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SUMMARY

The desire to seek new and unfamiliar experiences is
a fundamental behavioral tendency in humans and
other species. In economic decision making, novelty
seeking is often rational, insofar as uncertain options
may prove valuable and advantageous in the long
run. Here, we show that, even when the degree of
perceptual familiarity of an option is unrelated to
choice outcome, novelty nevertheless drives choice
behavior. Using functional magnetic resonance im-
aging (fMRI), we show that this behavior is specifi-
cally associated with striatal activity, in a manner
consistent with computational accounts of decision
making under uncertainty. Furthermore, this activity
predicts interindividual differences in susceptibility
to novelty. These data indicate that the brain uses
perceptual novelty to approximate choice uncer-
tainty in decision making, which in certain contexts
gives rise to a newly identified and quantifiable
source of human irrationality.

INTRODUCTION

Humans and other animals are naturally inquisitive and, in many

circumstances, have a characteristic tendency to explore novel

and unfamiliar stimuli and environments (Daffner et al., 1998; En-

naceur and Delacour, 1988; Hughes, 2007). Indeed, this ten-

dency is exploited in marketing strategies whereby manufac-

turers of everyday consumable goods regularly remarket

identical, or near-identical, products with novel packaging or ad-

vertising (Steenkamp and Gielens, 2003). Consumers’ vulnera-

bility to such manipulation may reflect the fact that, in naturalistic

environments, novelty seeking can be strongly adaptive: be-

cause unfamiliarity normally tends to imply uncertainty, subse-

quent exploration carries with it the opportunity to discover un-

known and potentially valuable outcomes.

Economic and computational models have formalized the

adaptive value of information gathering, and, equally important,

how this can be traded off against the substantial costs and risks

entailed. A fully rational solution (in the sense of maximizing ex-
pected utility; e.g., Sanfey et al., 2006) quantifies the value of

exploration in terms of uncertainty reduction and the beneficial

effects of this knowledge on future choices (Gittins and Jones,

1974). In practice, this optimal approach is computationally labo-

rious, and researchers in robotics and computer science have

often employed a shortcut that encourages exploratory behavior

in artificial agents by assigning a fictive ‘‘bonus’’ reward value to

novel options (Brafman and Tennenholtz, 2003; Gittins and

Jones, 1974; Kaelbling, 1993; Ng et al., 1999), that is, by treating

novel stimuli as themselves rewarding. Here, we investigate the

possibility that human brains employ a similar heuristic. Note that

insofar as novelty does not perfectly signal an unknown option—

as with the example of repackaged goods—this approach de-

parts from that prescribed by a rational analysis, for instance

by exploring unnecessarily.

The idea that novelty engages brain systems involved in appe-

titive reinforcement learning is supported by evidence that novel

stimuli excite dopaminergic neurons in animals and also activate

putatively dopaminergic areas in humans (Bunzeck and Duzel,

2006; Horvitz, 2000; Schultz, 1998). Computational theorists

have interpreted these findings in terms of novelty bonuses (Ka-

kade and Dayan, 2002). Furthermore, in a novelty paradigm

modeled after classical conditioning procedures (Wittmann

et al., 2007), a familiar cue trained to predict subsequent novelty

itself activated midbrain, a response pattern that is reminiscent

of dopaminergic responses to cues predicting reward as well

as being characteristic of reinforcement learning (Dayan and Bal-

leine, 2002; Schultz and Dickinson, 2000).

These data suggest that stimulus novelty might enhance ex-

ploratory choices in humans through engagement of circuits

within a putative reward system, which encompasses midbrain,

striatum, amygdala, orbitofrontal cortex, and mesial prefrontal

cortex (cf. Knutson and Cooper, 2005). Nevertheless, despite

this strong suggestive evidence, no functional links have been

demonstrated between a biological ‘‘novelty bonus’’ signal and

actual novelty-seeking behavior.

