Gradient, STEM, and Regression Models for Motion Perception: Relationships and Extensions

Eero P. Simoncelli
and
Edward H. Adelson

MIT Media Laboratory
Cambridge, MA
Outline

- Three seemingly unrelated standard techniques for estimating motion.
- Similarity of these techniques.
- Failure of these techniques to detect or represent multiple motions.
- A simple extension that detects multiple motions.
Spatio-temporal Energy Models

- Concept: motion is orientation in "space-time".
 \[f_r, f_i, f_s \]

- Measurements: convolution with tuned filters.
 \[R = f_r * I, \quad L = f_i * I, \quad S = f_s * I \]

- Computation of opponent "motion energy" from quadratic combinations of filter outputs:
 \[E = R^2 - L^2 \]
Gradient techniques

- Concept: intensity conservation. Image approximated by a translating ramp.
 \[I_x \dot{v} + I_t = 0 \]

 \[I_x = \frac{dI}{dx}, \quad I_t = \frac{dI}{dt} \]

- Least squares velocity: computed by blurring quadratic combinations of measurements.
 \[\dot{v} = \frac{\sum I_x I_t}{\sum I_x^2} \]
Spatio-temporal Frequency Regression

- Concept: Fourier transform of a translating image lies on a line.

- Measurements: use Gabor-like filters to estimate spectral content.

- Velocity: slope of best-fitting line.
STEM: common form

- Choose filters that are directional derivatives of prefilter, g:

 \[f_r = g_x + g_t \]
 \[f_l = g_x - g_t \]
 \[f_s = g_x \]

- Now can compute v from opponent energy:

 \[R^2 - L^2 = (g_x \ast I) (g_t \ast I) = I_x I_t \]
 \[v = \frac{\Sigma (R^2 - L^2)}{\Sigma S^2} \]
Gradient: common form

- Derivatives are computed by convolving with two filters:
 \[I_x = g_x \ast I, \quad I_t = g_t \ast I \]

 ![Convolution filters](image)

 where \(g \) is a (lowpass) interpolation prefilter.

- As with STEM, \(R, S, \) and \(L \) may be computed from space-time derivatives:
 \[
 R^2 - L^2 = I_x I_t \\
 v = \Sigma (R^2 - L^2) / \Sigma S^2
 \]
Regression: common form

• Compute linear regression on the prefiltered image spectrum:

\[E(v) = \sum (v \omega_x + \omega_t)^2 | \tilde{I}|^2 \]
\[= \sum | v \omega_x \tilde{I} + \omega_t \tilde{I} |^2 \]

• Use Parseval's Theorem to switch to space-time domain:

\[E(v) = \sum (v I_x + I_t)^2 \]
\[\nu_{\text{min}} = \sum I_x I_t / \sum I_x^2 \]

• As with gradient solution, can write as opponent energy computation:

\[v = \sum (R^2 - L^2) / \sum S^2 \]
All Three Techniques . . .

• ... are fundamentally the same when considered as linear least-squares velocity estimators with suitable choice of filters.

• ... are based on local linear measurements (convolutions) followed by non-linear (quadratic) velocity computation.

• ... can be extended to compute physiologically plausible distributed velocity representations (ARVO-90).

• ... are designed to compute single motions:

Information about multiple motions is discarded at the measurement stage!
Multiple Motions

- Three Example Cases:
 - Occluding contours.
 - Non-translational flow: (e.g. expansion, contraction, rotation).
 - Transparency.

- Comments:
 - Occur frequently in natural scenes.
 - Provide important information about depth ordering, approach/withdrawal, material properties, etc.
Detecting Multiple Motions

• One additional linear measurement:

\[A = f_{\text{total}} \times I \]

• To determine if there are multiple motions, compare total energy to derivative energy:

\[E_{\text{total}} = A^2 \]

\[E_{\text{derivative}} = I_x^2 + I_t^2 = R^2 + L^2 \]
Results

• One-dimensional test image:

[Image Here]

• Multiple motion detector output:

[Image Here]
Conclusions

- Gradient, Spatio-temporal Energy, and Regression models for early motion processing are very similar (identical with proper choice of parameters).

- All three of these techniques (in their common forms) cannot detect or represent multiple motions.

- There are simple extensions to these techniques which allow detection of multiple motions.