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There are a great variety of applications that depend on analyzing the motion in image se�

quences� These include motion detection for surveillance� image sequence data compression �MPEG��

image understanding �motion�based segmentation� depth	structure from motion�� obstacle avoid�

ance� image registration and compositing� The 
rst step in processing image sequences is typically

image velocity estimation� The result is called the optical �ow 
eld� a collection of two�dimensional

velocity vectors� one for each small region �potentially� one for each pixel� of the image�

Image velocities can be measured using correlation or block�matching �for example� see Anan�

dan� ����� in which each small patch of the image at one time is compared with nearby patches

in the next frame� Feature extraction and matching is another way to measure the �ow 
eld

�for reviews of feature tracking methods see Barron� ����� or Aggarwal and Nandhakumar� ������

Gradient�based algorithms are a third approach to measuring �ow 
elds �for example� Horn and

Schunk� ���� Lucas and Kanade� ���� Nagel� ������ A fourth approach using spatiotemporal 
l�

tering has also been proposed �for example� Watson and Ahumada� ���� Heeger� ���� Grzywacz

and Yuille� ���� Fleet and Jepson� ������ This handout concentrates on the 
lter�based and

gradient�based methods� Emphasis is placed on the importance of multiscale� coarse�to�
ne� re
ne�

ment of the velocity estimates� For a good overview and comparison of di�erent �ow methods� see

�Barron et al� ������

� Geometry� �D Velocity and �D Image Velocity

Motion occurs in many applications� and there are many tasks for which motion information might

be very useful� Here we concentrate on natural image sequences of �d scenes in which objects

and the camera may be moving� Typical issues for which we want computational solutions include

inferring the relative �d motion between the camera and objects in the scene� inferring the depth

and surface structure of the scene� and segmenting the scene using the motion information Towards

this end� we are interested in knowing the geometric relationships between �d motion� surface

structure� and �d image velocity�

To begin� consider a point on the surface of an object� We will represent �d surface points

as position vectors X � �X�Y�Z�T relative to a viewer�centered coordinate frame as depicted in

Fig� �� When the camera moves� or when the object moves� this point moves along a �d path

X�t� � �X�t�� Y �t�� Z�t��T � relative to our viewer�centered coordinate frame� The instantaneous

�d velocity of the point is the derivative of this path with respect to time�

V �
dX�t�

dt
�

�
dX

dt
�
dY

dt
�
dZ

dt

�T
���

We are interested in the image locations to which the �d point projects as a function of time�

Under perspective projection� the point X projects to the image point �x� y�T given by

x � fX�Z ���

y � fY�Z�

�



camera
center

image
plane

3d path of
surface point

X

Y

Z

x

y

●

Figure �� Camera centered coordinate frame and perspective projection� Owing to motion between

the camera and the scene� a �D surface point traverses a path in �D� Under perspective projection�

this path projects onto a �D path in the image plane� the temporal derivative of which is called �D

velocity� The �d velocities associated with all visible points de
nes a dense �d vector 
eld called

the �d motion 
eld�

where f is the �focal length� of the projection� As the �d point moves through time� its corre�

sponding �d image point traces out a �d path �x�t�� y�t��T � the derivative of which is the image

velocity

u �

�
dx�t�

dt
�
dy�t�

dt

�T
���

We can combine Eqs� � and � and thereby write image velocity in terms of the �d position and

velocity of the surface point�

u �
�

Z

�
dX

dt
�
dY

dt

�T

�
�

Z�

dZ

dt
�X�t�� Y �t��T ���

Each visible surface point traces out a �d path� which projects onto the image plane to form a �d

path� If one considers the paths of all visible �d surface points� and their projections onto the image

plane� then one obtains a dense set of �d paths� the temporal derivative of which is the vector 
eld

of �d velocities� commonly known as the optical �ow �eld�

To understand the structure of the optical �ow 
eld in greater detail it is often helpful to make

further assumptions about the structure of the �d surface or about the form of the �d motion� We

begin by considering the special case in which the objects in the scene move rigidly with respect

to the camera� as though the camera was moving through a stationary scene �Longuet�Higgins

and Prazdny� ���� Bruss and Horn� ���� Waxman and Ullman� ���� Heeger and Jepson� ������

