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This handout reviews the work of many authors in what has commonly come to be
known as steerable filters (a phrase coined by Freeman and Adelson in [3]). Related ear-
lier work can be also be found in [2, 5, 6], and some more recent work can also be found
in, among others, [1, 4, 7, 8, 9, 10, 11].

1 Steerability of First-Order Directional Derivatives

The simplest illustration of a steerable function is the first-order directional derivative of
a two-dimensional Gaussian. Although we will only consider Gaussians, the principle of
steerability may be extended to any differentiable function. For notational simplicity we
will consider a unit-variant Gaussian and ignore the scaling constant:

(1)

Lets begin by considering the first-order horizontal derivative (i.e., in ) of , given
by:

(2)

Illustrated in Figure 1 are sampled versions of these two functions, Equations (1) and (2),
respectively.

Our goal is to now show that the directional derivative is steerable: that is, it can be
synthesized at any orientation from a linear combination of the same function at a fixed
set of orientations. In that we are interested in rotations of this function, it is perhaps
more natural to consider these functions in polar coordinates and where: ,

, and so . In polar coordinates, the horizontal directional derivative
(Equation (2)) is given by:

(3)
Note that this function is polar-separable, that is, it is a product of a radial ( )
component and angular ( ) component. Since we are interested in rotations of this
function, lets first consider a copy of the function rotated by (see Figure 1). Sub-
stituting into Equation (3) and using a basic trigonometric identity (
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) gives:

(4)

Note that this function differs from the horizontal derivative in the angular portion only,
the radial portions are identical. We should of course not be surprised that the horizontal
derivative rotated by is simply the vertical derivative (i.e., in ) of :

, and in polar coordinates,
(5)

which of course is in agreement with Equation (4). The significance of this is that the
directional derivative at any orientation is simply a rotated copy of the same function.
This is one of two conditions that must hold in order for a function to be steerable, the
second condition is derived next.

Consider now the directional derivative rotated to an arbitrary angle, (see Fig-
ure 1). As before, substitute into Equation (3) and use the same trigonometric iden-
tity:

(6)

Equation 6 embodies the principle of steerability. In particular, the first-order directional
derivative of can be synthesized at an arbitrary orientation from a linear combination
of the function oriented at and ( and , respectively). The functions and

are referred to as the basis set and and are referred to as the interpola-
tion functions. The vector contains the values of the interpolation
functions for a particular angle . Abusing notation, we have written the basis set as a
“vector” ; each element of this “vector” is one of the directional derivatives ( and ),
that is, each is a function of and .

Behind themathematical formulation of steerability there is some simple intuition. Re-
call that in polar coordinates the directional derivative at arbitrary orientations differed
only in their angular portion, and in the case of the Gaussian, this angular component
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Figure 1: Steerability of the first-order directional derivatives and their responses. Illus-
trated along the top row, from left to right is: (1) a sampled 2d Gaussian, ; (2) the
horizontal directional derivative, (i.e., oriented at ); (3) the vertical derivative,

(i.e., oriented at ); and (4) the directional derivative “steered” to : this direc-
tional derivative was synthesized from a linear combination of the horizontal and vertical
directional derivatives. Illustrated along the bottom row, from left to right is: (1) a disc
image; (2) the result of applying the horizontal directional derivative; (3) the result of ap-
plying the vertical directional derivative; and (4) the “steered” response of a directional
derivative oriented at : this image was computed from a linear combination of the hor-
izontal and vertical derivative images, the actual filter (shown above) was never actually
synthesized or applied!

was a single frequency sinusoid (Equations (3) and (4)). Thus, phase shifts in the an-
gular component amounts to rotations of the directional derivative (e.g., the horizontal
derivative’s angular component is , and the vertical derivative’s angular portion is

- a phase shift of ). Now, a single frequency sinusoid has two
degrees of freedom, the amplitude and phase, so it should not be surprising that it can be
fully characterized by a basis set of size two. We can also draw upon the Nyquist sam-
pling rate for further intuition. In particular, according to Nyquist, a function bandlimited
to consist of frequency harmonics, can be sampled at a rate of without any loss of
information. With respect to our directional derivatives, the angular portion consists of
a single frequency sinusoid, thus we require only two samples to fully characterize the
function. The further interested reader is referred to [4] for a presentation based on Lie
groups and [1] for a presentation based on cartesian tensor calculus.

The steerability of the directional derivative is not dependent on the selection of the
basis set being oriented at and , the basis set can be chosen at any two distinct
orientations resulting only in different interpolation functions. In particular, following
the same formulation as above, a basis set oriented at and is given by:

(7)
(8)
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These equations can be writen in matrix notation as follows:

(9)

where
(10)

The angular component of the directional derivative oriented at an arbitrary angle
can be written in terms of the same basis set :

(11)

Finally, this function can be expressed with respect to the basis oriented at and by
combining the above two equations:

(12)

where the first term in square brackets evaluates to a 2-vector containing the new inter-
polation functions, and the “vector” contains the new basis set. Note that
is invertible if and only if for integer ; in other words, any two direc-

tional derivatives will do unless they are the same or unless they are negatives/reflections
of one another. Note also that for the canonical basis oriented at and , the matrix
in the above equation reduces to the identity matrix, leaving an expression identical to
our previous formulation (Equation (6)).

