algebra!

\[
\min_{\beta} \| \mathbf{y} - \mathbf{\beta x} \|^2
\]

Geometry:

Note: this is a 2-D cartoon of the N-D vectors, not the two-dimensional \((x, y)\) measurement space of previous plots!

Note: partition of sum of squared data values:

\[
\| \mathbf{y} \|^2 = \| \mathbf{\beta_{opt} x} \|^2 + \| \mathbf{\hat{y} - \beta_{opt} x} \|^2
\]

Multiple regression:

\[
\min_{\beta} \| \mathbf{y} - \sum_k \beta_k \mathbf{x}_k \|^2 = \min_{\beta} \| \mathbf{y} - \mathbf{X}\mathbf{\beta} \|^2
\]
Solution via the “Orthogonality Principle”:

Construct matrix \(X \), containing columns \(\tilde{x}_1 \) and \(\tilde{x}_2 \)

Orthogonality: \(X^T (\tilde{y} - X \tilde{\beta}) = 0 \)

Alternatively, can solve using SVD...

\[
\begin{align*}
\min_\beta ||\tilde{y} - X \tilde{\beta}||^2 &= \min_\beta ||\tilde{y} - USV^T \tilde{\beta}||^2 \\
&= \min_\beta ||USV^T \tilde{\beta}||^2 \\
&= \min_\beta ||\tilde{y}^* - S \tilde{\beta}^*||^2 \\
\text{where} \quad \tilde{y}^* &= U^T \tilde{y}, \quad \tilde{\beta}^* = V^T \tilde{\beta}
\end{align*}
\]

Solution: \(\beta_{\text{opt},k} = y_k^* / s_k \), for each \(k \)

or \(\tilde{\beta}_{\text{opt}} = S^# \tilde{y}^* \Rightarrow \beta_{\text{opt}} = V S^# U^T \tilde{y} \)

[on board: transformations, elliptical geometry]

Fitting a parametric model (general)

Experimental Data \(\tilde{x}_n \rightarrow \tilde{y}_n \)

Model \(f_\beta (\tilde{x}) \)

To fit model \(f_\beta (\tilde{x}) \) to data \(\{\tilde{x}_n, \tilde{y}_n\} \),

optimize parameters \(\beta \) to minimize an error function:

\[
\min_\beta \sum_n E (\tilde{y}_n, f_\beta (\tilde{x}_n))
\]

Ingredients: data, model, error function, optimization algorithm
Optimization problems

- Heuristics, exhaustive search, (pain & suffering)
- Iterative descent, (possibly) nonunique
- Iterative descent, guaranteed
- Closed-form guaranteed

Be careful with interpretation: fitting a line does not guarantee data actually lie along a line

These 4 data sets give the same regression fit, and same error:

[Anscombe, 1973]

Polynomial regression

Observation

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \]
Polynomial regression - how many terms?

(to be continued, when we get to “statistics”...)

Weighted Least Squares

\[
\min_{\beta} \sum_{n} \left[w_n(y_n - \beta x_n) \right]^2
\]

\[
= \min_{\beta} \| W(\tilde{y} - \beta \tilde{x}) \|^2
\]

Solution via simple extensions of basic regression solution
(i.e., let \(\tilde{y}^* = W\tilde{y} \) and \(\tilde{x}^* = W\tilde{x} \) and solve for \(\beta \))

Outliers
Outliers

Solution 1: “trimming”… discard points with “large” error. Note: a special case of weighted least squares.

Trimming can be done iteratively (discard outlier, re-fit, repeat), a so-called “greedy” method. When do you stop?
Solution 2: Use a “robust” error metric. For example:

\[f(d) = d^2 \]

\[f(d) = \log(c^2 + d^2) \]

“Lorentzian”

Note: generally can’t obtain solution directly (i.e., requires an iterative optimization procedure).
In some cases, can use iteratively re-weighted least squares (IRLS).