This is a special case because all points on a rigid body share the same six motion parameters

relative to the camera�centered coordinate frame� In particular� the instantaneous velocity of

the camera through a stationary scene can be expressed in terms of the camera�s �d translation

T � �Tx� Ty� Tz�
T � and its instantaneous �d rotation � � ��x��y��z�

T � Here� the direction of �

gives the axis of rotation while j�j is the magnitude of rotation per unit time� Given this motion

of the camera� the instantaneous �d velocity of a surface point in camera�centered coordinates is�
dX

dt
�
dY

dt
�
dZ

dt

�T
� � ���X�T� � ���

The �d velocities of all surface points in a stationary scene depend on the same rigid�body

motion parameters� and are given by Eq� �� When we substitute these �d velocities for dX�dt in

�
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Figure �� Example �ow 
elds� A� Camera translation� B� Camera rotation� C� Translation plus

rotation� Each �ow vector in C is the vector sum of the two corresponding vectors in A and B�

Eq� � we obtain an expression for the form of the optical �ow 
eld for a rigid scene�

u�x� y� � p�x� y�A�x� y�T�B�x� y�� ���

where p�x� y� � ��Z�x� y� is inverse depth at each image location� and

A�x� y� �

�
�f � x

� �f y

�

B�x� y� �

�
�xy��f ��f � x��f� y

f � y��f ��xy��f �x

�
�

The matrices A�x� y� and B�x� y� depend only on the image position and the focal length�

Equation � describes the �ow 
eld as a function of �D motion and depth� It has two terms�

The 
rst term is referred to as the translational component of the �ow 
eld since it depends on

�d translation and �d depth� The second term is referred to as the rotational component since it

depends only on �d rotation� Since p�x� y� �the inverse depth� andT �the translation� are multiplied

together in Eq� �� a larger distance �smaller p� or a slower �D translation �smaller jTj� both yield

a slower image velocity�

Figure � shows some example �ow 
elds� Each vector represents the speed and direction of

motion for each local image region� Figure �A is a �ow 
eld resulting from camera translation

above a planar surface� Figure �B is a �ow 
eld resulting from camera rotation� and Fig� �C is a

�ow 
eld resulting from simultaneous translation and rotation� Each �ow vector in Fig� �C is the

vector sum of the two corresponding �ow vectors is Figs� �A and B�

Pure Translation� When a camera is undergoing a pure translational motion� features in

the image move toward or away from a single point in the image� called the focus of expansion

�FOE�� The FOE in Fig� �A is centered just above the horizon�

When the rotation is zero �� � ���

u�x� y� � p�x� y�A�x� y�T

�



i�e��

u��x� y� � p�x� x��Tz x� � fTx�Tz

u��x� y� � p�y � y��Tz y� � fTy�Tz � ���

The image velocity is zero at image position �x�� y��
T  this is the focus of expansion� At any other

image position� the �ow vector is proportional to �x� y�T � �x�� y��
T � that is� the �ow vector points

either toward or away from the focus of expansion�

Pure Rotation� When the camera is undergoing a pure rotational motion� the resulting �ow


eld depends only on the axis and speed of rotation� independent of the scene depth	structure

�see Fig� �B for an example�� Speci
cally� rotation results in a quadratic �ow 
eld� that is� each

component u� and u� of the �ow 
eld is a quadratic function of image position� This is evident

from the form of B�x� y� which contains quadratic terms in x and y �e�g�� x�� xy� etc���

Motion With Respect to a Planar Surface� When the camera is rotating as well as

translating� the �ow 
eld can be quite complex� Unlike the pure translation case� the singularity in

the �ow 
eld no longer corresponds to the translation direction� But for planar surfaces� the �ow


eld simpli
es to again be a quadratic function of image position �see Fig� �C for an example��

A planar surface can be expressed in the camera�centered coordinate frame as�

Z � mxX �myY � Z��

The depth map is obtained by substituting from Eq� � to give�

Z�x� y� � mx�x�f�Z�x� y� �my�y�f�Z�x� y� � Z��

Solving for Z�x� y��

Z�x� y� �
f z�

f � xmx � ymy

�

and the inverse depth map is�

p�x� y� �

�
f

fZ�

�
�

�
mx

fZ�

�
x�

�
my

fZ�

�
y ���

That is� for a planar surface� the inverse depth map is also planar�

Combining Eqs� � and � gives�

u�x� y� �

�
��mxx�myy

fZ�

� �
�f � x

� �f y

�
T�B�� ���

We already know �see above� that the rotational component of the �ow 
eld �the second term� B��

is quadratic in x and y� It is clear that the translational component �the 
rst term� in the above

equation is also quadratic in x and y�

For curved �d surfaces the translational component� and hence the optical �ow 
eld� will be

cubic or even higher order� The rotational component is always quadratic�

Occlusions� The optical �ow 
eld is often more complex than is implied by the above equa�

tions� For example� the boundaries of objects gives rise to occlusions in an image sequence� which

cause discontinuities in the optical �ow 
eld� A detailed discussion of these issues is beyond the

scope of this presentation�

�
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Figure �� Intensity conservation assumption� the image intensities are shifted �locally translated�

from one frame to the next�

� Gradient�Based �D Motion Estimation

The optical �ow 
eld described above is a geometric entity� We now turn to the problem of

estimating it from the spatiotemporal variations in image intensity� Towards this end� a number of

people �Horn and Schunk� ���� Lucas and Kanade� ���� Nagel� ���� and others� have proposed

algorithms that compute optical �ow from spatial and temporal derivatives of image intensity� This

is where we begin�

Intensity Conservation and Block Matching� The usual starting point for velocity esti�

mation is to assume that the intensities are shifted �locally translated� from one frame to the next�

and that the shifted intensity values are conserved� i�e��

f�x� y� t� � f�x� u�� y � u�� t� ��� ����

where f�x� y� t� is image intensity as a function of space and time� and u � �u�� u�� is velocity�

Of course� this intensity conservation assumption is only approximately true in practice� The

e�ective assumption is that the surface radiance remains 
xed from one frame to the next in an

image sequence� One can fabricate scene constraints for which this holds� but they are somewhat

arti
cial� For example� the scene might be constrainted to contain only Lambertian surfaces �no

specularities�� with a distant point source �so that changing the distance to the light source has

no e�ect�� with no secondary illumination e�ects �shadows or inter�surface re�ection�� Althought

unrealistic� it is remarkable that this intensity conservation constraint works as well as it does�

Then a typical block matching algorithm would proceed� as illustrated in Fig� �� by choosing a

region �e�g�� �x� pixels� from one frame and shifting it over the next frame to 
nd the best match�

One might search for a peak in the cross�correlation

X
f�x� y� t� f�x� u�� y � u�� t� ���

or �equivalently� a minimum in the sum�of�squared�di�erences �SSD�

X
�f�x� y� t�� f�x� u�� y � u�� t� ���

��

In both cases� the summation is taken over equal sized blocks in the two frames�

�
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Figure �� The gradient constraint relates the displacement at one point of the signal to the temporal

di�erence and the spatial derivative �slope� of the signal� For a displacement of a linear signal �left��

the di�erence in signal values at a point divided by the slope gives the displacement� In the case

of nonlinear signals �right�� the di�erence divided by the slope gives an approximation to the

displacement�

Gradient Constraints� To derive a simple� linear method for estimating the velocity u� let�s


rst digress to consider a ��d case� Let our signals at two time instants be f��x� and f��x�� and

suppose that f��x� is a translated version of f��x� i�e�� f��x� � f��x� d� for displacement d� This

situation is illustrated in Fig� �� A Taylor series expansion of f��x� d� about x is given by

f��x� d� � f��x�� d f ���x� �O�d�f ��� � ����

where f � denotes the derivative of f with respect to x� Given this expansion� we can now write the

di�erence between the two signals at location x as

f��x�� f��x� � d f ���x� �O�d�f ��� �

By neglecting higher�order terms� we arrive at an approximation to the displacement d� that is�

�d �
f��x�� f��x�

f ���x�
� ����

The Motion Gradient Constraint� This approach generalizes straightforwardly to two

spatial dimensions� to produce the motion gradient constraint equation� As above� one assumes

that the time�varying image intensity is well approximated by a 
rst�order Taylor series expansion�

f�x� u�� y � u�� t� �� � f�x� y� t� � u�fx�x� y� t� � u�fy�x� y� t� � ft�x� y� t��

where fx� fy� and ft are the spatial and temporal partial derivatives of image intensity� If we ignore

second� and higher�order terms in the Taylor series� and then substitute the resulting approximation

into Eq� �� we obtain

u�fx�x� y� t� � u�fy�x� y� t� � ft�x� y� t� � � � ����

This equation relates the velocity at one location in the image to the spatial and temporal derivatives

of image intensity at that same location� Eq� �� is called the motion gradient constraint�

�



If the time between frames is relatively large� so that the temporal derivative ft�x� y� t� is

unavailable� then a similar constraint can be derived by taking only the 
rst�order spatial terms of

the Taylor expansion� In this case we obtain

u�fx�x� y� t� � u�fy�x� y� t� � �f�x� y� t� � � � ����

where �f�x� y� t� � f�x� y� t� ��� f�x� y� t��

Intensity Conservation� A di�erent way of deriving the gradient constraint can be found if

we consider the �d paths in the image plane� �x�t�� y�t��T � along which the intensity is constant� In

other words� imagine that we are tracking points of constant intensity from frame to frame� Image

velocity is simply the temporal derivative of such paths�

More formally� a path �x�t�� y�t��T along which intensity is equal to a constant c must satisfy

the equation

f�x�t�� y�t�� t� � c � ����

As explained above� assuming that the path is smooth� the temporal derivative of the path

�x�t�� y�t��T gives us the optical �ow� To obtain a constraint on optical �ow we therefore dif�

ferentiate equation ���
d

d t
f�x�t�� y�t�� t� � � ����

The right hand side is zero because c is a constant� Because the left�hand�side is a function of �

variables which all depend on time t� we take the total derivative and use the chain rule to obtain�

d

d t
f�x�t�� y�t�� t� �

�f

�x

dx

d t
�
�f

�y

d y

d t
�
�f

�t

d t

d t

� fxu� � fyu� � ft ����

In this last step the velocities were substituted for the path derivatives �i�e�� u� � dx�dt and

u� � dy�dt�� Finally� if we combine Eqs� �� and �� we obtain the motion gradient constraint�

Equation �� is often referred to as an intensity conservation constraint� In terms of the �d

scene� this conservation assumption implies that the image intensity associated with the projection

of a �d point does not change as the object or the camera move� This assumption is often violated

to some degree in real image sequences�

Combining Constraints� It is impossible to recover velocity� given just the gradient con�

straint at a single position� since Eq� �� o�ers only one linear constraint to solve for the two unknown

components of velocity� Only the component of velocity in the gradient direction is determined� In

e�ect� as shown in Fig �� the gradient constraint equation constrains the velocity to lie somewhere

along a line in velocity space� Further assumptions or measurements are required to constrain

velocity to a point in velocity space�

Many gradient�based methods solve for velocity by combining information over a spatial region�

The di�erent gradient�based methods use di�erent combination rules� A particularly simple rule

for combining constraints from two nearby spatial positions is��
fx�x�� y�� t� fy�x�� y�� t�

fx�x�� y�� t� fy�x�� y�� t�

� �
u�
u�

�
�

�
ft�x�� y�� t�

ft�x�� y�� t�

�
� �� ����

�
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Figure �� The gradient constraint equation constrains velocity to lie somewhere on a line in �d

velocity space� That is� u�fx � u�fy � �ft de
nes a line perpendicular �fx� fy�� If one had a set

of measurements from nearby points� all with di�erent gradient directions but consistent with the

same velocity� then we expect the constraint lines to intersect at the true velocity �the black dot��

where the two coordinate pairs �xi� yi� correspond to the two spatial positions� Each row of Eq� ��

is the gradient constraint for one spatial position� Solving this equation simultaneously for both

spatial positions gives the velocity that is consistent with both constraints�

A better option is to combine constraints from more than just two spatial positions� When we do

this we will not be able to exactly satisfy all of the gradient constraints simultaneously because there

will be more constraints than unknowns� To measure the extent to which the gradient constraints