To investigate these links, we studied novelty-related decision

making and associated brain activity in 15 healthy adults using

functional magnetic resonance brain imaging (fMRI). We sought

to test a computational hypothesis that brain systems associ-

ated with choice behavior, which are well described within

reinforcement learning models, use novelty bonuses to encour-

age exploration of unfamiliar options. Participants performed
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Figure 1. Experimental Design

Following a familiarization phase, participants were shown four pictures on each trial and asked to choose one. Both familiarized and novel pictures were pre-

sented at randomized locations that changed on each trial. Each picture was repeated for an average of 20 trials and then replaced. Participants were informed

that each picture had been assigned a unique probability of winning £1 that would not change as long as that picture was repeated. They were given feedback at

the end of each trial indicating whether they had won or received nothing.
a ‘‘four-armed bandit’’ choice task, in which the options were

represented by four simultaneously presented landscape (‘‘post-

card’’) images per trial (Figure 1). Each image, repeated over an

average of 20 trials, was associated with a random, constant

probability of winning money (one pound sterling). It was then

replaced with another image with a new payoff probability.

Subjects could only discover an option’s reward probability by

repeatedly sampling it, inducing a classic exploration/exploita-

tion dilemma for subjects striving to maximize their earnings.

Critically, we manipulated the novelty of images independently

of reward value and uncertainty by familiarizing the subjects

with half of the pictures (though not their associated reward

probabilities) in a separate task before the scanning session.

The images then used in the choice task were drawn pseudoran-

domly from the pre-exposed and novel sets; the associated pay-

off probabilities were also allocated pseudorandomly but with

the same distribution for each set. This design ensures that novel

options are no more uncertain, nor on average more valuable,

than familiarized ones, allowing us specifically to examine a

hypothesized mechanism of exploration directed toward per-

ceptual novelty.

RESULTS

Behavioral Novelty Preference
We fit participants’ choices using a temporal-difference learning

model (Sutton and Barto, 1998) similar to those used to account

for choice behavior and neural signals in previous studies (Daw

et al., 2006; Li et al., 2006; Tanaka et al., 2004). The model as-

sumes that participants learn the value of each option and direct

their choices toward those options predicted to be most valu-

able. In similar algorithms in artificial intelligence, novelty bo-

nuses are often incorporated by ‘‘optimistically’’ initializing the

starting value of new options to a higher level, encouraging ex-

ploration to determine their true value (Brafman and Tennen-

holtz, 2003; Ng et al., 1999).

To test for such bonuses, we included two parameters, repre-

senting the initial value attributed to novel and prefamiliarized

pictures. The best-fitting parameters over subjects are shown

in Table 1. We first tested whether this model accounted better

for the subjects’ choices than a simpler model that initialized

both sets of pictures with the best shared initial value; it did (likeli-
968 Neuron 58, 967–973, June 26, 2008 ª2008 Elsevier Inc.
hood ratio test, 15 d.f., p < 0.005). Adopting the model with sep-

arate initial values, we found that novelty significantly enhanced

exploration, as evidenced by the fact that, for the best-fitting

parameters, the average expected value attributed to novel

pictures (Qn) on their first introduction was significantly higher

than the corresponding expected value for familiar pictures (Qf;

mean Qn = 0.41 ± 0.076 pounds over subjects; mean Qf = 0.37 ±

0.071 pounds; paired t test p = 0.01). Put simply, this quantified

the monetary value of novelty at approximately 4 pence.

Average reaction time (RT) for all choices was 1458 ± 80 ms.

RTs did not differ between novel and familiar stimuli chosen on

the trial when they were first introduced (1692 ± 110 ms and

1774 ± 126 ms, respectively). Scores on the novelty-seeking

subscale of the TPQ ranged from 24% to 69% of the maximal

score (mean = 52% ± SE 3.4). Individual participants’ novelty bo-

nuses, measured as a fraction relative to Qf, i.e., (Qn - Qf)/Qf,

ranged from �0.17 to 0.53 (mean = 0.12 ± SE 0.05).

