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Abstract 
One oft-envisioned function of search is planning actions, e.g. by exploring routes through a cognitive 

map. Yet, among the most prominent and quantitatively successful neuroscentific theories of the 

brain’s systems for action choice is the temporal difference account of the phasic dopamine 

response. Surprisingly, this theory envisions that action sequences are learned without any search at 

all, but instead wholly through a process of reinforcement and chaining. 

This chapter considers recent proposals that a related family of algorithms, called model-based 

reinforcement learning, may provide a similarly quantitative account for action choice by cognitive 

search. It reviews behavioral phenomena demonstrating the insufficiency of temporal difference-like 

mechanisms alone, then details the many questions that arise in considering how model-based 

action valuation might be implemented in the brain and in what respects it differs from other ideas 

about search for planning. 

Introduction 
Theories from reinforcement learning (RL; Sutton and Barto 1998) – the branch of artificial 

intelligence devoted to trial-and-error decision making – have enjoyed prominent success in 

behavioral neuroscience.  In particular, temporal-difference (TD) learning algorithms such as the 

actor-critic are well known for characterizing the phasic responses of dopamine neurons and their 

apparent, though non-exclusive, role in reinforcing, or “stamping-in” successful actions so that they 

may be repeated in the future (Schultz, Dayan, and Montague 1997).  Because these theories provide 

a crisp quantitative characterization of the variables learned by these algorithms and the learning 

rules that should update them, they have proved directly useful in the laboratory, where they have 

been used to analyze and interpret trial-by-trial timeseries of behavioral and neurophysiological data 

(Daw and Doya 2006).  

Indeed, these computational characterizations are so precise that they have been repeatedly falsified 

in experiments (Hampton, Bossaerts, and O'Doherty 2006, 2008; Tolman 1948; Dickinson and 

Balleine 2002; Daw et al. 2011; Li and Daw 2011; Bromberg-Martin et al. 2010). The problem may be 

less that the theories are incorrect where they are applicable, and more that they have a limited 

scope of application. Anatomically, dopamine neurons project widely throughout a number of areas 

of the brain, where dopaminergic signaling likely subserves different roles; the TD theories speak 

chiefly to its action at only two such targets, dorsolateral and ventral striatum. Functionally, 

psychologists studying animal conditioning have long distinguished two subtypes of instrumental 

learning (see Balleine and O’Doherty chapter, this volume, for a full review of relevant psychological 

and neuroscientific data). The TD theories are closely related to one type: habitual learning of 



automatized responses, which is also associated with dorsolateral striatum. However, the same 

theories cannot explain behavioral phenomena associated with a dissociable but easily confused type 

of instrumental learning, called goal-directed (Dickinson and Balleine 2002; Balleine, Daw, and 

O'Doherty 2008). Since goal-directed behaviors are thought to involve evaluating actions via 

traversing a sort of associative chain, they are also much more relevant to cognitive search.  

Recent work has suggested that goal-directed instrumental learning also has a formal counterpart in 

RL, in a family of algorithms known as model-based RL (Daw, Niv, and Dayan 2005; Balleine, Daw, and 

O'Doherty 2008; Redish, Jensen, and Johnson 2008; Rangel, Camerer, and Montague 2008; Doya 

1999). These algorithms are distinguished by learning a “model” of a task’s structure – for a spatial 

task, a map – and using it to evaluate candidate actions, e.g., by searching through it to simulate 

potential spatial trajectories. In contrast, the TD algorithms associated with the nigrostriatal 

dopamine system are model-free in that they employ no such map or model, and instead work 

directly by manipulating summary representations such as a policy, a list of which actions to favor. 

The promise of model-based RL theories, then, is that they might do for goal-directed behavior, 

cognitive search, and planning what the TD theories did for reinforcement: provide a quantitative 

framework and definitions that could help to shed light on the brain’s mechanisms for these 

functions.  At present, this project is at an extremely early stage. In particular, while there have been 

reports of neural correlates in some way related to model-based RL throughout a large network 

(Hampton, Bossaerts, and O'Doherty 2006, 2008; Valentin, Dickinson, and O'Doherty 2007; van der 

Meer et al. 2010; Gläscher et al. 2010; Daw et al. 2011; Simon and Daw 2011; Bromberg-Martin et al. 

