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Following the suggestion that midbrain dopaminergic neurons

encode a signal, known as a ‘reward prediction error’, used by

artificial intelligence algorithms for learning to choose

advantageous actions, the study of the neural substrates for

reward-based learning has been strongly influenced by

computational theories. In recent work, such theories have

been increasingly integrated into experimental design and

analysis. Such hybrid approaches have offered detailed new

insights into the function of a number of brain areas, especially

the cortex and basal ganglia. In part this is because these

approaches enable the study of neural correlates of subjective

factors (such as a participant’s beliefs about the reward to be

received for performing some action) that the computational

theories purport to quantify.
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Introduction
Reinforcement learning (RL) [1] is the branch of artificial

intelligence that concerns how an agent, such as a robot,

can learn by trial and error to make decisions in order

better to obtain rewards and avoid punishments. Such

computational theories are also increasingly becoming

central to thinking about the neural substrates for similar

learning and decision functions in humans and animals

[2–4]. This viewpoint particularly builds on the observa-

tion [2] that the phasic responses of midbrain dopamine

neurons recorded from primates behaving for rewards

resemble a major learning signal used in RL, called a

‘temporal-difference error signal’. Recently, neuroscien-

tists have begun to integrate such models directly into the

design and analysis of experiments, quantitatively study-

ing the models’ fit to behavioral responses and neural
www.sciencedirect.com
signals from individual subjects and trials. This approach

enables the study of the neural substrates of inherently

subjective quantities that the models purport to quantify,

such as the ‘value’ or ‘utility’ of an action, meaning the

degree of reward that a subject expects to receive for

executing that action. Furthermore, because the models

are grounded in algorithms describing how ideal subjects

should optimally behave, they help to explain not just the

mechanisms underlying observed data, but also why they

are the way they are.

Many RL accounts of learned decision-making center

around the repeated application of variations of the fol-

lowing three steps (Figure 1): first, predict the reward

values of action candidates; second, select the action that

maximizes the predicted value; third, learn from experi-

ence to update the predictions. Here, we review recent

studies of the neural substrates for these functions, focus-

ing particularly on work combining theory and experi-

ment in a field in which (happily, in our view) these

approaches are fast becoming inseparable.

Model-based analysis

A recent trend, exemplified by many of the studies we

review below, is the use of computational models to

estimate unobservable time-varying variables, such as

how much reward a subject expects on each trial. Beha-

vioral and neural correlates of such variables can then be

sought, using quantitative trial-by-trial comparisons

rather than the more qualitative analogies common in

earlier computational modeling. In such analyses, two

crucial issues are how to compare different possible

models and how to set various free parameters of the

models, such as those controlling how quickly a model

learns from experience. Both of these problems can be

addressed using standard Bayesian statistical methods to

assess which candidate models and parameters best pre-

dict the data that are actually observed.

Such model-based analytical methods, when based on RL

models, can probe the neural substrates for learned deci-

sion-making. We now turn to the results of such studies.

How to evaluate actions
The first step in our simple decision-making strategy is

evaluation. Candidate actions can be evaluated by pre-

dicting the long-term future utility, or ‘value’, expected

after taking a particular action in a particular situation.

There has been much interest in determining where in

the brain such values are represented and how they

control behavior. A possible mechanism for this is an

array or ‘map’ of neurons (or groups of neurons) that each
Current Opinion in Neurobiology 2006, 16:199–204
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Figure 1

The three basic stages of many reinforcement learning accounts of learned decision-making. (i) Predict the rewards expected for candidate

actions (here a, b, c) in the current situation. (ii) Choose and execute one by comparing the predicted rewards. (iii) Finally, learn from the reward

prediction error to improve future decisions. Numbers indicate the predicted action values, the obtained reward, and the resulting prediction error.
represent the value of a particular action candidate. Such

neurons could compete, on the basis of their value pre-

dictions, for their preferred action to be selected. The

striatum and various cortical areas have been suggested as

possible substrates for such a map.

Striatum

Given the hypothesized role of dopamine as a signal

controlling reward learning [2], its most prominent target,

the striatum, is an obvious candidate site for that learning.