are not satis
ed we square each constraint and sum them�

E�u�� u�� �
X
x�y

g�x� y� �u�fx�x� y� t� � u�fy�x� y� t� � ft�x� y� t��
� � ����

where g�x� y� is a window function that is zero outside the neighborhood within which we wish

to use the constraints� Each squared term in the summation is a constraint on the �ow from a

di�erent �nearby� position� Usually� we want to weight the terms in the center of the neighborhood

higher to give them more in�uence� Accordingly� it is common to let g�x� y� be a decaying window

function such as a Gaussian�

Since there are now more constraints than unknowns� there may not be a solution that satis
es

all of the constraints simultaneously� In other words� E�u�� u�� will typically be non�zero for all

�u�� u��� The choice of �u�� u�� that minimizes E�u�� u�� is the least squares estimate of velocity�

Least Squares Estimate� Since Eq� �� is a quadratic expression� there is a simple analytical

expression for the velocity estimate� The solution is derived by taking derivatives of Eq� �� with

respect to u� and u�� and setting them equal to zero�

�E�u�� u��

�u�
�
X
xy

g�x� y� �u��fx�
� � u��fxfy� � �fxft�� � �

�E�u�� u��

�u�
�
X
xy

g�x� y� �u��fy�
� � u��fxfy� � �fyft�� � �

These equations may be rewritten as a single equation in matrix notation�

M � u� b � ��

where the elements of M and b are�

M �

� P
g f�x

P
g fxfyP

g fxfy
P

g f�y

�

�



b �

�P
g fxftP
g fyft

�
�

The least�squares solution is then given by

�u � �M��b� ����

presuming that M is invertible�

Implementation with Image Operations� Remember that we want to compute optical

�ow at every spatial location� Therefore we will need the matrix M and the vector b at each

location� In particular� we should rewrite our matrix equation as

M�x� y� � u�x� y� � b�x� y� � � �

As above in Eq� ��� the elements in M�x� y� and b�x� y� at position �x� y�T are local weighted

summations of the intensity derivatives� What we intend to show here is that the elements of

M�x� y� and b�x� y� can be computed in a straightforward way using convolutions and image point�

operations�

To begin� let g�x� y� be a Gaussian window sampled on a square grid of width w� Then at a

speci
c location �x� y�T the elements of the matrixM�x� y� and the vector b�x� y� are given by�

M �

� P
a

P
b g�a� b�f

�
x�x� a� y � b�

P
a

P
b g�a� b�fx�x� a� y � b�fy�x� a� y � b�P

a

P
b g�a� b�fx�x� a� y � b�fy�x� a� y � b�

P
a

P
b g�a� b�f

�
y �x� a� y � b�

�

b �

�P
a

P
b g�a� b�fx�x� a� y � b�ft�x� a� y � b�P

a

P
b g�a� b�fy�x� a� y � b�ft�x� a� y � b�

�
�

where each summation is over the width of the Gaussian� from �w to w� Although this notation is

somewhat cumbersome� it serves to show explicitly that each element of the matrix �as a function

of spatial position� is actually equal to the convolution of g�x� y� with products of the intensity

derivatives� To compute the elements of M�x� y� and b�x� y� one simply applies derivative 
lters

to the image� takes products of their outputs� and then blurs the results with a Gaussian� For

example� the upper�left component of M�x� y�� ie� m���x� y�� is computed by� ��� applying an

x�derivative 
lter� ��� squaring the result at each pixel� ��� blurring with a Gaussian lowpass 
lter�

Gaussian PreSmoothing� Another practicality worth mentioning here is that some prepro�

cessing before applying the gradient constraint is generally necessary to produce reliable estimates

of optical �ow� The reason is primarily due to the use of a 
rst�order Taylor series expansion in

deriving the motion constraint equation� By smoothing the signal� it is hoped that we are reducing

the relative amplitudes of higher�order terms in the image� Therefore� it is common to smooth

the image sequence with a lowpass 
lter before estimating derivatives� as in Eq� �� Often� this

presmoothing can be incorporated into the derivative 
lters used to computer the spatial and tem�

poral derivatives of the image intensity� This also helps avoid problems caused by small amounts