Striatal Reward and Novelty Signals
In terms of brain activity, we hypothesized that novelty bonuses

would affect ‘‘prediction error’’ signals believed to influence

learned value prediction and choice (Kakade and Dayan, 2002;

McClure et al., 2003; O’Doherty et al., 2003; Pessiglione et al.,

2006; Schultz, 1998; Tobler et al., 2006). To formally test this in

our neuroimaging data (using SPM5), we ran two versions of

the model to generate trial-by-trial prediction error signals for

each subject. The first version was the novelty bonus model de-

scribed above, while the second model applied the initial value of

familiar stimuli to all stimuli, thus eliminating any impact of a nov-

elty bonus. This second version was used to identify brain re-

gions responding to a standard prediction error, and the

Table 1. Parameter Estimates for the Behavioral Model, Shown

as Mean (Over Subjects) ± 1 SE

Learning rate n 0.23 ± 0.038

Softmax inv. temperature b 8.5 ± 1.2

Initial value, familiarized Qf 0.37 ± 0.071

Initial value, novel Qn 0.41 ± 0.076

Due to poor identification of b and n, one subject is omitted from these

averages.
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Figure 2. Ventral Striatal Response to

Prediction Error and Novelty

Peak coordinates are given in MNI space on all im-

ages. Color bars indicate T values.

(A) Activation in right ventral striatum correlated

significantly with reward prediction errors gener-

ated by the standard TD model (p < 0.001 uncor-

rected, p < 0.05 SVC, cluster > 5 voxels).

(B) Activation in right ventral striatum correlated

significantly with additional prediction error due

to inclusion of a novelty bonus (p < 0.001 uncor-

rected, p < 0.05 SVC, cluster > 5 voxels).

(C) Significant overlap between activation in right

ventral striatum for the novelty bonus (see [B])

and activation obtained for standard model (see

[A]) derived by inclusively masking (B) with (A)

(p < 0.005, uncorrected, for both contrasts, clus-

ter > 5 voxels).

(D) Striatal activation time courses calculated for

the first two trials a novel stimulus is chosen minus

the first two choices of familiar stimuli, shown

for the peak voxel correlating with the novelty

bonus (MNI coordinates: 14, 20, �10). Trials are

aligned by the time of reward outcome at 6.5 s;

the average stimulus onset time is also indicated.

Error bars indicate SEM.
difference between both prediction errors was then used to char-

acterize areas in which neural activity was additionally correlated

with a further error due to the novelty bonus. If neuronal predic-

tion error activity is influenced by novelty bonuses, then it follows

that it should correlate in the same brain area with both signals.

We confined our analyses to ventral striatum and midbrain areas

corresponding to our prior hypothesis (Kakade and Dayan,

2002).

Anticipation of reward has been shown to be associated with

striatal activity in both active and passive tasks (Aron et al., 2004;

Berns et al., 2001; Delgado, 2007; Knutson et al., 2000; Pagnoni

et al., 2002; Samejima et al., 2005; Tanaka et al., 2004; Yacubian

et al., 2007), a response that is correlated with prediction errors

determined in temporal-difference learning models (Daw et al.,

2006; McClure et al., 2003; O’Doherty et al., 2003; Rodriguez

et al., 2006). Consistent with these findings, the standard predic-

tion error generated by assuming identical initial expected values

for novel and familiar stimuli correlated with activity in the ventral

striatum (Figure 2A). Additionally, the component of prediction

error due to the novelty bonus also correlated significantly with

ventral striatal activity (Figure 2B). Figure 2C shows the signifi-

cant overlap in the spatial expression of both activation maps.

This finding is consistent with the computational model, which

predicts that the full error signal is the sum of both components.

Time courses from the peak voxel correlating with the bonus sig-

nal (Figure 2D) illustrate that the response to choice of novel (rel-

ative to familiarized) pictures has a biphasic shape. Note that

a similar pattern is seen in the responses of dopaminergic neu-

rons to novel stimuli in tasks not involving reward (Horvitz
et al., 1997; Kakade and Dayan, 2002; Schultz, 1998) and is char-

acteristic of the novelty bonus scheme in prediction error

models, because more optimistic predictions lead to more neg-

ative prediction error when the actual reward is revealed.

Measures of Individual Novelty Seeking
Finally, we reasoned that, if the identified striatal neural signals

are indeed involved in novelty-seeking behavior, then we would

also expect them to track interparticipant variability in this trait.

