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Abstract
Although reinforcement learning (RL) theories have been influential in characterizing the brain’s
mechanisms for reward-guided choice, the predominant temporal difference (TD) algorithm
cannot explain many flexible or goal-directed actions that have been demonstrated behaviorally.
We investigate such actions by contrasting an RL algorithm that is model-based, in that it relies on
learning a map or model of the task and planning within it, to traditional model-free TD learning.
To distinguish these approaches in humans, we used fMRI in a continuous spatial navigation task,
in which frequent changes to the layout of the maze forced subjects continually to relearn their
favored routes, thereby exposing the RL mechanisms employed. We sought evidence for the
neural substrates of such mechanisms by comparing choice behavior and BOLD signals to
decision variables extracted from simulations of either algorithm. Both choices and value-related
BOLD signals in striatum, though most often associated with TD learning, were better explained
by the model-based theory. Further, predecessor quantities for the model-based value computation
were correlated with BOLD signals in the medial temporal lobe and frontal cortex. These results
point to a significant extension of both the computational and anatomical substrates for RL in the
brain.
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2 Introduction
Employing past experience to guide future decisions is critical for survival, but a
longstanding question is how the brain represents this experience. A predominant theory is
temporal difference (TD) reinforcement learning (RL), which learns from reinforcement the
future reward value expected following an action (Sutton, 1988; Sutton and Barto, 1998).
Much evidence links such learning to spiking and BOLD signals in the nigrostriatal
dopamine system (Houk et al., 1994; Schultz et al., 1997; Berns et al., 2001; O’Doherty et
al., 2002; Pagnoni et al., 2002).

However, such mechanisms, which rely on repeating successful actions (Thorndike, 1911),
cannot explain flexible or novel action planning seen in tasks such as latent learning or
reinforcer devaluation (Tolman, 1948; Balleine and Dickinson, 1998). There are many
suggestions of such sophistication across species (Maguire et al., 1998; Hampton et al.,
2006; Pan et al., 2007), notably lesion results in rodent conditioning (Balleine et al., 2008)
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and navigation (Packard and McGaugh, 1996) suggesting that it might coexist in the brain
with simpler reinforcement mechanisms. Such behaviors are envisioned to arise from
considering the future consequences of an action, drawing on a learned cognitive map or
model of the environment (Thistlethwaite, 1951; Gallistel and Cramer, 1996). One candidate
computational formalization of these processes is model-based RL (Doya, 1999; Daw et al.,
2005; Johnson et al., 2007), which constructs the values of possible action trajectories
indirectly by simulating a learned model of the environment. This planning process contrasts
with model-free TD algorithms, which learn future values directly.

However, while there has been much work quantitatively investigating TD characterizations
of learning (O’Doherty et al., 2003; Seymour et al., 2004; O’Doherty et al., 2006; Lee et al.,
2004), much less research has analogously investigated the neural and computational
substrates for model-based learning and planning. One promising domain for such an
investigation is spatial navigation, which sparked early cognitive map work (Tolman, 1948)
and in which a distinction has been made between deliberate “place” learning and habitual
“response” behaviors (Blodgett and McCutchan, 1947) that may parallel the model-based vs.
TD distinction.

We thus used fMRI to investigate the neural substrates for model-based learning and
planning in humans navigating a virtual maze for money. This task had two key features that
we expected would encourage a model-based strategy: first, basic structure of a spatial
model is known a priori and need not have been learned; second, ongoing reconfiguration of
the maze promoted continuous learning and on-line planning of new routes (Daw et al.,
2005). These dynamic reconfigurations also generated discrepancies between hypothesized
model-based and model-free update mechanisms, allowing us to distinguish these strategies
over many trials and verify our hypothesis that behavior and value-related BOLD signals
were driven by model-based rather than TD mechanisms. Having done so, we employed this
computational characterization of the learning to begin to map the network supporting
model-based values, much as has been done for TD, by seeking neural correlates of learning
about the more elementary quantities from which model-based values are constructed.

3 Methods
Participants

Eighteen healthy, right-handed adults (10 female), 18 to 36 years of age performed the task
for payment while undergoing functional magnetic resonance imaging. All participants gave
informed consent and the study was approved by the New York University Committee on
Activities Involving Human Subjects.

Task
Subjects navigated a virtual 4 × 4 grid of rooms (designated as states s ∈ ) by making
choices between the available rooms adjoining the current location (Fig. 1A). Subjects
continuously viewed rendered images of a 3D representation of these rooms with a first-
person perspective from their current position. The display included boundary cues and
distal direction cues so that subjects could identify their position within the grid, as well as
any rooms ahead of them (within a 100° viewing angle). Each of the 24 pairs of adjoining
rooms was connected by a one-way door, which at any time was available for use in exactly
one direction between the rooms.

At each room, subjects chose between the available doors by pressing one of three keys with
their right hand so as either to move forward or to turn 90 degrees and move through the left
or right door. It was not possible to backtrack (i.e., to exit a room via the door from which it
was entered). We denote the cardinal directions of movement (N, E, S, W) as actions a ∈ ,
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where (due to one-way doors and the no-backtracking rule) on each particular trial, only a
subset A ⊂  of 1–3 directions can be selected. Once an acceptable choice was made,
subjects viewed an animation moving to the selected adjoining room. In order to encourage
planning of new routes, with a 10% probability at each step, but no more often than every 4
steps, a jump occurred in which a new room was selected at random from all 16 and instead
of arriving in their chosen room, subjects viewed an animation rising above the maze and
dropping into the new location.

Four rooms were designated as reward rooms, each with a corresponding fixed reward value
of 2 or 3 units, such that each time a reward room was visited the stated reward was
received. The locations and values of these rooms were instructed to the subjects and also
represented in the visual display by flags above the rooms, visible from a distance. At the
end of the study, subjects were paid proportional to final reward count (at $0.04 per unit).

The critical dynamic element of the task, designed to drive learning, was ongoing, random
reconfiguration of the available transitions between adjoining rooms (Fig. 1B). Following
each decision step, the doors between rooms could reverse their direction; this would happen
independently at each door with probability . This change process was additionally subject
to the constraint that each room would always have at least one available exit. Only the state
of the doors leading to or from the current room was visible on any particular trial
(represented with colored signs at each door, with those visible in other, distant rooms
colored gray), so subjects did not know when changes in the doors occurred until they
encountered them.

Subjects were fully instructed on the dynamics of the task, including specific instruction of
the independence of the random processes associated with jumps and doors (supplemental
Fig. 1). Before scanning, subjects trained and practiced the task for 10 minutes on a different
layout than would be used for the main experiment (reward locations and door directions).
After entering the MRI they performed 25 trials to familiarize them with the scanner
interface and reward locations, and then performed 1000 decision steps during functional
image acquisition, with breaks every 250 steps.

Behavioral
We analyzed the sequences of subjects’ choices (at) by comparing them step by step to those
predicted by different learning algorithms modeled as having encountered the same state
(st), action (at), reward (rt), and jump (jt) sequence up to each step. In particular, we
compared different algorithms for evaluating actions, each formalized as a method for
estimating an action value function (Q :  ×  → ℝ) based on earlier observations (e.g., of
rewards received and available doors). The action value function maps each potential action
at time t to a predicted value sum of expected future rewards (r) for each available option,
discounted for delay according to the free discount parameter γ:

(1)

where each algorithm specifies a particular method for estimating this expectation. For each
algorithm, we assumed a softmax decision rule to produce a probability of a choice (p) given
the predicted values of all the available choices:

(2)
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where β is a free “temperature” parameter controlling the degree of randomness in action
selection.

