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What is “Visual Texture”?

Homogeneous, with repeated structures....
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What is “Visual Texture”?

Homogeneous, with repeated structures....

“You know it when you see it”
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Perceptual Texture Description

All Images

Texture Images

Equivalence class (visually indistinguishable)

Perceptual model:

• Set of texture images divided into equivalence classes (metamers)

• Perceptual “distance” between classes
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Julesz’s Conjecture (1962)

Hypothesis: two textures with identical Nth-order pixel statistics look the same
(for some N).

• Explicit goal of capturing perceptual definition with a statistical model

• Statistical measurements should be:

– universal (for all textures)

– stationary (translation-invariant)

– a minimal set (necessary and sufficient)

• Julesz (and others) constructed counter-examples for N=2 and N=3, dis-
missing the hypothesis...
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Julesz’s Conjecture, Revisited

Why did the early attempts fail?

• Right hypothesis, wrong model: A set of measurements equivalent to the
visual processes used for texture perception should satisfy the hypothesis.

• Lacked a powerful methodology for testing whether a model satisfies the
hypothesis

• We can benefit from advances of the past few decades:

– scientific: better understanding of early vision

– engineering/mathematical: “wavelets”, statistical estimation, statistical
sampling

– technological: availability of powerful computers, digital images
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Testing a Texture Model

• As with most scientific test, we seek counter-examples

• Fundamental problem: we usually work with a small number of examples
(tens or hundreds).

• Classification is an important application, but a weak test

• Synthesis can provide a much stronger test...
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Testing a Model via Synthesis

Example
�����
ture

Image

Random

Seed

Statistical

Image

Sampler

Statistical

Parameter

Estimator

Perceptual

Comparison

• Positive results are compelling, assuming:

– reference texture set contains a sufficient variety
– statistical sampler generates “typical” examples

• Negative results are definitive: A single failure indicates insufficiency of
constraints!

• Partial necessity test: remove a constraint and find a failure example

• Studying failures allows us to refine the model
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Methodological Ingredients

1. Representative set of example texture images: Brodatz, VisTex, our own

2. Method of estimating parameters: sample mean

3. Method of generating sample images from model: primary topic of this
work

4. Perceptual test: informal viewing
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Iterative Synthesis Algorithm

Synthesis

Analysis

Transform Measure
Statistics

Example
Texture

Random
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Transform

Heeger & Bergen, ’95
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Transform: Steerable Pyramid

Example basis function Spectra

Linear basis: multi-scale, oriented, complex.

Basis functions are oriented bandpass filters, related by translation, dilation,
rotation (directional derivatives, order K−1).

Tight frame, 4K/3 overcompleteness for K orientations.

Translation-invariant, rotation-invariant.

Motivation: image processing, computer vision, biological vision.
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Steerable Pyramid: Example Decomposition

Real part of coefficients complex magnitude of coefficients

Decomposition of a “disk” image
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Parameters: Marginal Statistics

Distribution of intensity values is captured with the first through fourth mo-
ments of both the pixels and the lowpass coefficients at each pyramid scale.

Note: A number of authors have used marginal histograms:

Faugeras ’80 (pixels), Heeger & Bergen ’95 (wavelet), Zhu etal. ’96 (Gabor).

15 parameters
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Parameters: Spectral

Periodicity and globally oriented structure is best captured by frequency-domain
measures (Francos, ’93).

Can be captured by autocorrelation measurements (included in most texture
models).

In our model: central 7×7 region of the autocorrelation of each subband pro-
vides a crude measure of spectral content within each subband.

125 parameters
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Parameters: Magnitude Correlation

Coefficient magnitudes are correlated both spatially and across bands. We cap-
ture this with local autocorrelation and cross-correlation measurements.

472 parameters
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Parameters: Phase Correlation

Phases of complex responses at adjacent scales are aligned near image “fea-
tures”.

We capture this using a novel measure of relative phase:

φ( f ,c) =
c2 · f ∗

|c|
,

where f is a fine-scale coefficient, c is a coarse-scale coefficient at the same
location.

96 parameters

Total parameters: 708
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Phase Correlation Example

input
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Implementation

(high)

(low)

(mid)
build
complex
steerable
pyramid

impose
autoCorr

impose subband
stats & reconstruct
(coarse-to-fine)

impose
variance

Gaussian
noise

+

impose
skew/kurt impose

pixel
statistics

synthetic
texture

Each statistic, φk(~I), is imposed by gradient projection:

~I′ =~I +λk
~∇φk(I), s.t. φk(~I) = mk,

where mk are the parameter values estimated from the example texture.
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Example Synthesis Sequence

Initial 1 4 64

We cannot prove convergence. But in practice, algorithm converges rapidly
(typical: 50 iterations).

Run time: 256×256 image takes roughly 20 minutes (500 Mhz Pentium work-
station, matlab code)
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Examples: Artificial
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Examples: Photographic, Quasi-periodic
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Examples: Photographic, Aperiodic
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Examples: Photographic, Structured
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Examples: Color

Color is incorporated by transforming to YIQ space, and including cross-band
magnitude correlations in the parameterization.
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Examples: Non-textures?
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Necessity: Marginal Statistics

original with without

Needed for proper distribution of intensity values (at each scale).
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Necessity: Autocorrelation

original with without

Needed for capturing periodicity and global orientation.
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Necessity: Magnitude Correlation

original with without

Needed for capturing periodicity local structure.
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Necessity: Relative Phase

original with without

Needed for capturing details of local structure (edges vs. lines), and shading.
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Julesz Counter-Examples

Examples with identical 3rd-order pixel statistics

Left: Julesz ’78; Right: Yellott ’93
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Spatial Extrapolation

Modification: incorporate an additional projection operation in the synthesis
loop, replacing central pixels by those of the original.
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Scale Extrapolation

Modification: incorporate an additional projection operation in the synthesis
loop, replacing coarse-resolution coefficients by those of the original.
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Texture Mixtures

Modification: choose parameter vector that that is the average of those associ-
ated with two example textures.
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Conclusions

• A framework for texture modeling, based on that originally proposed by
Julesz

• New texture model:

– based on biologically-inspired statistical measurements

– includes methodology for testing

– provides heuristic methodology for refinement

– can be applied to a wide range of problems

Further information: http://www.cns.nyu.edu/∼lcv/texture
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To Do

• Adaptive front-end transformation (e.g., Zhu et al ’96, Manduchi & Portilla
’99)

• Eliminate redundancy of parameterization

• Applications: compression, super-resolution, texture interpolation, texture
painting...
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