2010), there is not yet a clear picture of how, mechanistically, these computations are instantiated in 

brain tissue. Indeed, model-based RL is a family of algorithms, including many potentially relevant 

variants. This chapter attempts to catalogue some of the possibilities: first, to define the framework 

and how its components might map to common laboratory tasks and psychological theories, and, 

second, to identify some of the important dimensions of variation within the family of model-based 

algorithms, framed as questions or hypotheses about their putative neural instantiation. 

Reinforcement learning and behavioral psychology 

Goal directed and habitual behaviors 
Psychologists have used both behavioral and neural manipulations to dissociate two distinct types of 

instrumental behavior, which appear to rely on representations of different sorts of information 

about the task. Consider a canonical instrumental task, in which a rat presses a lever for some 

specific rewarding outcome (say, cheese). For this behavior to be truly goal-directed, it has been 

argued, it should reflect two distinct pieces of information: a representation of the action-outcome 

contingency (that pressing the lever produces cheese), together with the knowledge that the 

outcome is a desirable goal (Dickinson and Balleine 2002). Then the choice whether to leverpress, or 

instead to do something else, would rely on a simple, two-step associative search or evaluation: 

determining that the leverpress is worthwhile via its association with cheese. 

However, behavior need not be produced this way. An alternative theory with a long history in 

psychology is the stimulus-response habit. Here, the rat’s brain might simply represent that in the 

presence of the lever, an appropriate response is to press it. One advantage of such a simple, 

switchboard mechanism of choice (i.e., that stimuli are simply wired to responses) is that it admits of 

a very straightforward learning rule, which Thorndike (1911) called the Law of Effect: if a response in 



the presence of some stimulus is followed by reward, then strengthen the link from the stimulus to 

the response. 

Such a simple reinforcement-based mechanism can accomplish a lot – indeed, an elaborated version 

of it continues to be influential since it lies at the core of the actor/critic and other popular TD 

models of the nigrostriatal dopamine system (Maia 2010). The disadvantage of this method is that 

since “choices” are hardwired by reinforcement and thereafter not derived from any representation 

of the actual goals, they are inflexible. Thus, such a theory predicts that at least under certain 

carefully controlled circumstances, rats will work on a lever for food they don’t presently want (say, 

because they are not hungry). 

Although this rather unintuitive prediction is upheld in some situations (for instance, in rats who 

have been overtrained to leverpress, hence the term habit), reward devaluation procedures of this 

sort have also been used to demonstrate that in other situations, rats do demonstrably employ 

knowledge of the action-outcome contingency in deciding whether to leverpress. That is, they exhibit 

truly goal-directed behavior in addition to mere habits (Dickinson and Balleine 2002; Dickinson 1985, 

see Balleine and O'Doherty chapter, this volume, for a fuller review). This research on the associative 

structures supporting instrumental leverpressing offers a more refined and carefully controlled 

development of an earlier critique of habits that had been based on rodent spatial navigation 

behavior. There, Tolman (1948) argued that animals’ flexibility in planning novel routes when old 

ones were blockaded, new shortcuts were opened, or new goals were introduced could not be 

explained on the basis of stimulus-response habits but instead demonstrated that animals planned 

trajectories relying on a learned “cognitive map” of the maze. 

This article considers computational accounts of these behaviors from RL, focusing mainly on goal-

directed action. The standard psychological theory is that these behaviors are driven by particular 

associations: either between stimuli and responses or between actions and outcomes. Although the 

RL models employ closely related representations, it is useful to keep in mind the operational 

phenomena – leverpressing may be differentially sensitive to reward devaluation, rats may adopt 

novel routes in mazes that were not previously reinforced – are distinct from the theoretical claims 

about precisely what sorts of associations underlie them.  