For each algorithm we estimated the set of free parameters (θ, including γ and β), separately
for each subject so as to minimize the negative log likelihood of all observed choices (i.e.,
the sum over the log of equation (2), for the action chosen on each of n trials):

To compare the quality of model fit correcting for the number of free parameters optimized,
we estimated Bayes factors (Kass and Raftery, 1995), the ratio of the model evidences, i.e.,
the probabilities of the models given the data. To approximate the model evidence we
computed BIC (Schwarz, 1978):

where l(θ ̂) is the negative log likelihood of data at the maxmimum likelihood parameters, θ ̂;
m is the number of free parameters optimized; and n is the number of observations or (non-
trivial) choices the subject made (note that BIC as we define it is  the standard definition, to
put it in the same scale as likelihood and evidence measures; all statistical tests are corrected
appropriately). As a standardized measure of model fit, we also report ρ2, a pseudo-r2

statistic which is analogous to a measure of variance accounted for and is computed as
 (Camerer and Ho, 1999; Daw et al., 2006). Also, allowing that the algorithm used

might differ across subjects in the population as a random effect, we report statistical tests
on the Bayes factors across subjects, along with the “exceedance probability” or posterior
probability that one algorithm is the most common of a set across the population (Stephan et
al., 2009), as computed using the spm_BMS function in SPM8.

To generate regressors reffecting predicted quantities from the models for fMRI analysis
(below) we simulated the models for all subjects using a single set of parameters taken as
the median of the best-fitting parameters over the individuals. The group median can be
viewed as an estimator for the group-level parameters in a random effects model of the
population (Holmes and Friston, 1998). We took this approach because we have repeatedly
observed, in this and other data sets (Daw et al., 2006; Gläscher et al., 2010), that neural
regressors generated using separate maximum likelihood estimates of the parameters
produce poorer fMRI results (i.e., noisier neural effect size estimates and diminished
sensitivity). This is likely because parameters are not always well identified at the individual
level, and variability in the point estimates effectively results in noisy rescaling of regressors
between subjects, which in turn suppresses population level significance in fMRI (see Daw
(in press) for further discussion).

To compare subjects’ performance in terms of payoffs earned, we determined two reference
point payoffs for each subject: expected random payoff, and maximum possible payoff.
Expected random payoff was determined simply by calculating the expected state occupancy
under a uniform random policy, and weighting the rewards by their location’s expected
occupancy (note that this is slightly different that uniform occupancy due to the
heterogeneous connectivity: more central rooms are more likely to be visited). The
maximum possible payoff for a subject was defined as the largest payoff possible over all
possible choice sequences for the particular sequence of door configurations that subject
encountered. Note that actually taking advantage of such a policy would require the subject
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to be omniscient or “psychic” about all current and future unobservable door changes.
Because perfect play using only the available information is computationally intractable due
to the partially observable nature of the task, we neither determined nor compared this value,
but it is guaranteed to be somewhere between the best average play from any of our
formalized algorithms and “psychic” play.

The timing of the task was such that the choices were first allowed to be entered 500 ms
after all the information relevant to that choice was presented (Fig. 1A). As such, the task
was not well-suited for analyzing reaction times, since subjects were presumably able to pre-
plan their responses and time them to the appropriate moment. In order to examine reaction
time effects given these limitations, we discarded all trials with reaction times under 50 ms,
and analyzed the remainder using the same regressors as with fMRI (see Model-based
Analysis below) as explanatory variables in linear regressions in which the dependent
variable was taken as the log reaction time. Regression coefficients were computed per-
subject, then tested across subjects to assess their significance as random effects (Holmes
and Friston, 1998).

Algorithms
Although the task was simple to understand, an optimal solution is computationally
intractable. This design allowed for a wide range of possible (suboptimal) strategies that
could be employed. Thus, in analyzing the behavioral data, we are faced with (and did
explore) a wide variety of algorithms employing different representations and learning
methods based on both TD and planning processes.

The main questions of the study concern valuation by model-based planning. Such a strategy
is categorically distinguished from more common “model-free” approaches to RL by two
key features: the use of a model representing the environment, and on-line evaluation based
on recently learned changes to this model. For specificity and efficiency, for the bulk of the
analyses we report, we used a canonical model-based algorithm (value iteration) that
exhibits these features. It is canonical in the sense of being derived directly from a formal
definition of the decision problem (see e.g., Sutton and Barto (1998)); it is also, in the
particular details and approximations of this derivation, the best fitting algorithm we
discovered from the model-based class. To verify that behavior and BOLD signals are best
explained by an approach of this sort, we compare its predictions to a canonical model-free
algorithm (Q learning), which was also the best-fitting representative of that class we
discovered. We additionally compare both algorithms (see supplemental material) to
reduced or extended variants that isolate particular distinguishing features of the model-
based and model-free approaches. However, these best fitting models, by virtue of being
derived from a decision-theoretic definitions, are also computationally complex.
Accordingly, we do not suggest that these algorithms are direct process-level accounts of the
steps of computation, but rather that they are representative of the overall form of the
relationships between experience, representation, and choices or BOLD activity.
Additionally, as discussed further below, the quantities that these algorithms defined also
help us to examine some process-level questions.

In the following descriptions, we take as data the experience of each subject over steps, t:
visited states, st ∈ ; rewards, rt ∈ ℕ; available actions, At ⊂ ; choices, at ∈ ; and jumps,
jt ∈ {0, 1}. Each state action pair (s, a) ∈  ×  represents one side of a particular door
within the maze, where only valid doors are considered. We use the fixed transition function
T :  ×  →  such that T(s, a) = s′ if behind the door (s, a) is the room s′ (regardless of
whether it is currently open), along with the reward map R :  → {0, 2, 3} to represent the
fixed reward locations. We also use the symbol At to indicate the set of available outgoing
doors from the room st at time t. For clarity, we thus have the following invariants:
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Planning—Rather than estimating action values directly, a model-based approach learns a
“model” of the structure of the task — here the current configuration of the maze — and
computes action values by searching across possible future trajectories, accumulating the
rewards in expectation according to the definition of these values (equation (1)).

To learn the model, our implementation represents the subject’s estimate of the direction of
each one-way door as a probability of it being open, pt(s, a), which is updated when a door
is observed, and also decayed at each step by a free factor η, in order to capture subjects’
knowledge of the chance that doors may have changed since last observed, as well as any
other processes by which observed door knowledge plays a declining role in valuation (e.g.,
forgetting or search pruning). The two sides of each door may be learned independently,
even though this may create a model inconsistent with the one-way dynamics. The
probabilities are initialized to 0.5 and updated at each step in which a set of open doors At is
observed in room st, according to:

The other part of the task model — the reward value for each room, R(s) — is assumed to be
known. We believe this assumption to be innocuous, since this information was fixed,
instructed, and signaled in the visual display.

Using the learned maze configuration, we compute state-action values based on a tree-search
planning process terminating at reward states. For computational efficiency (e.g., in fitting
free parameters to choice data), we implemented this planning process using value iteration,
which simply unrolls a breadth-first search tree over the states from leaves (horizon 1
values) to roots (end horizon values). Specifically, at each step, in room st, initialize all Q(s,
a) ← 0 and, for all (s, a) pairs in parallel, repeatedly perform:

(3)

We took Qplan(st, a) to be the value resulting after 16 iterations of this update.

Here the sum takes an expectation over possible sets of open doors A′ in state s′ according to
the current beliefs about the probability of each door being open individually, the no-
backtracking constraint (here, that the door T(s′, a′) = s, from which s′ is entered, must be
closed), and the constraint that at least one door must be open:

The algorithm thus has 3 free parameters: η, γ, β.
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Although this algorithm is derived directly from the definition of action value from equation
(1), it does incorporate a number of simplifications or approximations, all of which accorded
well with the data. First, we terminate each search path at reward. In terms of the definition
of the decision variable, this is equivalent to treating the reward states as terminal in an
episodic view of the problem (Sutton and Barto, 1998). Similarly, we terminate each search
path if no reward has been found along it by a depth of 16. This is an innocuous assumption
since the value of a reward converges to zero as its distance increases, given γ < 1 or η > 0.
(Sixteen steps is above the maximum distance between any two points in the maze, and was
well beyond the point at which relevant fit quantities changed meaningfully given the data;
see supplemental material.) In terms of the model, the evaluation of the expectation treats
the model as frozen throughout the iteration process, i.e., it does not take into account the
effect of potential future observations and updates on the model (as a full Bayesian/POMDP
approach would do). Finally, and closely related to this, it approximates the expectation over
maze configurations as a factored tree of states, by treating the probability of a particular
door set being open as independent between states within each iteration and, for each state,
also independent between each iteration of the value update. These last assumptions allowed
the algorithm to execute in reasonable time.

