Section 3: Linear Shift-Invariant Systems

Linear shift-invariant (LSI) systems

- Linearity (previously discussed):
 “linear combination in, linear combination out”

- Shift-invariance (new property):
 “shifted vector in, shifted vector out”

- These two properties are independent (think of some examples that have both, one, or neither)

As before, express input as a sum of “impulses”, weighted by elements of x
LSI systems are characterized by their “impulse response”
Convolution

- Sliding dot product
- Structured matrix
- Boundaries? zero-padding, reflection, circular
- Examples: impulse, delay, average, difference

\[
y(n) = \sum_k r(n - k)x(k) = \sum_k r(k)x(n - k)
\]

Feedback LSI system

- Response depends on input, and previous outputs
- **Infinite** impulse response (IIR)
- Recursive => possibly unstable

\[
y(n) = \sum_k f(n - k)x(k) + \sum_k g(n - k)y(k)
\]

(For this class, we’ll stick to feedforward (FIR) systems)

2D convolution

“sliding window”
“separable” filter

- Outer product
- Simple design/implementation
- Efficient computation

[figure: Adelson & Bergen 85]

Discrete Sinusoids

\[\cos(\omega n), \quad \omega = \frac{2\pi k}{N} \]

“frequency” (cycles/vectorLength)

“frequency” (radians/sample)

More generally: \(A \cos(\omega n - \phi) \)

“amplitude”

“phase” (radians)

Shifting Sinusoids

\[A \cos(\omega n - \phi) = A \cos(\phi) \cos(\omega n) + A \sin(\phi) \sin(\omega n) \]

... via a well-known trigonometric identity:

\[\cos(a - b) = \cos(a) \cos(b) + \sin(a) \sin(b) \]

We’ll also need conversions between polar and rectangular coordinates:

\[x = A \cos(\phi), \quad y = A \sin(\phi) \]

\[A = \sqrt{x^2 + y^2}, \quad \phi = \tan^{-1}(y/x) \]
Any scaled and shifted sinusoidal vector can be written as a weighted sum of two fixed \{sin, cos\} vectors!
LSI response to sinusoids

\[x(n) = \cos(\omega n) \quad \text{(input)} \]

\[y(n) = \sum_{m} r(m) \cos(\omega(n - m)) \quad \text{(convolution formula)} \]

\[y(n) = \sum_{m} r(m) \cos(\omega m) \cos(\omega n) + \sum_{m} r(m) \sin(\omega m) \sin(\omega n) \]

inner product of impulse response with cos/sin, respectively

\[y(n) = c_r(\omega) \cos(\omega n) + s_r(\omega) \sin(\omega n) \]
LSI response to sinusoids

\[x(n) = \cos(\omega n) \]

\[y(n) = \sum_m r(m) \cos(\omega(n - m)) \]

\[= \sum_m r(m) \cos(\omega m) \cos(\omega n) + \sum_m r(m) \sin(\omega m) \sin(\omega n) \]

\[= c_r(\omega) \cos(\omega n) + s_r(\omega) \sin(\omega n) \]

\[= A_r(\omega) \cos(\phi_r(\omega)) \cos(\omega n) + A_r(\omega) \sin(\phi_r(\omega)) \sin(\omega n) \]

(rectangular \to polar coordinates)

More generally, if input has amplitude \(A_x \) and phase \(\phi_x \),

\[x(n) = A_x \cos(\omega(n - \phi_x)) \]

then linearity and shift-invariance tell us that

\[y(n) = A_r(\omega) A_x \cos(\omega(n - \phi_x - \phi_r(\omega))) \]

amplitudes multiply \quad \text{phases add}

“Sinusoid in, sinusoid out” (with modified amplitude & phase)
The Discrete Fourier transform (DFT)

- Construct an orthogonal matrix of sin/cos pairs, covering different numbers of cycles
- Frequency multiples of \(2\pi/N \) radians/sample, specifically, \(2\pi k/N \) for \(k = 0, 1, 2, \ldots N/2 \)
- For \(k = 0 \) and \(k = N/2 \), only need the cosine part (thus, \(N/2 + 1 \) cosines, and \(N/2 - 1 \) sines)
- When we apply this matrix to an input vector, think of output as paired coordinates
- Common to plot these pairs as amplitude/phase

\[F = \begin{bmatrix}
\cos \left(\frac{2\pi k}{N} n \right) & \sin \left(\frac{2\pi k}{N} n \right) \\
\vdots & \ddots
\end{bmatrix} \] (plotted sinusoids are continuous, \(N=32 \))
Reminder: LSI response to sinusoids

\[x(n) = \cos(\omega n) \]

\[y(n) = \sum_{m} r(m) \cos(\omega(n - m)) \]

\[= \sum_{m} r(m) \cos(\omega m) \cos(\omega n) - \sum_{m} r(m) \sin(\omega m) \sin(\omega n) \]

\[= c_r(\omega) \cos(\omega n) + s_r(\omega) \sin(\omega n) \]

\[= A_r(\omega) \cos(\phi_r(\omega)) \cos(\omega n) + A_r(\omega) \sin(\phi_r(\omega)) \sin(\omega n) \]

\[= A_r(\omega) \cos(\omega n - \phi_r(\omega)) \]

These dot products are the Discrete Fourier Transform of the impulse response, \(r(m) \)!