RL and the Markov decision process 
In computer science, RL is the study of learned optimal decision making; that is, how optimally to 

choose actions in some task, and moreover how to learn to do so by trial and error (Sutton and Barto 

1998). To motivate the subsequent discussion, the framework is laid out here in moderate 

mathematical detail; for a more detailed presentation see Balleine et al. (2008). 

The class of task most often considered, called the Markov decision process (MDP), is formal, stylized 

description of tasks capturing two key aspects of real-world decisions. First, behaviors are sequential 

(like in a maze, or chess): their consequences may take many steps to play out and may depend, 

jointly, on the actions at all of them. Second, the contingencies are stochastic (like steering an 

airplane through unpredictable wind, or playing a slot machine or a game involving rolls of dice). The 

problem solved by RL algorithms is given an unknown MDP – like a rat dropped in a new box – to 

learn, by trial-and-error, how best to behave. 

Formally, at each timestep  , the task takes on some state   , and the agent receives some reward    

and chooses some action   . States are situations; they play the role of stimuli (e.g., in a 

leverpressing task), and of locations (e.g., in a navigation task). Actions (like turning left or right or 



pushing a lever) influence the state’s evolution, according to the transition function, 

  (      )   (       |         ) 

which specifies the probability distribution over the new state      given the preceding state/action 

pair. In a spatial task, the transition function characterizes the layout of a maze; in an instrumental 

task it characterizes the contingencies by which leverpresses lead to events like food delivery.  

By influencing the state, the agent tries to maximize rewards. The reward    measures the utility of 

any rewarding outcome that the subject receives on trial t. Rewards depend stochastically on the 

state   ; averaging out this randomness, we define the reward function as the average reward in a 

state,  ( )      |     . For instance, in a leverpressing task for a hungry rat, the reward would 

be positive in states where cheese is consumed; in chess, it is positive for winning board positions. 

Together, the reward and transition functions define an MDP. 

MDPs characterize a reasonably broad and rich class of tasks; the main simplifying assumption is the 

“Markov property” for which they are named: that future events can depend on past states and 

actions only via their influence on the current state. (Formally, the functions   and   are conditioned 

only on the current state and action.) This is a crucial assumption for the efficient solution of the 

problems, though there is work on extending RL accounts to tasks that violate it (Dayan and Daw 

2008). 

The value function 
The difficulty of decision making in an MDP is the complex sequential interactions between multiple 

actions and states in producing rewards. (Think of a series of moves in a chess game.) Formally, we 

define the agent’s goal as choosing actions so as to maximize his future reward prospects, summed 

over future states, in expectation over stochasticity in the state transitions, and discounted (by some 

decay factor    ) for delay. Choosing according to this long-term quantity requires predicting 

future rewards, i.e. evaluating (and learning) the complex, tree-like distribution of possible state 

trajectories that may follow some candidate action. 

Formally, expected value over these trajectories is defined by the state-action value function: 
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It measures the value of taking action   in state   by a series of future rewards   summed along a 

series of states           , and averaged over different trajectories according to the state transition 

probabilities  . 

Note that the value of taking action   in state   also depends on the choices made at future states; 

thus the function depends on a choice policy   (a mapping from states to actions: like a set of 

stimulusresponse associations, one for each state) that will be followed thereafter.  

The value definition may be written in a simpler, recursive form, which underlies many algorithms for 

solving it: 
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Since    measures value with respect to a policy  , it can be used to evaluate actions at a state 

(conditional on   being followed thereafter), or to evaluate policies themselves to try to find the best 

one, a process called policy iteration. Alternatively, a variant of Equation 2 defines   , the future 

values of the optimal policy, optimal because actions are chosen so as to maximize the term on the 



right hand side: 
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Having computed or learned   (   ), it is possible to choose the best action at any state   simply by 

comparing its values for each action at a state.  