Finally, at the process level, there are many different approaches to evaluating the multi-step
value expectation from equation (1). For instance, it seems most plausible that subjects
search forward from the current state (or perhaps backward from a goal state), rather than
from all states in parallel as in value iteration. However, for the current state, the total value
and also the intermediate values (each step’s nth horizon partial sums) from value iteration
correspond to those that would be computed at each step by a breadth-first search. Other
search processes, such as depth-first, visit the states in different order, and perhaps (e.g., due
to stochastic pruning or early termination) only visit a subset of them on any particular trial.
However, since a very wide family of such approaches can be viewed as different ways of
evaluating the expectation defined by equation (1), their end values should coincide either
exactly or (particularly in the average over trials) approximately with those we compute
here. For instance, the end values we compute correspond, in the average, to those that
would be computed if discounting is eliminated but paths are instead terminated
stochastically with probability γ; or to values accumulated over a trajectory where door
traversals are not weighted according to pt but instead sampled with this probability (see
Sutton and Pinette (1985); Suri and Schultz (2001); Smith et al. (2004) for related models).

TD—We use a model-free Q-learning algorithm (Watkins, 1989), augmented with eligibility
traces. Such an algorithm maintains a representation of the state-action value function Q
directly, and updates it locally following experience with particular state-action pairs and
rewards. The inclusion of eligibility traces, for λ > 0, allows the algorithm to update the
values for states and actions other than the pair most recently observed, but only backward
along the recently encountered trajectory. In this implementation (unlike Watkins’),
eligibility traces are truncated on “jump” events but not for exploratory actions.

The model has five free parameters: Q0, α, γ, λ, β. Specifically, each door within the maze,
(s, a), is associated with a value, Qt(s, a), all initially set to Q0. Each also has an associated
trace et(s, a), all initially 0. At each step, if door at is chosen in room st, arriving in room st+1
(either via a jump, jt = 1, or not, jt = 0) with reward rt+1 = R(st+1) the variables are updated
according to:
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(4)

QTD(s; a) is simply the learned value function Qt(s; a).

Imaging
Functional imaging was performed on a 3T Siemens Allegra head-only scanner with a
custom head coil (NM-011, Nova Medical, Wakefield, MA) located at the Center for Brain
Imaging at New York University. Thirty-three contiguous oblique-axial EPI images (3 × 3 ×
3 mm voxels) were obtained each 2000 ms TR, oriented 23° off the AC–PC axis so as to
improve functional sensitivity in orbital frontal areas (Deichmann et al., 2003). Slices were
positioned to obtain full coverage from the base of the orbitofrontal cortex and medial
temporal lobes ventrally; coverage extended dorsally/caudally into the superior parietal
lobule and above the dorsal anterior cingulate cortex but omitted some occipital and parietal
regions, and in a few cases, some posterior-superior frontal regions. A high-resolution T1-
weighted anatomical image (MPRAGE sequence, 1 × 1 × 1 mm) was also acquired for each
subject.

Images were preprocessed and analyzed using the SPM5 software (Wellcome Department of
Cognitive Neurology, London, UK), and final results were corrected for multiple
comparisons using SPM8 (Wellcome Trust Centre for Neuroimaging, London, UK).
Functional images were realigned for head motion, coregistered between runs and to the
structural image, spatially normalized to MNI coordinates (SPM5 “segment and
normalize”), and finally resampled to 2 × 2 × 2 mm voxels and smoothed with an 8 mm
FWHM Gaussian kernel. Due to the short TR, interleaved acquisition, and fast events, we
did not additonally resample temporally to correct for slice timing.

Neural models were analyzed using general linear models to obtain single-subject beta
images. Regressors were convolved with SPM5’s canonical hemodynamic response
function. To control for nuisance effects, all designs included: the six rigid-body motion
parameters that were inferred by realignment; four event regressors covering times in which
the subject was viewing animations of left turns, right turns, forward movement, and jump
movement respectively; and a “no-choice” impulse event regressor at the time of choices in
which the choice set size was one.

Separate coefficients were computed for each regressor for each of the four runs, and
contrasts were computed by adding up these coefficients. Contrast values were then brought
to the group level using one- or paired-sample t-tests for random effects. Unless otherwise
noted, we produced whole brain effect maps using a p < 0.001 uncorrected threshold, and
then assessed significance correcting for whole-brain multiple comparisons using
topological cluster-size FDR, p < 0.05 as implemented in SPM8. (Note that cluster-level
FDR is distinct from voxel-wise FDR, which has recently been argued to be invalid;
Chumbley and Friston (2009).) Accordingly, reported peak t values are uncorrected, and
significance is in relation to the containing cluster. SPMs have been displayed graphically
by including all uncorrected activations, with clusters that did not reach significance, where
assessed, depicted in a lighter, translucent color.
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Model-based analysis
Each GLM included an event regressor containing an impulse at each choice (response)
time, along with some number of parametric regressors on these events, depending on the
particular computational algorithm being analyzed. These regressors were mean-corrected
separately within choice and “no-choice” trials (according to the corresponding nuisance
regressor), but, except where stated, when multiple parametric regressors were entered in a
design, these were not orthogonalized against one another. Parametric regressors were
derived from the sequence of predicted values or other latent variables produced by each
algorithm, according to the learning algorithm exposed to the subject’s actual experience up
to the current trial. Because we were interested in many different, often highly correlated,
properties of the neural signals, such as different deconstructions of the value signal, we ran
separate GLMs to ask different questions, primarily focusing on distinct brain regions.

In order initially and qualitatively to identify basic activation patterns related to the
predictions of either algorithm separately (which are correlated), the first two analyses
entered the predicted Q(s, a) values for the current state and chosen action (from equations
(4) and (3)) as parametric regressors, with GLM1 containing only QTD and GLM2 only
Qplan. (We refer to these as the “chosen values.”) To identify peak value-responsive voxels
in an unbiased manner, and to directly compare the fit of these regressors, GLM3 contained
both of these values as separate regressors, and a contrast summing the coefficients from
both was used on the second level. Confining the analysis to an anatomically-defined striatal
ROI (Maldjian et al., 2003) — which was of specific interest because it is often associated
with TD (O’Doherty et al., 2006; Lohrenz et al., 2007) — we found all peak (locally
maximally responsive) value voxels from GLM3 in caudate and putamen that exceeded a p
< 0.001 uncorrected threshold and defined these as our voxels of interest (VOIs). In order to
then compare between these two predictions with an independent test, the orthogonal
contrast1, taking the difference between the planning and TD coefficients, was used on these
VOIs.

In order further to decompose and explore differences between the algorithms’ predicted
value signals, we performed additional analyses using a series representing the chosen
values Q(s, a), as they would be computed either by the TD or planning algorithms. Both
algorithms can be viewed as representing cues as exponentially decaying sums of terms,
either of expected rewards (for planning), or of prediction errors previously encountered at a
state (for TD). Since the GLM is additive, we can use separate regressors to express the
BOLD signal by their weighted sum, and estimate the relative weights.

For planning, the state-action values are explicitly computed as a sum of exponentially-
discounted expected rewards expected at each future step (from equation (1)):

Here the expectation is as in equation (3), and simply unrolls the independent reward terms
from that computation. When making predictions from a forward breadth-first search, this is
exactly how the values are computed: by considering reward at the next step, then potential
rewards at the subsequent step, and so on. (Other types of search, e.g., depth first, do not

1Because there is correlation between TD and planning predictions, these two contrasts are not perfectly orthogonal in the space of the
(temporally whitened) design matrix (Kriegeskorte et al., 2009). In fact, they are slightly anticorrelated (r = −0.142). This equates to a
bias towards finding a more negative difference, i.e., TD coefficients being larger, when having first selected on their sum being large
and positive; we neglect this bias since it works against the results reported here.
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visit the states in the same order, but insofar as they compute the same end values they may
still be decomposed this way.)