Accordingly, we investigated whether the strength of the neural

novelty bonus correlated with two behavioral measures of indi-

vidual differences in novelty seeking. First, participants with

higher novelty bonuses determined through model fits to their

behavior in our task showed stronger novelty-bonus-related ac-

tivation of the right ventral striatum and midbrain than did partic-

ipants with lower behavioral novelty bonuses (Figure 3). By

masking this analysis anatomically within the area activated on

average by the novelty bonus in the group (Figure 2B), we verified

that the striatal modulation of this activation indeed lies within the

same region. Also, individual scores on the novelty-seeking sub-

scale of Cloninger’s Tridimensional Personality Questionnaire

(TPQ) correlated with the degree of novelty-bonus activity in

the left ventral striatum (see Figure S1 available online). These

modulations (and the midbrain correlation with novelty seeking

from the choice fits) lie outside the mask generated from the

novelty-bonus group average but within areas that are known

to be involved in reward and novelty processing (Wittmann

et al., 2007, 2005). As predicted, there was no correlation of

striatal or midbrain novelty signals with the harm-avoidance
Neuron 58, 967–973, June 26, 2008 ª2008 Elsevier Inc. 969
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Figure 3. Individual Variation in Novelty Response

Areas in which the level of activation by novelty bonus signal correlated

significantly with individual subject measures of novelty seeking (p <

0.005 uncorrected, p < 0.05 SVC, cluster > 5 voxels). Peak coordinates

are given in MNI space on all images. Color bars indicate T values.

(A) Activation in right ventral striatum correlating with individual novelty

seeking as measured in the behavioral task. Image is masked by ‘‘novelty

bonus’’ contrast image from Figure 2B.

(B) Peak beta values from (A) plotted against individual novelty-seeking

measures.

(C) Activation in right substantia nigra/ventral tegmental area correlating

with individual novelty seeking as measured in the behavioral task, super-

imposed on a magnetization transfer image for better visualization of the

substantia nigra (Bunzeck and Duzel, 2006). Image is masked by ‘‘novelty

bonus’’ contrast image from Figure 2B. Substantia nigra is indicated by

green circles.

(D) Peak beta values from (C) plotted against individual novelty-seeking

measures.
and reward-dependence subscales of the TPQ and no correla-

tion of activations for the base component of the prediction error

with any of the novelty-seeking measures.

DISCUSSION

Our data show that novelty enhances behavioral exploration in

humans in the context of an appetitive reinforcement learning

task. Participants’ actual choices were best captured in a model

that introduced higher initial values for novel stimuli than for pre-

familiarized stimuli. This computationally defined novelty bonus

was associated with activation of ventral striatum, suggesting

that exploration of novelty shares properties with reward pro-

cessing. Specifically, the observed overlap of novelty-related

and reward-related neural components of prediction error sig-

nals supports this interpretation. The observation that activation

by novelty bonuses in both striatal and midbrain areas correlated

with individual novelty-seeking scores points to a functional con-

tribution of the mesolimbic system to novelty-related enhance-

ment of choice behavior.

All of these findings are consistent with a specific computa-

tional and neural mechanism (Kakade and Dayan, 2002), namely

that a dopaminergic prediction error signal for reinforcement

learning reports a novelty bonus encouraging exploration.

Such a model had been originally advanced to explain dopami-

nergic neuron responses to novel stimuli in passive, nondecision

tasks (Horvitz et al., 1997; Schultz, 1998), a response pattern that

has also been suggested in humans (Bunzeck and Duzel, 2006;

Wittmann et al., 2007). By linking a bonus-related neural signal to

actual novelty-seeking behavior, the present study provides ev-

idence to support a model of dopamine-driven novelty explora-

tion. While it is not possible to identify definitively the neural

source underlying fMRI signals, recent results support an infer-

ence that striatal prediction error signals have a dopaminergic

basis, because they are modulated by dopaminergic drugs (Pes-

siglione et al., 2006; Yacubian et al., 2006). Also, given that fMRI
970 Neuron 58, 967–973, June 26, 2008 ª2008 Elsevier Inc.
does not allow inference of causality from correlations of brain

activity with behavior, alternative explanations for our findings

are possible. For instance, areas outside of the mesolimbic sys-

tem could mediate the exploration effect of novelty, and the stria-

tal activations might then reflect these choices. However, in di-

rectly contrasting exploratory to exploitative choices (as in

Daw et al., 2006), we did not find novelty- or exploration-related

activity in frontopolar cortex, a candidate region outside the mid-

brain (Daw et al., 2006).