Evaluating Q(s,a) 
There are, broadly, two families of approaches to RL. Most work in psychology and neuroscience 

focuses on model-free RL algorithms such as TD learning; these algorithms are the ones associated 

with the action of dopamine in parts of striatum, mainly because they learn using an error-driven 

update rule based on a prediction error signal that strikingly resembles the phasic responses of 

dopamine neurons. Briefly, these algorithms work by directly learning a value function (e.g.,  ) 

and/or a policy   from experience with rewards, chaining together observed rewards into long-run 

expectations by making use of the recursive nature of Equations 2 and 3. (Since the relationship 

between TD algorithms and the brain is well studied, we do not focus further on it here. For further 

details on these algorithms see, e.g., Balleine et al., 2008.) 

TD algorithms are called model-free because they do not learn or make use of any representation of 

the MDP itself – i.e., the one-step transition and reward functions   and  . The second family of 

approaches, model-based RL, focuses on learning to estimate these functions (a relatively 

straightforward exercise), which together form a complete description of the MDP. Given these, the 

value function   (   ) can be computed as needed, albeit via the laborious iterative expansion of 

Equation 2 or 3 into a long, tree-structured sum like Equation 1, then actions chosen to maximize it. 

(As discussed below, the Markov property helps make this evaluation more tractable, at least if the 

number of states is small.) 

Models and goals 
The model-based vs. model-free distinction echoes that between goal directed and habitual 

instrumental behaviors (Daw, Niv, and Dayan 2005). A model-based agent chooses actions by 

computing values making use of a representation of the transition structure,  , of the world – 

including which actions in which states lead to which outcomes – and the reward function,  , or 

what these outcomes are currently worth. Because they are grounded in these representations, 

these choices will adjust automatically to changes in this information via devaluations, contingency 

degradations, shortcuts, and so on: all of the operational hallmarks of goal-directed behavior. 

Conversely, model-free RL lacks such a representation: it chooses either directly from a learned 

policy  , or from a learned representation of the aggregated value function   (   ). Neither of 

these objects represents the actual outcomes or contingencies in the task: they simply summarize 

net value or preferred actions, thus, like stimulus-response habits, they cannot directly be adjusted 

following a change in goals. 

All this led to the proposals that the two categories of instrumental behavior are implemented in the 

brain using parallel circuits for model-based and model-free RL (Daw, Niv, and Dayan 2005; Balleine, 

Daw, and O'Doherty 2008; Redish, Jensen, and Johnson 2008; Rangel, Camerer, and Montague 2008). 

This article focuses on the nature of the less well understood, model-based, part of this architecture.  



World models vs. action-outcome associations 
In psychological theories, habitual behavior is envisioned to arise from stimulus response habits. This 

is directly analogous to RL’s state-action policy. Goal-directed behavior is thought instead to arise 

from the combination of action-outcome, and outcome-goal value associations. These two 

constructions roughly parallel the transition and reward functions used by model-based RL. However, 

the transition function generalizes the action-outcome association to a broader class of multistep 

tasks (i.e., MDPs) in which there are generally not simple one-to-one mappings between actions and 

outcomes, but instead, whole series of actions jointly give rise to a whole series of outcomes, and the 

goal of the decision maker is to optimize their aggregate value. 

In this setting, the action-outcome association is replaced by the one-step transition model 

 (      ) which describes how likely action   in state   will lead to state   . Here,    is playing the 

role both of an (immediate) outcome, with value  (  ) given by the reward model, and also a state in 

which further actions might lead to further states and outcomes. (It is merely a notational 

convention that these two aspects of the state are not more explicitly dissociated.)  