For the TD algorithm, the rewards expected at individual states are never explicitly
represented, but instead values are produced (i.e., learned through the action of the learning
rule) by accumulating them over time with each prediction error update, weighted by the
learning rate. That is, we can unroll the effects of the iterated updates in equation (4) in a
form similar to equation (1), expressing the learned value at a particular time as the
exponentially weighted sum of previous prediction errors. For λ = 0, this sum is over the
prediction errors encountered on previous state-action pair choices:

(5)

Where u⃗(st, at) is the sequence of times at which that action was chosen in that state prior to
time t, so that u0(st, at) = t, u1(st, at) is the time of the first such preceding visit, and so on.
When λ > 0 (as in our behavioral fits), a state-action is updated not only following visits to
it, but also by prediction errors subsequently encountered at other states, weighted by the
decaying eligibility trace. We can modify equation (5) to account for this effect by taking
the terms δ in the sum to be themselves accumulated series of single-step prediction errors
encountered subsequently to the state visit:

Here k ranges up until whichever is first: ui(st, at) + k = t − 1 (the present) or jui(st;at)+k+1 = 1
(the first subsequent “jump”) at which point eligibility is cleared.

For both algorithms, if the BOLD signal is representing the corresponding value, it should
reffect the sum of all these terms, with the appropriate coefficients: the sums essentially
unroll the computation or learning of the values as predicted by either algorithm. To
investigate these predictions, we created two more designs that decompose the two chosen
values using the first two terms of either sum. (Since the weights are exponentially
decaying, the earliest terms should dominate.) GLM4 included parametric regressors for
δu1(st;at) and δu2(st;at) from the TD algorithm, and GLM5 included E [R(st+1)] and E [R(st+2)]
from planning (referred to as δ1, δ2, r1, and r2 respectively). For comparison, we also
inferred what the expected coefficients from this analysis would be based on the Q
coefficients from GLM1 and GLM2 and the (behaviorally fit) values of γ and α. These two
GLMs were initially applied only to the identified VOIs. This analysis is similar to a number
of techniques used to analyze neural data in terms of value subcomponents (Bayer and
Glimcher, 2005; Montague et al., 2006; Samejima and Doya, 2008).

We additionally used GLM5 to seek areas better correlated with only the expected next
reward r1, viewed here as an intermediate quantity in the value computation as opposed to a
portion of the full value. (As noted, r1 is indeed the first partial sum computed during a
breadth-first search; for another approach like depth-first, it might be viewed as the
expectation over trials of the value of the first state visited.) We thus sought activity related
specifically to r1 rather than the cumulative future reward Q ≈ r1 + γr2, using the contrast

. (Note that this contrast equates the length of the two contrast vectors to avoid
confounding the test of the direction of the neural effect.)
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Next, in looking for effects related to the iterative computation of future values, we first
considered the total number of choices available from the current state, n0. This information
is clearly relevant for any decision-making system that considers all the options, and in
particular, an algorithm that searches forward through possible routes will have this many
starting points. We then considered the next-step expectation of this quantity: the expected
number of total choices in all reachable rooms given the model of the doors specified by the
best-fitting planning algorithm, using the behaviorally fit value for η and the subject’s
observations up to the current point:

where the conditional expectation is the same as in equation (3). Although the normative
planning algorithm as we actually implement it examines all state-action-state pairs
regardless of how likely it is that a door exists, a more realistic process-level search
implementation would likely “prune” or examine the most likely transitions, thus requiring
expected computation proportional to n1. We constructed GLM6 with a regressor for n0 and
a regressor for n1 orthogonalized against the n0 regressor2. We also included a regressor of
no interest containing reaction time for each trial, against which the other two regressors
were orthogonalized. We then identified all voxels significantly responsive to n0 (p < 0.05
cluster-size FDR on p < 0.001), and used this as a mask to identify regions responsive to n1
using p < 0.001 and assessing significance with small-volume FWE correction.
Unfortunately, because of our slice prescription, three subjects ended up with reduced
coverage of superior frontal regions, resulting in these areas being masked out of our
analysis due to missing data. Thus, to study the extent of activity identified in pre-motor
regions, these three subjects were left out and the GLM6 analysis repeated using the
remaining 15 subjects.

Finally, in order to investigate whether obtained results were specifically related to model-
based planning processes, we studied how neural effects covaried with the degree to which
the planning or TD models fit their data (measured by the per-subject log likelihood of the
choice data under either model, or the difference between the two). In particular, we selected
the per-subject β values from the peaks of the relevant contrast and correlated these with the
log likelihood measures from the per-subject behavioral fits, assessing one-tailed
significance for the correlation coefficient. Since the contrasts used to define the peak voxels
are main effects over all subjects, and since, further, they are extrema of contrasts unrelated
to the likelihood measures, the resulting correlations will be unbiased and not subject to
corrections for the whole-brain multiple comparisons involved in seeking the peak voxel.

4 Results
Behavioral

On average over 1000 steps, subjects earned $23.78 ± $1.91 (mean ± 1 standard deviation).
These earnings exceeded what would have been expected under chance performance by
12.5% ± 8.8% on average, which was significantly different from zero across subjects (t17 =
6.82) and numerically greater than zero for 16/18 subjects individually. While it is
computationally intractable to define the earnings of an optimal decision maker in this task,
an upper bound on this quantity is the earnings of a “psychic” subject who was fully

2Again, in order to be sure that these tests are independent, we need to consider whether these are truly orthogonal contrasts given
temporal autocorrelation. Post-whitening, we find that they are very slightly anticorrelated (r = −0.034), so since we are only looking
for where their signs agree, this can only make the test more conservative.
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informed about the maze state at each step, and behaved optimally according to this
knowledge. On average, earnings were 10.4% ± 5.4% worse than this benchmark. Together,
these results suggest that subjects were reasonably successful at harvesting rewards.

Learning models
We attempted to characterize subjects’ learning — that is, how their choices depended on
previous feedback — by fitting two alternative algorithms to explain their trial-by-trial
choices. These exemplify two representational strategies for reinforcement learning: a
model-based planning approach, which learns a representation of the maze layout and
evaluates actions using it, and a model-free TD approach that learns estimates of actions’
values directly and locally. These approaches have been argued to formalize a longstanding
distinction in psychology between response-based approaches and more cognitive, map-
based or goal-directed approaches (Doya, 1999; Dickinson and Balleine, 2002; Valentin et
al., 2007; Gläscher et al., 2010). We hypothesized that the task would favor a model-based
strategy instead of the model-free strategy quantified in many previous fMRI studies of
decision making (Daw et al., 2005), allowing us to examine the neural implementation of
such learning. In this task, the ongoing maze reconfigurations play a similar role to an
outcome revaluation manipulation (Balleine and Dickinson, 1998), allowing the strategies to
be distinguished by their distinct predictions about how behavior should adjust following
observed changes. In particular, although the strategies are related in that they are pursuing
the same ends, they make different trial-by-trial predictions about choices due to drawing on
past experience to evaluate options using different strategies and representations. Notably,
the TD approach updates actions’ predicted values only locally after they are encountered
(via a so-called bootstrapping process in which value estimates are updated based on
adjacent ones), whereas a model-based approach incorporates all learned information into a
map of the environment resulting in a global update of the derived action value estimates.
This delay in the propagation of learning in a TD model predicts that choices should
sometimes not respect recently learned information (Daw et al., 2005).

We fit each subject’s trial-by-trial choice behavior individually with each model, and
assessed the relative goodness of fit. Aggregating the data likelihoods across subjects (which
is equivalent to assuming that all subjects used the same one of the models), the group’s
behavior was best explained by planning (BIC 3098), and worse by TD (BIC 3397; random
was 4085).