Computational models stress the necessity to overcome ex-

ploitative tendencies in order to optimize decision making under

uncertainty (Gittins and Jones, 1974). One solution to this is the

introduction of an exploration bonus to guide decisions toward

uncertain options (Gittins and Jones, 1974; Kaelbling, 1993).

Here, we provide evidence for a specific version of such a bonus

that uses novelty as a signal for uncertainty (Brafman and Ten-

nenholtz, 2003; Kakade and Dayan, 2002; Ng et al., 1999). Nota-

bly, a bonus directed toward uncertainty per se was not evident,

either neurally or behaviorally, in a previous study of gambling in-

volving an n-armed bandit task, in which uncertainty arose due to

a gradual change in the unknown payoffs but without accompa-

nying perceptual novelty (Daw et al., 2006). The differences be-

tween the tasks may explain why, in the previous study but not

the present one, exploratory choices were found to be accompa-

nied by BOLD activity in frontopolar cortex, a region broadly as-

sociated with cognitive control. Psychologically, exploration in

a familiar context, as in the earlier study, requires overriding

not only a tendency to exploit known highly rewarding stimuli

but also a tendency to avoid previously low-valued stimuli. How-

ever, novel options, like those used here, may not only be attrac-

tive due to a novelty bonus, but crucially have no history of neg-

ative feedback, perhaps reducing the demand for cognitive

control to encourage their exploration.

Computationally, the present findings point to the likelihood

that humans use perceptual novelty as a substitute for true

choice uncertainty in directing exploration. This would explain
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why they had a greater tendency to explore perceptually novel

options even when no more uncertain and also why our previous

study (Daw et al., 2006) did not detect exploration directed to-

ward uncertainty without perceptual novelty. Such a scheme is

common in artificial intelligence (Brafman and Tennenholtz,

2003; Ng et al., 1999), because it is so easily implemented by op-

timistic initialization. Additionally, it seems to be a plausible neu-

ral shortcut, because novelty is likely to be a reliable signal for un-

certainty in the natural world. Physiologically, this appears to be

implemented by using the same system to process the motiva-

tional aspects of standard reward.

To be sure, on a rational analysis, the degree to which explo-

ration is net beneficial depends on a number of circumstantial

factors, including for instance how dangerous unexplored alter-

natives are likely to be. Computationally, this points to an impor-

tant requirement that the degree of novelty seeking needs to be

carefully tuned to appropriate levels (there are some proposals

for the neural substrates for similar ‘‘metalearning’’ processes;

Doya, 2002). Behaviorally, this point resonates with the fact

that animals’ novelty preferences exhibit a great deal of subtle

contextual sensitivity (Hughes, 2007). Rats, for instance, avoid

novel foods (presumably due to serious risk of illness), and

fear-promoting stimuli such as electric shocks can also promote

novelty avoidance on some tasks. Such phenomena are not in-

consistent with our account of novelty seeking in the present

(safe) context; indeed, we would infer that our approach could

easily be extended to quantify the effects of factors such as fear.

Finally, while the novelty bonus may be a useful and computa-

tionally efficient heuristic in naturalistic environments, it clearly

has a downside. In humans, increased novelty seeking is associ-

ated with gambling and addiction (Hiroi and Agatsuma, 2005;

Spinella, 2003), disorders that are also closely linked to dopami-

nergic pathophysiology (Chau et al., 2004; Reuter et al., 2005).

More generally, the substitution of perceptual novelty for choice

uncertainty represents a distinct, albeit slight, departure from ra-

tional choice that, as in our task, introduces the danger of being

sold old wine in a new skin.