Thus, many of the richer consequences of model-based choice in an MDP – e.g., flexible planning 

over multistep paths such as in adopting novel routes in a spatial maze – are not well captured in the 

context of basic instrumental conditioning. Spatial navigation tasks exercise more of this complexity; 

indeed, stylized spatial tasks called “gridworlds” are standard testbeds for RL software in computer 

science (Sutton and Barto 1998). In this respect, model-based RL serves to generalize the careful 

theoretical developments from instrumental conditioning back into the richer experimental settings 

where researchers such as Tolman (1948) first birthed many of the concepts. That said, the action-

outcome association as a unit plays a quite literal role in many theories of instrumental choice (for 

instance, its salience determines the relative strength of goal-directed and habitual actions in 

Dickinson’s (1985) influential theory), and it can often be unclear how to extend these ideas beyond 

instrumental tasks involving simple action-outcome contingencies. 

A more general point is that numerous sorts of behaviors – e.g., instrumental leverpressing, route 

planning, and explicit planning tasks from human neuropsychology, such as the Tower of London test 

– can all be characterized in terms of model-based RL. But all such tasks may not exercise entirely the 

same psychological and neural mechanisms: there may not be a single “model-based” system. 

Indeed, as the rest of this chapter details, there are numerous variants of model-based RL, and 

different such mechanisms may contribute to different domains. 

Model-based valuation 
In order to simplify choice, model-free RL solves a rather complex learning problem: estimating long-

run aggregate, expected rewards directly from experience. Conversely, the learning problem in 

model-based RL is quite straightforward (Gläscher et al. 2010), because it does not attempt to detect 

long-run dependencies: instead, it just tracks immediate rewards and the one-step transition 

contingencies. At choice time, these one-step estimates must be, in a sense, strung together to 

compute long-run reward expectations for different candidate actions. 

Thus, the major question for neural instantiations of model-based RL – and the one most relevant to 

cognitive search – is not learning but evaluation: how the brain makes use of the learned model to 

compute action values. The remainder of this chapter concerns different aspects of this question.   



Parallel or serial 
An obvious approach to model-based evaluation is to start at the current state, and compute the 

values of different actions by iteratively searching along different potential paths in the tree of future 

consequences, aggregating expected rewards (Figure 1). This corresponds to working progressively 

through the branching set of nested sums in Equation 1. But need it work this way? 

Equation 2 suggests an alternative to this: a straightforward parallel neural instantiation (Sutton and 

Pinette 1985; Suri 2001). This is because it defines the actions’ values collectively in terms of their 

relationships with one another, and reveals that evaluating any one of them effectively involves 

evaluating them all together. 

Notably, if this equation is viewed as defining a linear dynamical system, one in which over repeated 

steps the values on the left side are updated in terms of the expression on the right side, then the 

true values    are its unique attractor. In RL, this is an instance of the value iteration equation, many 

variants of which are proved to converge. It is reasonably simple to set up a neural network that 

relaxes quickly to this attractor (for instance, one with neurons corresponding to each state-action 

pair, connected to one another with strengths weighted by the transition probability, and with 

additional inputs for the rewards   ). The addition of the max nonlinearity in Equation 3 complicates 

the wiring somewhat, but not the basic dynamical attractor story. 

Although this approach may make sense for tasks with moderately sized state spaces, it is clearly not 

directly applicable to denser domains like chess: for instance, it would be impossible to devote one 

neuron to each state (i.e., board position). Indeed, the efficient solution of Equation 3 by dynamic 

programming methods like value iteration depends on the number of states being bounded so that 

the size of the tree being explored does not grow exponentially with search depth. Formally, the 

Markov property ensures that the same n states’ values are updated at every iteration, since the 

path leading into a state is irrelevant for its future conseqences. Hence, the “tree” is thus not really a 

tree in the graph theoretic sense: it has cycles. By bounding the explosion of the search tree, this 

property allows for search time to be linear in n and in depth.  

When the number of states is too large to allow this sort of global view, selectivity in contemplating 

states, and probably some degree of serial processing, appears inevitable. In this case, values would 

presumably be computed for the values of actions at the current state, in terms of its local 

“neighbors” in the search over trajectories. In neuroscience, at least in spatial tasks, the behavioral 

phenomenon of vicarious trial and error (Tolman 1948, whereby rats look back and forth at decision 

points, as though contemplating the alternatives serially), and findings of apparent neural 

representations of individual prospective trajectories and their rewards (van der Meer et al. 2010), 

both suggest that candidate future routes are contemplated serially, starting from the current 

position.  

