Derivation of a Cortical Normalization Model from the Statistics of Natural Images

Eero Simoncelli
Odelia Schwartz

Center for Neural Science
New York University
Introduction

Hypothesis: Early sensory processes self-organize in response to input signal statistics (e.g., Barlow, 1961).

- **Grand goal:** Ecologically motivated model for early cortical sensory processing.
- **Restricted problem:** Can we “derive” a functional model for neurons in primary visual cortex (V1) from the statistics of natural images?
- **Assumption:** Neural outputs should be statistically independent.
With a proper linear basis:

- “Optimal” basis functions are localized and oriented (e.g., Olshausen/Field, 1996; Bell/Sejnowski, 1997)
- Responses are uncorrelated
- Responses are non-Gaussian (e.g., Field, 1987)
Consider joint statistics:

- Linear responses are uncorrelated, but are not independent.
- Specifically, rectified responses are strongly correlated.
Image Statistics through a Normalization Model

- Divisive normalization increases independence
- Proper weighting of normalizing signals can be determined from statistical measurements
Normalization Neighborhood

- Normalization by *weighted* linear combination of other neurons
- Weights chosen least-squares optimal, based on image statistics
- Weights govern non-specific suppression behaviors
Methods

- Model:
 1. Linear basis: orthonormal multi-scale (wavelets)
 2. “Neuron”: vertical, optimal spatial frequency 0.125 cycle / pixel
 3. Neighborhood: 2 scales, 3 orientations, 65x65 pixels
 4. Normalization weights: optimized for statistics of 3 images:

- For each stimulus:
 1. Compute linear responses of full neighborhood
 2. Square
 3. Divide chosen neuron response by weighted combination of squared neighbor responses.
Parallel Surround Suppression

- Data from Cavanaugh, Bair and Movshon, 1997.
Perpendicularly Surround Suppression

- Data from Cavanaugh, Bair and Movshon, 1997.
Surround Orientation

- Data from Cavanaugh, Bair and Movshon, 1997.
Surround Spatial Frequency

- Data from Müller, Krauskopf, & Lennie (unpublished).
Surround Proximity

- Data from Cavanaugh, Bair and Movshon, 1997.
Conclusions

Image statistics can be used to derive a *parameter-free* model for early visual processing.

- **Statistics**
 - Independence: Is it a reasonable goal?
 - Basis: What happens in a redundant (overcomplete) basis?
 - Specialization: are some neurons optimized for image subclasses?

- **Time**
 - Implementation: feedback and temporal dynamics
 - Motion: Direction-selectivity / image sequences
 - Plasticity: can normalization weights be modified?