EXPERIMENTAL PROCEDURES

Participants

Twenty healthy adults participated in the experiment, four of which had to be

excluded for technical problems with stimulus presentation and scanner se-

quence software and another for electing to leave the experiment before it

was complete. Fifteen right-handed participants (mean age, 26.1 ± 1.2; seven

male) remained in the analysis. All participants gave written informed consent

to participate, and the study was in accordance with the guidelines of the local

ethics committee.

Behavioral Paradigm

Familiarization Procedure

Prior to scanning, participants underwent two familiarization sessions that in-

cluded 32 pictures from a set of 64 grayscale landscape photographs with nor-

malized luminance and contrast. Each picture was presented four times per

session in randomized order. In the first session, participants were asked to

look at the pictures attentively without responding, while in the second session

they were asked to respond to each picture per button press, indicating

whether there was a building in the picture.

Prescanning

Participants received written instructions on the decision-making task, includ-

ing the information that they would receive 20% of their winnings at the end of
the experiment. They also completed a short button response training to en-

sure that their responses reflected their choices and a short training version

of the task (Figure 1).

Scanning Task

Participants engaged in three sessions of 17.5 min length, each containing 100

trials of 8.5–11.5 s duration. On each trial, participants were presented with

four pictures (visible on a screen reflected in a head coil mirror) and selected

one depending on its location on the screen (top left, top right, bottom left, bot-

tom right), using a button box with their right hand. If they did not choose a pic-

ture within 3.5 s, the feedback ‘‘No response’’ was presented on the screen for

6.5 s to signal an invalid trial. On valid trials, a frame was shown around the

chosen picture, and feedback (£1 on a green square background or £0 on

a blue square background) was presented 3 s later, superimposed on the cho-

sen picture. A variable fixation phase (1–4 s) followed. Participants received ei-

ther £1 or nothing, depending on the reward probability associated with the

chosen picture. Each picture had been assigned a random reward probability

(mean value: 0.33) that was not changed in the course of the experiment.

Each picture was repeated for an average of 20 trials (range: 5–35). The lo-

cation of pictures was changed randomly on each trial, so that a decision could

not be based on habitual responding with the same finger. In 20% of trials, one

of the pictures was exchanged for another picture that had either been famil-

iarized or was novel (=30 switches to either category in total).

After scanning, participants completed Cloninger’s Tridimensional Person-

ality Questionnaire (Cloninger et al., 1991), which tests for personality differ-

ences in three dimensions defined as novelty seeking, reward dependence,

and harm avoidance.

Behavioral Analysis

We characterized each subject’s trial-to-trial choices using a temporal-differ-

ence learning model with four free parameters. The model assumes that the

probability of choosing picture c (out of the four available options) on trial t is

PðcðtÞ= c; tÞfexpðb,Qðc; tÞÞ; that is, softmax in Qðc; tÞ, the presumed value

of the option on that trial. The inverse temperature parameter b controls the ex-

clusivity with which choices are directed toward higher-valued options.

According to the model, the values Q were learned from experience using

a standard delta rule, QðcðtÞ; t + 1Þ= QðcðtÞ; tÞ+ n,dðtÞ. Here, the value of the

chosen option is updated according to the error signal dðtÞ= rðtÞ � QðcðtÞ; tÞ,
which measures the mismatch between the reward delivered, rðtÞ (i.e., 1 or 0)

and the value expected. n is a learning rate parameter (values for options not

chosen were not changed).

The initial values of each picture, Qðc; 0Þ, are set to Qf (a free parameter) if

the picture had been pre-exposed during the familiarization phase, and to pa-

rameter Qn if not. The difference Qn � Qf therefore confers differential initial

value for non-pre-exposed pictures when first presented; if this difference is

positive (a ‘‘novelty bonus’’; Kakade and Dayan, 2002; Ng et al., 1999), it favors

the choice of novel items when they first become available.