Searching and summing  
Thus, we may consider the evaluation of equation 3 by a serial search through a “tree” of potential 

future states, summing rewards over trajectories and averaging them with respect to stochastic 

transitions to compute action values. Psychologically, controlling such a search and keeping track of 

the various intermediate quantities that arise clearly implicates multiple aspects of working memory 

and executive control; in humans, this is consistent with the neuropsychological basis of planning 

tasks like the Tower of London (Robbins 1996). 



Notably, for better or worse, the RL perspective on search is somewhat different than in other parts 

of psychology and artificial intelligence. First, the focus in Equation 3 is on accumulating rewards over 

different potential trajectories, so as to choose the action that optimizes reward expectancy, rather 

than on the needle-in-a-haystack search problem of seeking a path to a single, pre-defined goal, as in 

planning. The latter perspective has its own merits: for instance, it enables interesting possibilities 

like backwards search from a goal, which is not usually an option in RL since there is no single target 

to back up from. The idea of outcomes influencing choice, as by a backward search, may have some 

psychological validity even in reward-based decision situations. For instance, shifts in behavior 

mediated by focus on a particular goal are suggested by the phenomenon of cue-induced craving in 

drug abusers and by related laboratory phenomena such as outcome-specific Pavlovian-instrumental 

transfer, where a cue associated with (noncontingent availability of) some particular reward 

potentiates actions that produce it. 

Since they do not actually impact actions’ values as defined in Equations 1-3, simple “reminders” of 

this sort would not be expected to have any effect if choices were determined by a full model-based 

evaluation. One way to reconcile these phenomena with the RL perspective is that, if the full tree is 

not completely evaluated, then cues may affect choices by influencing which states are investigated.  

Indeed, work on search in classical artificial intelligence (such as on systematically exploring game 

trees) focuses on the order in which states are visited – e.g., depth- or breadth-first, and how 

branches are heuristically prioritized – and conversely in determining what parts of the tree may be 

“pruned” or not explored. These issues have received relatively little attention in RL. One idea that is 

potentially relevant to neuroscience is that of multi-step “macro” actions, called options, which are 

(roughly speaking) useful, extended sequences of behavior, “chunked” together and treated as a 

unit. Though they are often used in model-free RL, in the context of model-based evaluation, options 

can in effect guide searches down particular paths – following an entire chunk at once – and in this 

way bias model-based valuation and potentially make it more efficient (Botvinick, Niv, and Barto 

2009). Other search prioritization heuristics use Bayesian analyses of the value of the information 

obtained, a cognitive counterpart to analyses of the explore-exploit dilemma for action choice (Baum 

and Smith 1997). 

Averaging and sampling 
An equally important aspect of the RL perspective on valuation, which is less prominent in other sorts 

of search, is that transitions are stochastic, and values are thus computed in expectation over this 

randomness (Equation 3). Going back even to early analyses of gambling (Bernoulli 1738/1954), this 

sort of valuation by averaging over different possible outcomes according to their probabilities is a 

crucial aspect of decision making under uncertainty and risk of numerous sorts. It is also one aspect 

of the MDP formalism that is not well examined in spatial navigation tasks, where the results of 

actions are typically deterministic. 

The need for such averaging to cope with stochasticity or uncertainty may have important 

consequences for the neural mechanisms of model-based evaluation. In machine learning and 

statistics (though not so much, specifically, in RL) problems involving expectations are now routinely 

solved approximately by schemes in which random samples are drawn from the distribution in 

question and averaged, rather than explicitly and systematically computing the weighted average 

over each element of the full distribution (MacKay 2003). 