We may instead consider that the identity of the best fitting model might have varied from
subject to subject, and characterize the population’s tendencies by the summary statistics on
their individual fits, analogous to a random-effect analysis in fMRI (Stephan et al., 2009).
Thus, the average Bayes Factor (the difference in BIC scores or approximate log odds in
favor of one model vs. another) was 16.61 in favor of model based planning over TD. This
was significantly different from zero across subjects (t17 = 4.92, p = 0.0001), indicating that
a subject drawn randomly from the population will, on average, exhibit behavior better fit by
model-based RL compared to TD. An alternative way to characterize the predominance of
the strategies in the population is to fit the entire behavioral dataset with a mixture model in
which each subject exhibits exactly one of the candidate algorithms, the identity of which is
treated as a random variable (BMS, Stephan et al. (2009)). In such a fit, it was
overwhelmingly likely that planning was the more common strategy (expected frequency E
[p(plan)] = 0.947, “exceedance probability” P [p(plan) > p(TD)] > 0.999). These results
suggest that subjects’ learning about choices in this task was, at the population level,
predominantly driven by model-based spatial planning. The comparison of the model-based
and TD approaches suggests that values are determined prospectively by planning rather
than by local bootstrap-based learning.
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We may also break down the contributions of individual subjects to these group-wise
results. Primarily, both of the learning models fit significantly better than chance for each
subject (likelihood ratio tests; for TD all , p < 0.031; for planning all , p <
0.008). Comparing BIC scores for each individual, planning was favored over TD for 17/18
subjects. These results further indicate that while there is some evidence of individual
variability among the subjects, the predominant strategy appears to be model-based RL (Fig.
2).

We additionally compared each algorithm to a reduced or augmented version, to isolate the
necessity of the kind of learning each posited. In particular, we tested “dead reckoning”
variants of the planning algorithm that did not involve on-line learning of the map of doors
but instead evaluated actions only on the basis of the distance to reward, essentially relying
only on the known spatial structure and reward locations. The full planning model explained
choices better than these variants, supporting the interpretation that subjects plan using a
learned transition map. Even so, dead reckoning models still fit the choices better than TD,
providing further evidence that even simple planning processes dominate TD learning in this
task. In fact, the dead reckoning fit was not improved by incorporating TD learning such that
the fixed distanced-weighted values were updated based on experience using TD. For full
details on these analyses and comparisons with other variants in each model class, see
supplemental materials, supplemental Fig. 2, supplemental Fig. 3, and Table S1.

Reaction times
We reasoned that if subjects were planning trajectories by forward search, as our results
suggest, then this might be reflected in their reaction times as well as their choices. In
particular, we hypothesized that subjects’ reaction times would be longer on steps when the
search was more extensive. This would predict longer reaction times not only in rooms in
which they were facing more open doors (a quantity we called n0, see Methods), but that
they would also be longer for searches in which they expected that more doors would be
open in subsequent rooms, a measure unique to a forward planning model. We defined this
quantity, n1, in expectation at each step according to the model’s learned beliefs about the
maze.

One complication in assessing this hypothesis is that subjects were allowed to enter a
decision one-half second after they first entered a room and observed the doors available
there. This pause allowed subjects to decide and prepare their responses during this time,
making reaction times a poor measure of planning. Accordingly, there were a high
proportion of extremely fast responses: reaction times averaged 278 ± 251 ms, with 36.1%
of responses under 150 ms and 11.8% under 50 ms. In order to focus on the subset of trials
in which reaction time might reflect differential amounts of planning, we eliminated the
fastest reaction times (those less than 50 ms) from analysis.

For the remaining subset of trials, we found weak but significant effects of the search
complexity (t17 = 4.50, p = 0.0003 for n0, t17 = 2.49, p = 0.023 for n1) on log reaction time,
such that more complex choices resulted in longer reaction times.

Imaging
Given that the behavioral analysis indicated that the predominant learning strategy among
our candidates was model-based planning, we next exploited this model to interrogate
related neural signals. Our overall strategy, based on previous work on TD learning, was to
use simulations of the fit algorithm to define trial-by-trial timeseries of relevant variables
such as predicted action values, in order to seek and tease apart neural correlates of these
otherwise subjective quantities (O’Doherty et al., 2007). For this, we used on the model-
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based algorithm (and, for initial analyses, also the TD one) along with the medians of the
parameters that best fit the individual subjects’ choices (Table 1; see also supplemental
Table S1). The median was used because in our experience (Daw et al., 2006; Gläscher et
al., 2010; Daw, in press), unregularized maximum likelihood parameter estimates from
individuals tend to be too noisy to obtain reliable neural results. Since what distinguishes
planning from model-free RL is that it constructs action values from more elementary
information on-line at choice time rather than simply retrieving previously learned aggregate
values as in TD, our primary questions concerned dissecting these computations. As a first
step, we sought neural correlates of aggregate chosen values; we did this both for values
predicted by planning and for those predicted by TD in order to verify our hypothesis that in
this task neural value signals, like choices, were predominantly better explained by planning.
To maximize power, we compared the algorithms on the basis of BOLD signal in value-
responsive voxels selected in an unbiased manner. After similarly confirming that planning
predominates in striatal value signals over the population, we proceeded to tease apart these
activations and the computations that we hypothesized would give rise to them by
examining neural correlates of the components of model-based value construction. In
particular, model-based predictions of aggregate future value are based on two quantities:
predicted single-step rewards, and predicted future states (based on knowledge of state
transitions). We thus sought neural correlates related to both of these hypothesized
representations. Finally, in order to verify the extent to which our results related specifically
to planning processes as opposed to valuation more generally, we studied whether individual
variation in the strength of our neural effects covaried, across subjects, with the extent to
which planning vs. TD explained their choice behavior.

Unless otherwise stated, all t-statistics are uncorrected and refer to peak voxels of clusters
that have been deemed significant p < 0.05 by cluster-size FDR correction.

Correlates of value
Following much previous work on RL, we began by generating the sequence of values, Q,
that each algorithm would predict at each step of the task on the basis of previous experience
(Tanaka et al., 2004; O’Doherty et al., 2006; Seymour et al., 2007; Wittmann et al., 2008).
We first asked where the BOLD signal significantly correlated with the sequences of values
for the chosen actions (“chosen values”), for TD and planning considered separately. For
plan-predicted values within striatum, we found that clusters in bilateral posterior
vetrolateral putamen/claustrum and bilateral dorsolateral prefrontal cortex extending
ventrally into orbitofrontal regions correlated significantly (peaks: [−32,−8,−6] t17 = 6.60,
[28, −2, −10] t17 = 4.72, [−48, 38, 18] t17 = 6.79, [52, 40, 8] t17 = 5.34). We also found a
weaker correlation in the bilateral ventral caudate that did not survive cluster-level
correction for multiple comparisons (peaks: [−24, 16, −8] t17 = 4.97, [12, 14, −10] t17 =
4.53, n.s.). Using the TD-based values, we found only one significant cluster in striatum (left
vetrolateral putamen peak: [−30, −8, −6] t17 = 5.34). The ventral and dorsomedial regions
of striatum have commonly been identified with general reward and value expectations
(Delgado et al., 2000; Knutson et al., 2001; O’Doherty, 2004; Tricomi et al., 2004;
Samejima et al., 2005), although the posterior putamen regions have been less commonly
implicated (Delgado et al., 2003; O’Doherty et al., 2004). Outside of striatum, we found that
distinct regions of bilateral inferior frontal, postcentral, and insular cortex showed
significant correlations with these values as well, again apparently more robustly to the
planning values (Fig. 3). However, cortical correlates of chosen value are found in ventral
pre-frontal areas (Knutson et al., 2005; Kable and Glimcher, 2007; Hampton and O’Doherty,
2007; Gläscher et al., 2009; Wunderlich et al., 2009; Chib et al., 2009) more often than other
areas (Breiter et al., 2001; Plassmann et al., 2007; Hare et al., 2008). On a targeted
investigation of vmPFC, we found that there was a correlation with planning values in this
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region that did not meet our reporting threshold for uncorrected significance (peak: [−6, 40,
8] t17 = 3.03, p = 0.003 uncorrected), while correlates with TD values here were much
weaker (p > 0.01).