Supporting this identification, the striatum is associated

with motor pathologies, with well-learned, so-called

‘habitual’ actions [5], and with dopamine-dependent

synaptic plasticity [6]. Also, neuronal responses in stria-

tum are modulated by both actions and their anticipated

outcomes [7,8]. In a recent study, striatal neurons were

recorded while monkeys chose whether to turn a handle

leftward or rightward to receive (usually) different prob-

abilities of water reward. (This is called a ‘free choice’

task, to distinguish it from ones in which animals are

instructed which action to take.) The recordings were

studied quantitatively to test whether responses encode

action values prior to a choice being entered [9��]. During

block-by-block changes in the probability that the turns

would be rewarded, responses in the majority of striatal
Current Opinion in Neurobiology 2006, 16:199–204
neurons with reward-related movement activities corre-

lated with the block-wise value of either one of the two

options. Many fewer neurons were modulated by the

relative value of one action over another (which, in the

RL model used for analysis, is more directly linked to the

probability that the action will be chosen).

Also, in some human functional imaging experiments, the

blood-oxygenation level dependent (BOLD) signal in the

striatum correlates with predicted reward [10,11]; in other

studies, however, it instead correlates with prediction

errors for reward [12–14] (and punishment [15]). This

difference might be explained if value correlations reflect

cortical input or intrinsic activity, whereas the error signal

reflects dopaminergic input.

Cortex

Reward-predictive neural responses have also been

observed in a variety of cortical areas, including prefrontal

cortex [16–19] and its orbital division [20]. One theore-

tical proposal [21] (see also [3]) to explain this prolifera-

tion of value information is that prefrontal and striatal

systems subserve distinct RL methods for action evalua-

tion. In particular, prefrontal cortex might be distin-

guished by the use of more cognitive methods to plan
www.sciencedirect.com
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actions by sequentially contemplating their conse-

quences [22], whereas dorsolateral striatum is associated

with more stimulus-triggered responses [5]. A Bayesian

model based on this division of labor accounts for a

number of behavioral and lesion results concerning the

differential recruitment of these systems [21].

For decisions about where to saccade, another area that

has received extensive attention as a potential action

value map is the lateral intraparietal area (LIP), where

microstimulation evokes saccades and neurons have

visuo-spatial receptive fields related to saccade targets.

In primates, LIP firing is modulated by the magnitude

and probability of the reward expected for an instructed

saccade into a neuron’s receptive field, and (in an early

example of theory-driven data analysis) by a model-gen-

erated estimate of subjective target value when monkeys

could freely choose, for reward, which of two targets to

fixate [23]. Recent work has developed this approach

using more elaborate theoretical models. In another

free-choice saccade study [24��], monkeys’ behavioral

decisions could satisfactorily be explained by choice

according to a relative value measure (called ‘local frac-

tional income’); furthermore, LIP neuron responses were

modulated by this index for the target in their receptive

fields. Another saccade choice task [25] was used to study

whether LIP firing is more closely related to the value

expected for a saccade or its propensity to be chosen;

these were distinguished using trial blocks in which value

and choice probability were dissociated using principles

from game theory. Block-wise, LIP activity followed

value expectancy.

Variability and delay

In general, candidate actions might differ according to the

expected magnitude, probability or delay to rewarding

outcomes, and all of these factors might influence the

valuation of actions. There is some neural evidence that

these factors are accounted for by dissociable neural

systems. For instance, variability or ‘risk’ in an outcome

($20 with 50 percent probability) can make it either more

or less subjectively desirable compared with a different

outcome with the same average value ($10 with cer-

tainty). In a functional magnetic resonance imaging

(fMRI) study of human financial decision-making, risk-

seeking or risk-averse choices were preceded by activa-

tion of ventral striatum or anterior insular cortex, respec-

tively [26]. Also, in a primate free-choice study, both

behavioral choices and neurons in posterior cingulate

were modulated by the variability of the outcome [27].

Similarly, the value of a reward might be modulated by its

delay — money received immediately might be more

desirable than money promised in a year, a phenomenon

known as ‘temporal discounting’. The steepness of such

discounting — how quickly anticipated reward loses value

with delay is a preference that, in computational theories,
www.sciencedirect.com
must be tuned to respect particular circumstances (interest

rates, hunger) and to improve the effiency of learning [28].

A possible neural substrate for this function was suggested

by an fMRI study of a decision task with delayed rewards

[10]. Reward valuations from RL models with different

time discounting preferences correlated with BOLD sig-

nals arranged in an orderly map along insular cortex and

striatum, with ventroanterior value signals discounting

delay more steeply compared with those of dorsoposterior

signals. In another fMRI study of discounting [11], a

dissociation was found between areas (such as ventral

striatum and medial prefrontal cortex) differentially acti-

vated during choices involving immediate reward and

others (such as lateral prefrontal areas) activated during

choices regardless of delay. This result was interpreted in

terms of choice models from economics that assume a

person’s overall valuation of a delayed reward comprises

contributions from distinct delay-sensitive and -insensi-

tive components.