Such sampling procedures now also play a major role in many areas of computational neuroscience 

(Fiser et al. 2010), though again, not yet so much in RL theories. Notably, Bayesian sequential 

sampling models have provided an influential account of how the brain may analyze noisy sensory 

stimuli, such as judging whether a fuzzy visual stimulus is moving left or right (Gold and Shadlen 

2002; Ratcliff 1978). These theories account for both behavior (reaction times and percent correct) 

and neural responses (ramping responses in neurons in posterior parietal cortex) during noisy 

sensory judgments by asserting that subjects are accumulating evidence about the stimulus by 

sequentially averaging over many noisy samples.  

Intriguingly, the success of such models appears not to be limited to situations in which there is 

objective noise or stochasticity in the stimulus, but instead also extends to similar behavior on more 

affective valuation tasks, such as choosing between appetitive snack foods (Krajbich, Armel, and 

Rangel 2010). This suggests that such tasks – and, perhaps, goal-directed valuation more generally – 

might be accomplished by sequentially accumulating random samples of the decision variables, in 

this case perhaps drawn internally from a world model. In the case of model-based RL in an MDP, this 

could involve averaging value over random state transition trajectories rather than conducting a 

more systematic search. 

Caching and partial evaluation 
Finally, in search over a large state space, the model-based/model-free distinction may be a false, or 

at least a fuzzy, dichotomy. Although maintaining a world model allows an agent, in principle, to 

recompute the action values at every decision, such computation is laborious and one may prefer to 

simply store (“cache”) and reuse the results of previous searches. In one version of this idea (the 

“model-based critic,” which has some neural support; Daw et al. 2011), values derived from model 

search could drive prediction errors (e.g., dopaminergic responses) so as to update stored values or 

policies using precisely the same temporal-difference learning machinery otherwise used for model-

free updates. Then, until relearned from experience or recomputed by a further search, such cached 

representations will retain their inflexible, model-free character: insensitive to devaluation, etc. 

Related algorithms from RL such as prioritized sweeping or DYNA similarly store values and update 

them with sporadic model-based searches, even mixing model-based and model-free updates 

(Sutton 1990; Moore and Atkeson 1993). Neural phenomena such the replay of neural 

representations of previously experienced routes between trials or during sleep may serve a similar 

purpose (Johnson and Redish 2005). 

Moreover, the recursive nature of Equations 2 and 3 demonstrates another way that search and 

model-free values can interact. In particular, it is possible at any state in a search to substitute 

learned model-free estimates of  (   ) rather than expanding the tree further. Again, this will entail 

devaluation insensitivity for outcomes in the part of the tree not explored. 

All these examples suggest different sorts of interactions between model-based and model-free 

mechanisms. Thus, although previous work has tried to explain the balance between goal-directed 

and habitual behaviors (i.e. under what circumstances animals exhibit devaluation sensitivity) by 

considering which of two separate controllers is dominant, the correct question may be instead, 

what triggers update or recomputation of stored values using search, and what determines how far 

that search goes? 



Conclusion 
Model-based RL extends successful model-free RL accounts of the phasic dopaminergic response and 

its role in action choice to include action planning by searching a learned cognitive map or model. 

Although this proposal is still in its early days – and in particular, the neural mechanisms 

underpinning such search are as yet relatively unknown – the proposal offers a quantitative set of 

hypothetical mechanisms that may guide further experimentation, and leverages existing knowledge 

of the neural substrates for model-free RL. Moreover, compared to conceptualizations of search for 

action planning in other areas of artificial intelligence or cognitive science, model-based RL inherits a 

number of unique and potentially important characteristics from its successful model-free cousin: for 

instance, mechanisms aimed at optimizing aggregate reward rather than attaining a single goal, and 

a fundamental focus on coping with stochasticity and uncertainty. 
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Figure 1: Tree search (after Niv & Dayan 2006). A rat faces a maze, in which different turns lead to states and
rewards. A model‐based RL method for evaluating different candidate trajectories involves enumerating paths
and their consequences through a “tree” future states and rewards.