As expected given the findings that the behavior showed evidence predominantly for only a
single sort of (model-based) learning, as well as the correlation between the two sets of
values, the two maps show a good deal of similarity, though overall the planning responses
are slightly stronger. This suggests, consistent with the choice analysis, that neural signals
aligned with model-based valuation. However, a difference in thresholded statistical maps
does not itself demonstrate a statistically significant difference (“the imager’s fallacy”,
Henson (2005)); thus we next sought to confirm statistically the superiority of planning.

TD vs. model-based value
Since the algorithms made similar predictions for many situations, and thus the chosen value
regressors themselves were substantially correlated between algorithms (r = 0.791; for
related correlations see supplemental Fig. 3), we wished to maximize power for comparing
them by minimizing multiple comparisons. To this end, we targeted our direct comparison
by first identifying a small number of voxels of interest (VOIs) in an anatomically-
constrained striatal ROI that showed value-selective activations. We identified these voxels
in a manner that did not bias the subsequent test for differences between the two chosen
value regressors, by using a summed contrast over both of them. Based on other studies, we
focused on the caudate and putamen as regions relevant for value computations (see
Methods for more information on voxel selection). The four selected VOIs were [−32, −8,
−6] (left ventrolateral putamen), [28, −6, −12] (right ventrolateral putamen/pallidus border),
[−20, 16, −6] (left anterior ventromedial putamen), and [20, 18, −10] (right anterior
ventromedial putamen) (Fig. 4). We then asked whether these voxels were significantly
more correlated with planning or TD-based chosen values using the orthogonal (difference)
contrast between both regressors in the same GLM. Each of these voxels showed a
significantly stronger response to the planning predictions (p < 0.03 FDR corrected for the
four comparisons). These findings provide evidence that neural correlates of value in
striatum are not strictly bound to a TD-based value computation, and may instead be
informed by a model of the environment. This sharply contrasts with the common
interpretation of the mesolimbic dopamine system as implementing TD learning (Seymour
et al., 2004; Lee et al., 2004; O’Doherty et al., 2006).

We also repeated these neural analyses using a version of TD augmented with “dead-
reckoning” planning values for initialization. That the results were largely the same (see
supplemental material, supplemental Fig. 4, and supplemental Fig. 5) further suggests that
value signals in ventral striatum reflect those generated from a learned cognitive map rather
than from TD learning.

Decomposition of value responses
Having established that neural correlates of value prediction, like choices, were well
explained by model-based values, we sought to dissect the computation of these values into
the components from which, according to the theory, they are computed. We first attempted
to tease apart the striatal BOLD response by separately investigating the effects of
component quantities that should be combined together in the value computation, and in so
doing to visualize the features of the response that gave rise to the previous finding (that
value is better explained by model-based planning than TD). In particular, the values from
both algorithms amount to weighted sums over a series of quantities (see Methods). TD
updates values by accumulating prediction errors, resulting in a net learned value that at
each step corresponds to the weighted sum over errors received following previous
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experiences with an action. Model-based planning produces a value at each step by a (time-
discount weighted) sum over rewards predicted by the model at each timestep into the
future. We therefore may use the additivity of the GLM to seek to explain the net BOLD
signal as a weighted sum of either sequence of subquantities. Thus we unrolled the first two
steps of each of these computations and entered them as separate regressors: Qplan = r1 + γr2
+ ···, QTD = α(δ1 + (1 − α)δ2 + ···). (The early terms should dominate since in both
algorithms the weights decline exponentially as the series progresses.)

We extracted the sizes of these effects in our voxels of interest (Fig. 5). As can be seen in
the figure, the patterns of BOLD activation in all the voxels, in terms of the subcomponents
of the value, more closely follows the pattern predicted by model-based planning than by
TD, with the directions and relative sizes of effects consistently in line with the predictions.
Having selected these voxels for having a large correlation with the chosen value Q (over
both algorithms symmetrically), we of course bias the statistical test for correlations with
components of both algorithms’ value computation to be positive as well. Thus as expected,
we found all the correlations with r1 were significantly positive (p < 0.035, all tests FDR
corrected for the four voxels but uncorrected for multiple comparisons in VOI selection), as
well as one of the paired r2 correlations (p = 0.02). On the other hand, only one of the δ1
correlations were significant (p = 0.033) while none of the paired δ2 correlations were (p >
0.1), despite the bias toward a positive finding expected from the selection of the voxels.

One-step reward
We next sought neural reflections for the components of the world model elsewhere in the
brain, in order to begin to map the broader network supporting the computation. In
particular, these analyses use subcomponents of the normatively defined model-based values
to examine aspects of their process-level computations. In the theory, model-based values
are computed at choice time by summing expected rewards over candidate trajectories.
Specifically, model-based planning predicts action values by combining information from
two representations: a map of where rewards are located, and a map of transitions between
states (here, doors). We thus hypothesized that we should be able to find neural correlates
related to both representations. To seek a representation of rewards, we considered the value
r1 discussed above, which has a clear interpretation: it is the expected immediate reward to
be received in the next room. This is the first relevant value that a planning process would
need to “look up” when searching forward paths, where the expectation over future states
can either reflect the average over paths considered first on different trials (as in depth first
search) or be explicitly computed in the brain on each particular trial (as in breadth-first
search, where the expectation r1 is the first intermediate partial sum in computing a full
action value).

The present analysis thus seeks activity related to the next reward separately, rather than as
portion of a net signal related to the chosen value Q, as in the previous section. Of course, r1
and Q are strongly correlated, as the former is the first term in the sum defining the latter. To
distinguish these possibilities and find activity related specifically to elemental rewards
rather than aggregate future values, we searched for regions in which the correlation with r1
was significantly greater than the correlation with the summed value, here approximated by
the sum of both of the first two terms in the series r1 + γr2 ≈ Qplan (Fig. 6). This contrast
revealed a pair of regions containing significant clusters: left superior frontal cortex (peak:
[−18, 46, 46] t17 = 5.58), and right parahippocampal gyrus (peak: [18, −6, −20] t17 = 4.64;
left [−34, −14, −18] t17 = 4.66, n.s.). Such activity might either represent associations of
place with reward, as perhaps in the case of the MTL activations, or reflect the incorporation
of these one-step rewards into planning computations (Foster et al., 2000; Hasselmo, 2005;
Zilli and Hasselmo, 2008). Also, in addition to their spatial associations, areas in MTL have
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been implicated more generally in drawing on memory to project future events (Buckner and
Carroll, 2007; Hasselmo, 2009).

Transitions and planning
Next, we sought neural evidence for a representation of the other aspect of the hypothesized
world model, the maze transition structure. We did so indirectly, by using hypothesized
effects of search complexity on activity related to choice difficulty in a manner analogous to
the analysis of reaction times discussed above. In most accounts of decisions, choice
difficulty increases with the size of the choice set (here, the number of doors in the current
room). However, if actions are evaluated online via some kind of realistic forward planning
process, then choice difficulty should also depend on the complexity of the subsequent
search: e.g., the number of choices expected to be available in subsequent rooms. (Here
again, the expectation, computed from door probabilities in our full model, is meant to
reflect the average search-related activity over trials in which different numbers of branches
may be actually examined in a pruning search.) We thus looked throughout the brain for
regions that correlated with the number of currently available choices, n0, and tested whether
these also depended on the number of choices expected to be available in the next room, in
expectation over potential choices at the first step, n1 (see Methods). Since reaction time was
also previously shown to be correlated with these same quantities, in order to rule it out as a
confound in neural activity it was included as a nuisance regressor in this analysis, and the
variables of interest were orthogonalized against it.