How to select actions
The purpose of evaluating the long-term value of action

candidates is to simplify the next step in decision-making:

choosing between them. The neural substrates for action

choice might overlap with those for evaluation — for

instance, if neurons representing action values compete

for selection through mechanisms such as mutual inhibi-

tion — or choice could occur downstream from the value

centers.

Choice rules

Given value estimates for all action candidates, choice

might be as simple as ‘greedily’ selecting the action

expected to deliver the greatest future value. However,

this strategy might miss out on more valuable actions that

have not yet been explored or have previously been

unlucky. For this reason, RL models generally assume

that there should be some degree of randomness in the

choices. In RL, this is often accomplished by a ‘softmax’

decision rule that chooses randomly but is biased toward

the seemingly richest options; in behavioral psychology,

the venerable ‘matching law’ [29] achieves a similar effect

using a somewhat different mathematical form.

Many data sets discussed in this review are fit well by the

softmax rule (e.g. [9��,17,27]). Although the matching rule

has also been used to model behavioral and neural data

[24��], reanalysis [30] (see also [31��]) indicated that the

softmax rule provided a better fit to behavior. This is

partly because (in the case of two actions) it correctly

predicts that choice probability depends on the differ-

ence, rather than the ratio, of action values.

As already mentioned, an important computational pro-

blem facing a decision-maker is tuning the parameters of

his or her choice algorithm [28]. In a recent study dra-

matically demonstrating such ‘metalearning’, monkeys
Current Opinion in Neurobiology 2006, 16:199–204
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playing a ‘matching pennies’ choice game adjusted the

degree to which their choices were random according to

the payoff algorithm used by the computer opponent [17].

As the payoff rules were changed to punish predictable

responses, monkeys’ choices changed from relatively

deterministic to more random.

Actor and critic

Where in the brain are actions actually selected? In recent

simultaneous recordings in primate prefrontal cortex and

dorsal striatum during a learning task in which the learned

associations between stimuli and actions were periodi-

cally reversed [32], striatal and prefrontal neurons were

both closely tied to animals’ behavioral responses. How-

ever, the time course of change in behavioral responses

over trials following a reversal was more closely related to

the change in prefrontal responses than to that of striatal

responses. The authors interpreted this result as suggest-

ing that the prefrontal region was more likely to be

controlling behavior. Alternatively, given the finding of

action value coding in the striatum [9��], it is possible that

action selection might occur yet elsewhere in the cortico-

basal ganglionic loop, downstream from striatum and

controlled by its value output [4].

Another possible organization is suggested by RL meth-

ods that subdivide choice into parallel prediction and

decision subtasks (rather than the serial approach dis-

cussed so far; these are called ‘actor–critic’ methods).

Recent fMRI results provide some support for the long-

standing suggestion [33] that choice and prediction might

be localized in adjacent dorsal and ventral striatum,

respectively. Specifically, experiments showed that

whereas ventral striatum is implicated for prediction

learning regardless of whether rewards are action-con-

tingent, dorsal striatum is recruited only when actions are

chosen to obtain reward [14,34].

How to learn from experience
Finally, experience with the consequences of a chosen

action can be used for learning: to update beliefs about

the value of the action and thereby improve future

decisions. The temporal-difference (TD) learning algo-

rithm updates action values to more accurate ones accord-

ing to the ‘prediction error’ or mismatch between

received and predicted reward. The observation [2] that

the phasic firing of dopamine neurons qualitatively

resembles such a prediction error signal is now classic;

dynamic behavioral and neural responses during learning

are also well fit by this update rule in many of the studies

we have reviewed (e.g. [9��,10,13–15,17]).

More news on dopamine

The prediction error hypothesis of dopamine has been

tested more quantitatively in several recent experiments.

In tasks in which a cue is reinforced probabilistically,

excitatory dopamine responses to cues and rewards vary
Current Opinion in Neurobiology 2006, 16:199–204
linearly with the reward probability [35–37], as predicted

by the model. The dopamine response to a cued reward

also correlates with the number of preceding nonre-

warded presentations [38], as would be expected with

learning. Perhaps most impressively, a trial-by-trial

regression analysis of dopamine responses in a task with

varying reward magnitudes showed that the response

dependence on the magnitude history has the same form

as that expected from TD learning [39].