To review, the first-order directional derivative of a 2d Gaussian is steerable with a
basis set of size two. This result was based on two key observations: (1) the directional
derivative at arbitrary orientations are simply rotated copies of the same function; and (2)
when considered in polar coordinates, the angular component of the directional deriva-
tive consists of a single frequency, two degree of freedom, sinusoid. As a result, the first-
order directional derivative at any orientation can be synthesized from a linear combina-
tion of the same function at any two distinct orientations.

Within the image processing community, the directional derivative is a commonly
used filter (typically applied via a convolution to a digital image). To this end, the steer-
ability of the directional derivative is convenient for the synthesis of filters. We can how-
ever take the principle of steerability one step further and show that the filter responses
are also steerable - a not all together surprising fact given that convolution is a linear op-
eration. In particular, consider the application of the horizontal and vertical directional
derivative to an image, .

and (13)

where denotes the convolution operator (
). In the same way in which the filter can be synthesized from a linear com-

bination of the basis set and , the response to a directional derivative oriented at
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can also be synthesized from a linear combination of the pair of derivative images
and (Figure 1):

(14)

Note that the interpolation functions ( and ) for synthesizing the filters and
the filter responses are identical, and the basis set ( and ) is now the images gen-
erated by convolving with the basis filter set.

2 Steerability of Higher-Order Directional Derivatives

The previous showed that the first-order directional derivative of a Gaussian is steerable
with a basis set of size two (in fact this result extends to any differentiable function).
Here we will show that higher-order directional derivatives are also steerable: an -
order directional derivative is steerable with a basis set of size . For this reason,
the steerability of higher-order directional derivatives is presented in the Fourier domain,
and it is expressed in terms of the higher-order separable derivatives.

We adopt the following notation:

prefilter (e.g., 2d Gaussian)
derivative of in the x-direction
derivative of in the y-direction
derivative of in the direction of the unit vector

unit vector
spatial frequency
unit vector parallel to
Fourier transform of
Fourier transform of

The last line follows from the derivative property of the Fourier transform: the Fourier
transform of the derivative of a function equals a complex ramp times Fourier trans-
form of the original function. For an intuition for the derivative property, recall that the
derivative of .

We begin by reformulating the steerability of the first-order directional derivative
and then show how this new formulation extends naturally to second- and higher-order
derivatives. Define to be a unit vector pointing in the direction of the spatial frequency
and is a unit vector pointing along the x-frequency axis, so that:

(15)

(16)
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Then the first derivative in the x-direction, written in the Fourier domain, is:

(17)

Likewise, the first derivative in an arbitrary direction (specified by the unit vector
is:

(18)

Back in the space domain:

(19)

which is the steering equation (Equation 6). The first vector contains the interpolation
functions and the second “vector” contains the basis functions
(x- and y- first derivatives of ).

We can also express the second derivative in an arbitrary direction as a sum of three
separable derivatives. In the frequency domain:

(20)

Back in the space domain:

(21)

The -order directional derivative in the direction of can likewise be expressed as
a sum of separable derivatives:

(22)

where the elements of are the -order separable derivatives (each a function of and
) and the vector depends on the derivative direction.
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So any directional derivative can be expressed in terms of a basis set of separable
derivatives. But this is not quite the same as steerability. We want to express any direc-
tional derivative in terms of a basis set of other directional derivatives. To do that, we
simply make a change of basis.

Since we can write any directional derivative as a weighted sum of separable deriva-
tives, we can take directional derivatives in different directions and write them all
in terms of the separable derivatives:

(23)

The notation can get kind of confusing here: each element of the “vector” is one of
the directional derivatives (each a function of and ) and each element of the “vector”
is one of the separable derivatives (each a function of and ). Each element of the

matrix is a number , that depends on the direction . Each row of has
a different and each column of has a different value for counting up from to .

Finally, we combine the above two equations to write any directional derivative in
terms of this new (directional derivative) basis:

(24)

where are the interpolation functions and is the basis set.

To review, this section showed that -order directional derivatives of a 2d Gaussian
are steerable with a basis set of size .

Although the directional derivatives provide a useful example, the principle of steer-
ability is not limited to such functions. The notion of steerability can be generalized to
include any polar-separable function with a band-limited angular component, and arbi-
trary radial component [10, 11].

In addition, steerability is not limited to rotation. Hel-Or and Teo [4] have developed
a theory for designing basis sets that are “steerable” with respect to a wide variety of
spatial transformations including affine transformations.
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Filter Formula

Figure 2: Steerability of higher-order derivatives. Illustrated is a 2d Gaussian and its first-
through third-order directional derivatives.
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