Within the mask of regions significantly correlated with n0 (totaling 10880 mm3, 1360
voxels for positive), we found three relevant regions that also correlated positively with n1
(Fig. 7) (while t-statistics are still uncorrected, reported peak voxels are all significant p <
0.05 corrected voxel-wise for FWE over multiple comparisons within the n0 mask): bilateral
precentral cortex (peaks: [−38, 4, 30] t17 = 4.80, [42, 8, 28] t17 = 4.86), anterior insula
(peaks: [−34, 24, 0] t17 = 6.86, [38, 22, 6] t17 = 5.79), and also medial cingulate/SMA in the
subset of 15 subjects with coverage in that region (peaks: [−12, 14, 50] t14 = 5.14, [0, 18,
48] t14 = 5.48). This indicates that these regions may be participating in a search-based
planning process. We performed the same analysis looking for regions negatively correlated
with both search difficulty regressors (mask 34656 mm3, 4332 voxels for negative), and
found medial prefrontal cortex (peak: [−2, 46, 0] t17 = 4.93) and bilateral amygdala/
hippocampus (peaks: [−18, −8, −20] t17 = 5.06, [22, −4, −18] t17 = 5.44). This region of
mPFC is often associated with future value (though the trend toward this correlation did not
reach significance in the present study). Nonetheless, BOLD correlations with value cannot
explain the present activation, because n1 has a slight positive correlation with action value,
and therefore a value confound would predict a positive correlation with n1 in BOLD.
Instead, we speculate that activity negatively correlated with search difficulty there may
relate to assessing the costs of the search process, e.g., for the purpose of deciding whether it
is worthwhile to complete the computation (Daw et al. (2005); Rushworth and Behrens
(2008); M. Keramati, personal communication). In particular, both this activity and the
value responses observed in ventromedial PFC other studies may reflect a top-down
assessment for strategy selection based on expected cost, benefit, as well as the uncertainty
associated with each approach (Dickinson, 1985; Barraclough et al., 2004; Lee et al., 2004).

Together, these results suggest that using model-based planning to project rewards on the
basis of a remembered “map” of a maze employs a broad temporal and frontal network,
areas broadly associated with memory and control.
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Individual differences
Finally, in order to investigate whether our neural effects were specifically related to
planning, or instead to valuation more generally (e.g., in a way that might be common or
generic to TD and planning strategies) or even incidentally (e.g., unrelated to choice), we
tested whether individual differences in fit quality between the two algorithms to choice
behavior covaried across individuals with the strength of the neural responses found in each
of these analyses (Hampton et al., 2008). In this way, since subjects varied in the extent to
which their behavior was explained by either strategy, we made use of this variability to
investigate the behavior’s relationship with the neural signaling. In each case, we select the
β contrast values from each individual from the identified group peak voxel, and correlate
these with either the log likelihoods of the fits to the two algorithms to choices (such that
larger, less negative numbers indicate better fits), or the Bayes factor from choices, i.e., the
difference between them (so that larger numbers indicate better fits of planning than TD to
choices). Of the striatal VOIs responsive to value, the strength of the unbiased value effect
and the difference in the right lateral voxel (i.e., the Qplan + QTD contrast) covaried
significantly with the individual subject planning likelihoods (r(16) = 0.498, p = 0.018), and
both this and contrast comparing value predictions (Qplan > QTD) correlated with the
analogous Bayes factor between the two in the right medial voxel (r(16) = 0.552 and r(16) =
0.537, p < 0.011), but none with the TD likelihoods (p > 0.05). This indicated that the
value-related neural effects are also stronger in subjects whose behavior is better explained
by planning, consistent with the identification of this activity with planning. Similar results
were also seen for the correlates we associate with the representations of the world model.
Specifically, we found that the parahippocampal responses to expected next-step reward
covaried significantly with the Bayes factor (r(16) = 0.520 for right, r(16) = 0.728 for left,
both p < 0.014), and also that the search complexity responses in the SMA covaried with
choice likelihoods under planning (for the full set of subjects r(16) = 0.504, p = 0.016; r(13)
= 0.510, p = 0.026 for the reduced set) but not with the likelihoods under TD (p > 0.05). All
of these findings support the inference that these signals are related to the decision-making
behaviors studied, and are consistent with this activity supporting planning. However,
although the lack of a similar relationship with model-free valuations might be interpreted as
supporting the specificity of these signals to model-based planning, negative results must be
interpreted with caution. For instance, to the extent the task design was successful in
precluding the use of TD, it may not elicit meaningful individual differences in the fit of the
TD model.

5 Discussion
Computational theories have driven rapid progress quantifying neural signals in the
mesostriatal system, primarily in terms of model-free RL (Bar-Gad et al., 2003; Tricomi et
al., 2004; O’Doherty et al., 2004; Bayer and Glimcher, 2005; Morris et al., 2006; Schonberg
et al., 2007; Hikosaka et al., 2008; Bromberg-Martin and Hikosaka, 2009). Yet it has long
been argued that the brain also employs more sophisticated and categorically distinct
mechanisms such as cognitive maps (Tolman, 1948; Thistlethwaite, 1951). We extended the
theory-driven fMRI approach to model-based planning by leveraging a quantitative
characterization of its decision variables to investigate their neural substrates (Daw et al.,
2005; Johnson et al., 2007). Having first verified that choices, RTs, and striatal BOLD
responses suggest a forward planning mode of valuation in this task | in contrast to broadly
successful TD models and their theoretical applicability even to complex spatial tasks
(Sutton, 1988; Foster et al., 2000; Stone et al., 2008) | we aimed to map the network
implementing such planning by seeking correlates of the theorized construction of these
values from reward and state predictions.
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To distinguish learning strategies, we elicited ongoing learning via continuous maze
reconfiguration. This echoes the logic of Tolman’s (1948) demonstrations that rats could
plan novel routes following maze changes, and of “place” responses, wherein rats approach
previously rewarded locations from novel starting points (Packard and McGaugh, 1996).
Rather than such a one-shot challenge (Gläscher et al., 2010; Valentin et al., 2007), we
examined how subjects adjust their behavior following many small changes to the maze.
This approach separates the valuation strategies partially (producing correlated predictions)
but consistently over many trials, and is better suited to test accounts of trial-by-trial
learning. We use a normative value iteration algorithm rather than a process-level account to
define the quantities of interest, but these quantities should (and largely do according to an
analysis of the covariation of regressors derived from different model variants; see
supplemental Fig. 3) represent the model-based class more generally. Indeed, some aspects
of our results (e.g., effects of search complexity and superior fits for reward-terminated
searches) seem to resonate with a process-level tree search model, potentially one involving
selective pruning. Nevertheless, more detailed studies will be required to investigate these
fine algorithmic distinctions.

Although we adopt a spatial framing, our questions are more akin to previous studies of RL
than to other work on navigation. For instance, our focus on behavioral adjustment precludes
studying optimal or repeated routes; whereas Yoshida and Ishii (2006) used well-learned
behavior in a similar task to study how subjects resolved uncertainty about their location, we
used visual cues to minimize locational uncertainty while investigating learning. Also, while
the distinction in spatial research between planned navigation to a place and executing a
learned response resonates with the algorithmic distinction studied here, much navigational
work focuses on another aspect: allocentric vs. egocentric representations (Maguire et al.,
1999; Hartley et al., 2003; Burgess, 2006; Iglói et al., 2009). Therefore, although our logic
parallels attempts to differentiate two navigational strategies (Doeller et al., 2008), since we
do not manipulate location cues or viewpoints, our data only speak to the reference frame
distinction insomuch as it coincides (plausibly but not unproblematically; Gallistel and
Cramer (1996); Iglói et al. (2010); Weniger et al. (2010)) with the distinction between
model-based and model-free learning.