Another line of evidence is emerging from fast-scan cyclic

voltammetry in rodents. This method can detect transient

changes in dopamine concentration in the striatum with

subsecond temporal resolution. Such recordings exhibit

transient dopamine surges in circumstances similar to

those that phasically excite dopamine neurons; particu-

larly noteworthy are several reports of timelocking

between dopamine surges and cue-evoked or self-

initiated behavioral responses [40,41] (see also [36]).

Because it measures dopamine release rather than spik-

ing, this technique might also prove particularly useful in

studying self-administration of cocaine and brain stimula-

tion reward [41,42��], which are both pathological choice

behaviors hypothesized to follow from direct interference

with the dopaminergic prediction error signal [43].

There is an alternative school of thought that dopamine

activity instead flags attentionally relevant or salient

events, regardless of their value [44]. In support of the

attentional hypothesis, dopamine neurons exhibit some

anomalous excitatory responses such as those to novel,

neutral stimuli; microdialysis also provides evidence for

enhanced dopamine activity on a slow timescale in salient

aversive situations, such as footshock. However, an atten-

tional account offers no clear explanation as to why

dopamine is so strongly implicated in reinforcement,

nor why dopamine neurons are inhibited rather than

excited by some salient non-rewarding events, such as

the omission of reward [2]. Also problematic from an

attentional view, a recent experiment in anesthetized

rats verified that dopaminergic neurons are also inhibited

rather than excited by salient aversive stimuli [45��].
There is also a theoretical account of why dopamine

neurons should respond to novel, neutral stimuli (if they

encode a reward prediction error) [46].

Another intriguing finding is that dopamine neurons show

slowly building excitation when a reward might or might

not arrive stochastically [35]. (In this case, spiking ramps

up prior to the time reward is expected, earlier to and

more slowly than the burst responses we have discussed

so far.) This activity was originally interpreted as a dis-

tinct signal of uncertainty (i.e., variability) co-located with

the prediction error signal, but an alternative explanation

is that the ramp is a side effect of the standard TD error

signal, related to the anticipatory nature of the learned

predictions [47]. The original experimenters disagree
www.sciencedirect.com
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with this account [48], but resolving this question will

require further experiments or a more conclusive reana-

lysis of the existing data.

What about serotonin?

Unlike the situation with positive prediction error result-

ing from rewards or reward prediction, neuronal record-

ings [35–39] have revealed less evidence for a

quantitative relationship between the degree of dopami-

nergic inhibition and the level of negative error from

punishment or omitted reward. This might be due to the

low background firing rates of the neurons. A natural

question is how aversive signals are carried. A suitable

candidate is the dorsal raphé serotonin system, many of

the functions of which seem to be in opposition to those of

the dopamine system [49]. Because this system projects

to the striatum, it could be the source of BOLD responses

correlated with aversive prediction error in the ventral

striatum [15].

However, this proposal clearly does not account for all of

the many functions of serotonin. Serotonergic antagonism

is associated with diverse deficits including, importantly,

impulsive choices, which led to the proposal that the

serotonin system regulates the steepness of temporal

discounting [28]. For example, in a rat experiment com-

paring the effects of dopamine and serotonin antagonists

on decisions about cost and delay, serotonergic antagon-

ism encouraged impulsive choice of small immediate

rewards [50]. Differential activation of the dorsal raphé

and the dorsal striatum in fMRI during task conditions

that require shallow temporal discounting [10] is also

consistent with the hypothesis. However, elucidation of

the role of the serotonergic system most urgently requires

more evidence from recordings of serotonergic neurons,

which have so far been scarce because of technical

difficulties.

Conclusions
The study of reward-guided decision-making is an exemp-

lary area for the integration of theory and experiment. The

recent development of this field is characterized by the use

of models that are noteworthy for three reasons. First, they

are normative — that is, more than phenomenological

simulations, they are grounded in and shed light on sound

computational principles. Second, they enable the study of

the objective correlates of subjective phenomena such as

value. Finally, they are closely integrated into the experi-

mental and analytical process, often detailed enough to fit

trial by trial to raw experimental data.

An important future direction in the study of learning and

decision is how to deal with choice under various sorts of

uncertainty. Normative, statistical models of this issue

have been proposed to explain such diverse phenomena

as the differential roles of acetylcholine and norepinephr-

ine [51] and of prefrontal and striatal systems [21], and
www.sciencedirect.com
behavioral and neural data from discriminations between

noisy sensory stimuli [52]. However, as yet, there has

been relatively little experimental work aimed at testing

these theories.
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