We optimized the parameters for each subject individually to maximize the

likelihood of his or her observed sequence of choices,
Q

t
PðcðtÞ; tÞ, where

the underlying values Qðc; tÞ were computed using the model and the preced-

ing sequence of actual observed choices cð1.t � 1Þ and rewards rð1.t � 1Þ.
We also, separately, fit a nested model in with the initial values constrained to

be equal, i.e., Qn = Qf , and compared the two models on the entire data set

(pooled over all subjects) using a likelihood ratio test.

The best-fitting estimates for each parameter were then treated as a random

variable instantiated for each subject (equivalently, we treated all parameters

as random effects and estimated the moments of the group distribution using

the summary statistics procedure [Holmes and Friston, 1998]). Because of

a degeneracy in the model in some regimes (specifically, when n is very small

and consequently the Qs are consistently very far from asymptote), it was not

possible to obtain reliable parameter estimates for one subject, who was

therefore excluded from the estimates of the average parameters. Because

the degeneracy manifests through poorly constrained but at the optimum ab-

errantly large and small (respectively) values of b and n, the exclusion or inclu-

sion of this subject had no appreciable effect on the reported hypothesis tests

involving Qf and Qn, or on the model comparison.

To generate model-based regressors for the imaging analysis, the learning

model was simulated using each subject’s actual sequence of rewards and
Neuron 58, 967–973, June 26, 2008 ª2008 Elsevier Inc. 971
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choices to produce per-subject, per-trial estimates of the values Qðc; tÞ and er-

ror signals dðtÞ. The free parameters were taken to be top-level mean estimates

from the random-effects model (i.e., the mean of the individual parameter es-

timates; this regularizes the individual estimates, which we have previously

found to be noisy for these purposes, e.g., Daw et al., 2006).

To study the effects of the novelty bonus on the prediction error, we re-

peated the simulations, but taking Qn = Qf —that is, eliminating any bonus for

non-pre-exposed pictures. This generated a second sequence of values

Qbaseðc; tÞ and prediction errors dbaseðtÞ, reflecting baseline values without

the additional effects of the novelty bonus. For the purpose of regression,

we decomposed the values Qðc; tÞ and dðtÞ into the sums

Qbaseðc; tÞ+ Qaddðc; tÞ and dbaseðtÞ+ daddðtÞ of the baseline values plus addi-

tional increments for the effects of the bonus. We computed

QaddðtÞ= QðtÞ �QbaseðtÞ and daddðtÞ= dðtÞ � dbaseðtÞ. Together with a standard

general linear analysis, this additive decomposition allowed us to study the

contribution of baseline and bonus-related components of the prediction error

signal to BOLD activity and to test the hypothesis that both components sum-

mate to produce the full error signal. Note that the bonus has a characteristic

pattern of effects on the values and errors, which is not wholly confined (for in-

stance) only to trials when a novel picture is first offered. For instance, if Qn>Qf

then Qadd>0 and dadd<0 whenever a nonfamiliarized option is chosen.

fMRI Procedures

The functional imaging was conducted using a 1.5 Tesla Siemens Sonata MRI

scanner to acquire gradient echo T2*-weighted echo-planar images (EPI) with

blood oxygenation level dependent (BOLD) contrast. We employed a special

sequence designed to optimize functional sensitivity in OFC and medial tem-

poral lobes. This consisted of tilted acquisition in an oblique orientation at 30*

to the AC-PC line, as well as application of a preparation pulse with a duration

of 1 ms and amplitude of �2 mT/m in the slice selection direction. The se-

quence enabled 36 axial slices of 3 mm thickness and 3 mm in-plane resolution

to be acquired with a repetition time (TR) of 3.24 s. Coverage was obtained

from the base of the orbitofrontal cortex and medial temporal lobes to the su-

perior border of the dorsal anterior cingulate cortex. A field map using a double

echo FLASH sequence (64 oblique transverse slices, slice thickness = 2 mm,

gap between slices = 1 mm, TR = 1170 ms, a = 90�, short TE = 10 ms, long

TE = 14.76 ms, BW = 260 Hz/pixel, PE direction anterior-posterior, FOV =

192 3 192 mm2, matrix size 64 3 64, flow compensation) was recorded for

distortion correction of the acquired EPI images. Participants were placed in

a light head restraint within the scanner to limit head movement during acqui-

sition. Functional imaging data were acquired in three separate 332 volume

runs. A T1-weighted structural image, local field maps, and an inversion recov-

ery EPI (IR-EPI) were also acquired for each subject. Scanning parameters

were the same as for the EPI sequence but with full brain coverage.