In other areas of learning, a distinction is drawn between one network for habitual,
overtrained responses associated with striatum (especially dorsolateral; Knowlton et al.
(1996); Packard and Knowlton (2002)), and another, separate or competing, associated with
MTL and PFC for planning “goal-directed” responses (Packard and McGaugh, 1996;
Burgess et al., 2002; Poldrack and Packard, 2003; Doeller et al., 2008). FMRI studies have
shown that value-related BOLD responses in PFC reflect knowledge about higher-order task
contingencies, consistent with involvement in model-based reasoning, though not
specifically its characteristic use in RL for sequential planning (Hampton et al., 2006;
Hampton et al., 2008). In the current task, where behavior suggested valuations were
primarily model-based, we found that the same was true even of responses in ventral
striatum. These areas have also, in previous studies, been associated with the habit system
and TD. Although we cannot directly test this interpretation since we did not detect neural or
behavioral evidence for TD in our data, our results together with those others suggest that
the two putative systems may be partly overlapping or convergent, with striatum potentially
acting as a common value target and locus of action selection (Samejima et al., 2005). This
may relate to unit recordings suggesting model-based knowledge in striatum’s dopaminergic
afferents (Bromberg-Martin and Hikosaka, 2009) and also lesion work in rodents
implicating striatum in both place and goal-directed responding, albeit a different,
dorsomedial, part (Devan and White, 1999; Yin and Knowlton, 2004; Balleine et al., 2007).
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While our striatal results suggest that the substrates of model-based value are more
convergent with the purported TD system than might have been suspected, our remaining
results, locating antecedents of these values in MTL and frontal cortex, appear more specific
to model-based planning. First, effects of anticipated choice set size both on RTs and on
BOLD responses offer direct evidence for forward lookahead at choice time. The regions
implicated here were primarily more posterior than might have been expected on the basis of
work on prefrontal involvement in decision-making (Hampton et al., 2006; Kennerley et al.,
2006; Pan et al., 2007), neuroeconomics (McClure et al., 2004; Mushiake et al., 2006), or
memory (Poldrack et al., 2001; Poldrack and Packard, 2003): in particular, the contrast
revealed posterior frontal regions along the motor cortex. In fact, these areas and SMA in
particular have been associated with movement sequencing in other motor tasks (Tanji and
Shima, 1994; Hoshi and Tanji, 2004; Lee and Quessy, 2003). The effect in SMA was
stronger for subjects whose behavior was better fit by model-based planning (but not so for
TD), further indicating that this activity is related to the computations we hypothesize.

Meanwhile, although in other tasks BOLD activity in ventromedial PFC is often found to
correlate with expected value (Plassmann et al., 2007; Hare et al., 2008; Wunderlich et al.,
2009; Chib et al., 2009), such a correlation did not reach significance in our study. While
this may be due to technical limitations (Deichmann et al., 2003), this difference might also
relate to the spatial or sequential framing of this task shifting activity to other areas, such as
MTL. Although our study does not directly address this possibility, correlations with the
next-step reward value in anterior MTL (hippocampus and hippocampal gyrus) are
consistent with many other findings indicating that these areas may subserve cognitive maps
or spatial associations (O’Keefe, 1990; Maguire et al., 1998; Burgess et al., 2002; Johnson et
al., 2007).

Although we have interpreted value correlates in ventral striatum as similar to those seen in
studies of putatively model-free RL, in those studies striatal BOLD is more commonly seen
to covary with reward prediction error (Pagnoni et al., 2002; McClure et al., 2003; Yacubian
et al., 2006; Hampton and O’Doherty, 2007) rather than value (though see Delgado et al.
(2000); Tanaka et al. (2004); Tom et al. (2007); Kable and Glimcher (2007); on unit
physiology, Arkadir et al. (2004); Samejima et al. (2005); Kim et al. (2009)). Here, we
found less robust correlations with a TD prediction error in striatum (analyses not shown);
however, the two variables are highly related, and our task was not aimed at distinguishing
them (Hare et al., 2008). Notwithstanding that, another possibility is that our task recruits a
distinct but anatomically overlapping model-based choice process, which would not be
expected to use a TD error signal since model-based valuation constructs values by forward
lookahead rather than error-driven learning. This interpretation by no means contradicts the
substantial evidence for TD prediction error signals in other tasks.

Overall, we demonstrate dynamic, parametric correlates in various brain areas for a number
of previously unstudied decision-related variables, such as one-step reward predictions and
search complexities. Should these correlates prove generalizable to future studies, they
present a new possibility for investigating specific hypotheses about the details of human
valuation, for example using BOLD activity in SMA to track a search process. The model-
based approach to understanding the details of value prediction by examining its neural
correlates in striatum and vmPFC has had considerable success (e.g., Hampton et al. (2006);
Hampton et al. (2008)), and, with these tools, it could be extended to new computational
questions and brain areas in order to elucidate further the details of human decision making.
Similarly, our demonstration that we can identify these behavioral and neural signatures for
model-based, as opposed to more commonly identified model-free, valuation in humans lays
the groundwork for future studies of how these two approaches trade off or are controlled.
Such information would be relevant to a number of problems of self-control hypothesized to
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relate to the compulsive nature of model-free habits, including overeating and drug abuse
(Ainslie, 2001; Loewenstein and O’Donoghue, 2004; Everitt and Robbins, 2005).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Task flow and example state
(A) Subjects were cued to choose a direction by pressing a key. If the subject did not
respond within 2 seconds, she lost a turn and was again presented with the same choice (no
movement). Otherwise, an animation was shown moving to the room in the selected
direction (or to a random room for randomly occurring “jumps”); this movement lasted
1.5-2 seconds jittered uniformly. Then, the next room was presented, including the available
transitions from that room and any received reward. Finally, after 0.5 seconds the subject
was cued to make the next decision. Only the doors in the current room were visible to the
subject. (B) A possible abstract layout of the task, where each square represents a room, and
each arrow represents an available door direction the subject may choose from. Circles
represent reward locations, where the subject would gain the indicated reward value each
time the room was visited. At each step, each one-way door could flip direction
independently with probability .
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Figure 2. Behavioral model likelihood comparison
Negative log likelihood evidence values under BIC. Per-subject log Bayes factors
comparing planning against TD.
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Figure 3. Value-responsive areas
T-statistic map of group response size to (A) planned and (B) TD-based value predictions
from separate models (shown at p < 0.001 uncorrected, significant p < 0.05 FDR clusters
highlighted).
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Figure 4. Identification of value-related voxels of interest
T-statistic map of group response size to either planned or TD-based value predictions
(summed contrast, shown at p < 0.001 uncorrected, significance not assessed). The most
responsive peak voxels of this map anatomically within striatum were identified for further
analysis.
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Figure 5. Striatal BOLD responses to partial value components
Responses to key components of the value predictions as predicted by the two algorithms in
the previously- identified voxels of interest (VOIs). Also shown are the predicted responses
from the overall value fit assuming exponential discounting and updating. Note that
significance s are biased by voxel selection.
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Figure 6. Responses to predicted next-step rewards beyond chosen values
T-statistic map of responsive regions to choices that are expected to lead to a reward room
(r1), greater than the first two terms of the value equation (r1 + γr2, shown at p < 0.001
uncorrected; significant p < 0.05 FDR clusters highlighted).
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Figure 7. Response to both one-step predicted and immediate choice count
Masked T-statistic map of responses to expected next-step choice set size within regions
responsive to current choice set size (all n0 significant p < 0.05 FDR cluster-size; n1 shown
at p < 0.001 uncorrected; two-tailed).
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Table 1
Distribution of subjects’ individual maximum likelihoods and parameter estimates

Quartiles (medians) of best-fitting parameters for the two algorithms used to produce regressors for imaging
analysis, along with negative log likelihood (NLL), BIC estimated evidence, and pseudo-r2 measures of
individual fit quality.

Plan TD Random

β 4.081,11.78,17.14 3.405, 5.315, 6.841

γ 0.461,0.816,0.861 0.550, 0.861, 0.936

η 0.058,0.142,0.516

Q0 1.260, 2.883, 6.774

α 0.319, 0.408, 0.579

λ 0.565, 0.756, 0.915

NLL 131.1,156.3,195.8 152.7, 171.3, 207.5 214.7, 224.5, 237.0

BIC 139.6,165.0,204.5 167.1, 185.6, 222.0 214.7, 224.5, 237.0

ρ2 .141,.279, .391 .130, .226, .321 (0)
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