Iteratively Re-weighted Least Squares (IRLS)

\[\beta^{(i)} = \arg \min_{\beta} \sum_n w_n^{(i)} (y_n - \beta^{(i)} x_n)^2 \]

\[w_n^{(i+1)} = \frac{f(y_n - \beta^{(i)} x_n)}{|y_n - \beta^{(i)} x_n|} \]

Constrained Least Squares

Linear constraint:

\[\min_{\vec{\beta}} \| \vec{y} - X \vec{\beta} \|^2, \text{ where } \vec{c} \cdot \vec{\beta} = \alpha \]

Quadratic constraint:

\[\min_{\vec{\beta}} \| \vec{y} - X \vec{\beta} \|^2, \text{ where } \| \vec{\beta} \|^2 = 1 \]

Both can be solved exactly using linear algebra (SVD)...
Standard Least Squares regression

Error is vertical distance (in the “dependent variable”) from the fitted line...

arg min \(\beta \) \(||\vec{y} - \beta \vec{x}||^2 \)
Total Least Squares Regression
(a.k.a “orthogonal regression”)

Error is squared distance from the fitted line...

expressed as: \(\min_{\hat{\mathbf{u}}} ||D\hat{\mathbf{u}}||^2 \), where \(||\hat{\mathbf{u}}||^2 = 1 \)

Note: “data” matrix \(D \) now includes both \(x \) and \(y \) coordinates

Variance of data \(D \), projected onto axis \(\hat{\mathbf{u}} \):
\[
||USV^T\hat{\mathbf{u}}||^2 = ||SV^T\hat{\mathbf{u}}||^2 = ||S\hat{\mathbf{u}}^*||^2 = ||\hat{\mathbf{u}}^{**}||^2,
\]
where \(D = USV^T \), \(\hat{\mathbf{u}}^* = V^T\hat{\mathbf{u}} \), \(\hat{\mathbf{u}}^{**} = S\hat{\mathbf{u}}^* \)

Set of \(\hat{\mathbf{u}} \)'s of length 1 (i.e., unit vectors)
Set of \(\hat{\mathbf{u}}^* \)'s of length 1 (i.e., unit vectors)
First two components of \(\hat{\mathbf{u}}^{**} \) (rest are zero!), for three example \(S \)'s.

Eigenvalues/eigenvectors

Define symmetric matrix:
\[
C = D^T D = (USV^T)^T(USV^T) = V S^T U^T U S V^T = V (S^T S) V^T
\]

• An eigenvector is a vector that is rescaled by a matrix (i.e., direction is unchanged)
• The corresponding scale factor is called the eigenvalue
• The columns of \(V \) (denoted \(\mathbf{v}_k \)) are eigenvectors of \(C \) with corresponding eigenvalues \(s_k^2 \):
\[
C \mathbf{v}_k = V (S^T S) V^T \mathbf{v}_k = V (S^T S) \hat{\mathbf{v}}_k = s_k^2 V \hat{\mathbf{v}}_k = s_k^2 \mathbf{v}_k
\]

“rotate, stretch, rotate back”
• The matrix \(C \) “summarizes” the shape of the data with an ellipsoid: principal axes are columns of \(V \), dimensions are diagonal elements of \(S \)
Principal Component Analysis (PCA)

The shape of a data cloud can be summarized with an ellipse (ellipsoid) using a simple procedure:

1. Subtract mean of all data points, to re-center around origin
2. Assemble centered data vectors in rows of a matrix, D
3. Compute the SVD of D:
 \[D = U S V^T \]
 or equivalently compute eigenvectors of $C = D^T D$:
 \[C = V \Lambda V^T \]
4. Columns of V are the principal components (axes) of the ellipsoid, diagonal elements s_k or $\sqrt{\lambda_k}$ are the corresponding principle radii

Example: PCA for dimensionality reduction and visualization

[Image: Russo et. al., 2018]