fMRI Analysis

Preprocessing and data analysis were performed using Statistical Parametric

Mapping software implemented in Matlab (SPM5; Wellcome Department of

Imaging Neuroscience, Institute of Neurology, London, UK). Using the Field-

Map toolbox (Hutton et al., 2002, 2004), field maps were estimated from the

phase difference between the images acquired at the short and long TE. The

EPI images were corrected for distortions based on the field map (Hutton

et al., 2002) and the interaction of motion and distortion using the Unwarp tool-

box (Andersson et al., 2001; Hutton et al., 2004). EPI images were then spatially

normalized to the Montreal Neurological Institute template by warping the sub-

ject’s anatomical IR-EPI to the SPM template and applying these parameters

to the functional images, transforming them into 2 3 2 3 2 mm sized voxels,

smoothed using an 8 mm Gaussian kernel.

For statistical analysis, the data were scaled voxel-by-voxel onto their global

mean and high-pass filtered. Each trial was modeled with impulse regressors

at two time points: the time of the presentation of the pictures, which was taken

to be the time of the decision, and the time of presentation of the outcome (3 s

after key press). These events were modulated by parametric regressors sim-

ulating the baseline prediction error signal and the additional component to the

error due to the novelty bonus. The baseline prediction error was defined as

QbaseðcðtÞ; tÞ at the time the pictures were presented on trial t (Morris et al.,
972 Neuron 58, 967–973, June 26, 2008 ª2008 Elsevier Inc.
2006) and as dbaseðtÞ at the time the outcome was revealed. The novelty bonus

contribution was modeled as QaddðcðtÞ; tÞ and daddðtÞ at the same time points.

These regressors were then convolved with the canonical hemodynamic re-

sponse function and its temporal derivative (Friston et al., 1998) and entered as

separate orthogonalized regressors into one regression analysis against each

subject’s fMRI data using SPM, allowing independent assessment of the acti-

vations correlating with each model’s predictions. The six scan-to-scan mo-

tion parameters produced during realignment were included as additional re-

gressors in the SPM analysis to account for residual effects of scan-to-scan

motion. To enable inference at the group level, the coefficient estimates for

the two model-based regressors from each individual subject were taken to al-

low second-level, random-effects group statistics to be computed. To inves-

tigate how individual variation in novelty seeking impacted bonus-related

BOLD activity, we included the normalized per-subject novelty bonus (Qn �
Qf)/Qf (computed using the individual estimates of these parameters from

the behavioral analysis) as a second-level regressor.

Results are reported in areas of interest at p < 0.001 uncorrected. The pre-

dicted activations in the ventral striatum were further tested using a spherical

small-volume correction (SVC) centered on the peak voxel, with a radius of

9 mm, corresponding to the 3.43 cm3 volume of the putamen (Anastasi

et al., 2006). All behavioral averages are given as mean values ± SE. To better

localize midbrain activity, the relevant activation maps were superimposed on

a mean image of 33 spatially normalized magnetization transfer (MT) images

acquired previously (Bunzeck and Duzel, 2006). On MT images, the substantia

nigra can be easily distinguished from surrounding structures (Eckert et al.,

2004).

To illustrate time courses, we conducted an additional regression analysis

on the voxel of peak activation for the bonus regressor using a flexible basis

set of 1 TR duration finite impulse responses. Impulses were aligned according

to the time of outcome reveal. Four trial types were modeled separately: the

first two choices of a novel image, the first two trials of a familiar image, and

(as effects of no interest) the remaining trials divided into two groups according

to win versus loss.

SUPPLEMENTAL DATA

The Supplemental Data for this article, which include tables and figures, can be

found online at http://www.neuron.org/cgi/content/full/58/6/967/DC1/.
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