Fourier & LSI

\[\tilde{x} \quad \rightarrow \quad \mathbf{L} \]

Fourier & LSI

\[\tilde{x} \quad \rightarrow \quad \mathbf{L} \]

\[c_x(0) \]

\[c_x(1) \quad s_x(1) \]

\[c_x(2) \quad s_x(2) \]

note: only 3 (of many) frequency components shown
LSI systems are characterized by their frequency response, specified by the Fourier Transform of their impulse response.

Complex exponentials: “bundling” sine and cosine

\[e^{i\theta} = \cos(\theta) + i \sin(\theta) \]
(Euler’s formula)

\[Ae^{i\omega n} = A \cos(\omega n) + iA \sin(\omega n) \]

real part:

imaginary part:
Complex exponentials:
“bundling” sine and cosine

\[e^{i\omega n} \rightarrow L \rightarrow A_r(\omega) e^{i(\omega n - \phi_r(\omega))} = A_r(\omega) e^{-i\phi_r(\omega)} e^{i\omega n} = \hat{r}(\omega) e^{i\omega n} \]

F.T. of impulse response!

Note: the complex exponentials are eigenvectors!

The “convolution theorem”

\[\vec{x} \quad \text{convolve with} \quad \vec{r} \rightarrow \vec{y} \]
Recap…

- Linear system
 - defined by superposition
 - characterized by a matrix

- Linear Shift-Invariant (LSI) system
 - defined by superposition and shift-invariance
 - characterized by a vector, which can be either:
 » the impulse response
 » the frequency response (amplitude and phase).
Specifically, the Fourier Transform of the impulse response specifies an amplitude multiplier and a phase shift for each frequency.
Discrete Fourier transform (with complex numbers)

\[
\hat{r}_k = \sum_{n=0}^{N-1} r_n e^{-i\omega_k n} \quad \text{where} \quad \omega_k = \frac{2\pi k}{N}
\]

\[
r_n = \frac{1}{N} \sum_{k=0}^{N-1} \hat{r}_k e^{i\omega_k n} \quad \text{(inverse)}
\]

Visualizing the (Discrete) Fourier Transform

- Two conventional choices for frequency axis:
 - Plot frequencies from \(k = 0 \) to \(k = N/2 \)
 (in matlab: 1 to \(N/2+1 \))
 - Plot frequencies from \(k = -N/2+1 \) to \(k = N/2 \)
 (in matlab: recenter using \(\text{ffshift} \))

- Typically, we plot amplitude (and optionally, phase), instead of the real/imaginary (cosine/sine) components

Some examples

- constant
- sinusoid (see next slide)
- impulse
- Gaussian - “lowpass”
- Derivative of Gaussian - “bandpass”
- DoG (difference of 2 Gaussians) - “bandpass”
- Gabor (Gaussian windowed sinusoid) - “bandpass”
$$e^{i\omega n} = \cos(\omega n) + i \sin(\omega n) \quad e^{-i\omega n} = \cos(\omega n) - i \sin(\omega n)$$

$$\cos(\omega n) = \frac{1}{2}(e^{i\omega n} + e^{-i\omega n})$$

$$\sin(\omega n) = \frac{-i}{2}(e^{i\omega n} - e^{-i\omega n})$$

Example for $k=2$, $N=32$ (note indexing and amplitudes):

What do we do with Fourier Transforms?

- Represent/analyze periodic signals
- Analyze/design LSI systems. In particular, how do you identify the nullspace?

Retinal ganglion cells (1D)

Enroth-Cugell and Robson (1984)
Sampling causes “aliasing”

Sampling process is linear, but many-to-one (non-invertible)

“Aliasing” - one frequency masquerades as another

Given the samples, it is common/natural to assume, or enforce, that they arose from the lowest compatible frequency...

Effect of sampling on the Fourier Transform:
Sum of shifted copies

\[|X(\omega)| \]

\[|X_s(\omega)| \]

Real-world aliasing

downsample by 2

“Moiré pattern”
Pre-filtering to avoid spectral overlap ("aliasing")

\[X(\omega) \rightarrow L(\omega) \rightarrow \Delta \rightarrow X_s(\omega) \]

\[|X(\omega)| \] \[L(\omega) \rightarrow \Delta \rightarrow \text{lowpass filter, cutoff at } \pi/\Delta \]

\[|X_s(\omega)| \]

Real-world aliasing

downsampling by 2, with pre-filtering