of aliasing� something we�ll say more about later�

�
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Figure �� Aperture problem� A� Single moving grating viewed through a circular aperture� The

diagonal line indicates the locus of velocities compatible with the motion of the grating� B� Plaid

composed of two moving gratings� The lines give the possible motion of each grating alone� Their

intersection is the only shared motion�

Aperture Problem� When the matrix M in Eq� �� is singular �or ill�conditioned�� there

are not enough constraints to solve for both unknowns� This situation corresponds to what has

been called the �aperture� problem� For some patterns �e�g�� a gradual curve� there is not enough

information in a local region �small aperture� to disambiguate the true direction of motion� For

other patterns �e�g�� an extended grating or edge� the information is insu cient regardless of the

aperture size� Of course� the problem is not really due to the aperture� but to the one�dimensional

structure of the stimulus� and to ensure the reliability of the velocity estimates it is common to

check the condition number of M �or better yet� the magnitude of its smallest singular value��

The latter case is illustrated in Fig� �A� The diagonal line in velocity space indicates the locus

of velocities compatible with the motion of the grating� At best� we may extract only one of the

two velocity components� Figure �B shows how the motion is disambiguated when there is more

spatial structure� The plaid pattern illustrated in Fig� �B is composed of two moving gratings� The

lines give the possible motion of each grating alone� Their intersection is the only shared motion�

Combining the gradient constraints according to the summation in Eq� �� is related to the

intersection of constraints rule depicted in Fig� �� The gradient constraint� Eq� ��� is linear in both

u� and u�� Given measurements of the derivatives� �fx� fy� ft�� there is a line of possible solutions

for �u�� u��� analogous to the constraint line illustrated in Fig� �A� For each di�erent position� there

will generally be a di�erent constraint line� Equation �� gives the intersection of these constraint

lines� analogous to Fig� �B�

Regularization Solution� Another way to add further constraints to the gradient constraint

equation is to invoke a smoothness assumption� In other words� one can constrain �regularize� the

estimation problem by assuming that resultant �ow 
eld should be the smoothest �ow 
eld that

is also consistent with the gradient constraints� The central assumption here� like that made with

the area�based regression approach above� is that the �ow in most image regions is expected to be

smooth because smooth surfaces generally give rise to smooth optical �ow 
elds�

For example� let�s assume that we want the optical �ow to minimize any violations of the

��
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Figure �� Orientation in space�time �based on an illustration by Adelson and Bergen� ������ A�

A vertical bar translating to the right� B� The space�time cube of image intensities corresponding

to motion of the vertical bar� C� An x�t slice through the space�time cube� Orientation in the

x�t slice is the horizontal component of velocity� Motion is like orientation in space�time� and

spatiotemporally oriented 
lters can be used to detect and measure it�

gradient�constraint equation� and at the same time� to minimize the magnitude of velocity changes

between neighboring pixels� For example� we may wish to minimize�
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� � �
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In practice� the derivatives are approximated by numerical derivative operators� and the resulting

minimization problem has as its solution a large system of linear equations� Because of the large

dimension of the linear system� it is commonly solved iteratively using Jacobi� Gauss�Seidel� or

conjugate�gradient iteration�

One of the main disadvantages of this approach is the extensive amount of smoothing often

imposed� even when the actual optical �ow 
eld is not smooth� Some researchers have advocated

the use of line processes that allow for violations of smoothness at certain locations where the �ow


eld constraints indicate discontinuous �ow �due to occlusion for example�� This issue is involved

and beyond the scope of the handout for now�

� Space�Time Filters and the Frequency Domain

One can also view image motion and these approaches to estimating optical �ow in the frequency

domain� This will help to understand aliasing� and it also serves as the foundation for 
lter�based

methods for optical �ow estimation� In addition� a number of models of biological motion sensing

have been based on direction selective� spatiotemporal linear operators �e�g�� Watson and Ahumada�

���� Adelson and Bergen� ���� Heeger� ���� Grzywacz and Yuille� ������ The concept underlying

these models is that visual motion is like orientation in space�time� and that spatiotemporally�

oriented� linear operators can be used to detect and measure it�

Figure � shows a simple example� Figure �A depicts a vertical bar moving to the right� Imagine

that we stack the consecutive frames of this image sequence one after the next� We end up with

a three�dimensional volume �space�time cube� of intensity data like that shown in Figure �B�

Figure �C shows an x�t slice through this space�time cube� The slope of the edges in the x�t slice

equals the horizontal component of the bar�s velocity �change in position over time�� Di�erent

speeds correspond to di�erent slopes�
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Figure �� Space�time 
lters and the gradient constraint� A� The gradient constraint states that

there is some space�time orientation for which the directional derivative is zero� B� Pattern moving

from right to left and the space�time derivative 
lter with the orthogonal space�time orientation

so that convolving the two gives a zero response� C� Spatiotemporal Fourier transform of B� The

power spectrum of the translating pattern �the line passing through the origin� and the frequency

response of the derivative 
lter �the pair of symmetrically positioned blobs� the product of the two

is zero�

Following Adelson and Bergen ������� and Simoncelli ������ we now show that the gradient�

based solution can be expressed in terms of the outputs of a set of space�time oriented linear


lters� To this end� note that the derivative operations in the gradient constraint may be written

as convolutions� Furthermore� we can pre
lter the stimuli to extract some spatiotemporal subband�

and perform the analysis on that subband� Consider� for example� pre
ltering with a space�time

Gaussian function� Abusing the notation somewhat� we de
ne�

fx�x� y� t� �
�

�x
�g�x� y� t� � f�x� y� t�� � gx�x� y� t� � f�x� y� t��

where � is convolution and gx is the x�derivative of a Gaussian� In words� we compute fx by

convolving with gx � �g��x� a spatiotemporal linear 
lter� We compute fy and ft similarly�

Then the gradient constraint can be rewritten as�

�u�gx � u�gy � gt� � f � �� ����

where gx� gy� and gt are the space�time derivative 
lters� For a 
xed u� Eq� �� is the convolution

of a space�time 
lter� namely �u�gx�u�gy� gt�� with the image sequence� f�x� y� t�� This 
lter is a

weighted sum of the three �basis� derivative 
lters �gx� gy� and gt�� and hence� is itself a directional

derivative in some space�time direction� The gradient constraint states that there is some space�

time orientation for which the directional derivative is zero� This 
lter�based interpretation of the

gradient constraint is depicted �in one spatial dimension� in Fig� ��

Frequency Domain Analysis of the Gradient Constraint� The gradient constraint for

image velocity estimation also has a simple interpretation as regression in the spatiotemporal Fre�

quency domain�

��



The power spectrum of a translating two�dimensional pattern lies on a plane in the Fourier

domain �Watson and Ahumada� ����� ���� Fleet� ������ and the tilt of this plane depends on

velocity� An intuition for this result can be obtained by 
rst considering each spatiotemporal

frequency component separately� The spatial frequency of a moving sine grating is expressed in

cycles per pixel and its temporal frequency is expressed in cycles per frame� Velocity� which is

distance over time �or pixels per frame�� equals the temporal frequency divided by the spatial

frequency� More formally� a drifting �d sinusoidal grating can be expressed in terms of spatial

frequency and velocity as

f�x� t� � sin��x�x� u�t�� ����

where �x is the spatial frequency of the grating and u� is the velocity� It can also be expressed in

terms of spatial frequency �x and temporal frequency �t as

f�x� t� � sin��xx� �tt� ����

The relation between frequency and velocity can be derived algebraically by setting �x�x� u�t� �

�xx� �tt� From this one can show that

u� � ��t��x ����

Now consider a one�dimensional spatial pattern that has many spatial�frequency components

�e�g�� made up of parallel bars� edges� or random stripes�� translating with speed u�� Each frequency

component has a spatial frequency �x and a temporal frequency �t but all of the Fourier components

share the same velocity so each component satis
es

u� �x � �t � ��

Analogously� two dimensional patterns �arbitrary textures� translating in the image plane occupy

a plane in the spatiotemporal frequency domain�

u� �x � u� �y � �t � ��

For example� the expected value of the power spectrum of a translating white noise texture is

a constant within this plane and zero outside of it� The plane is perpendicular to the vector

�u�� u�� ��
T �

Formally� consider a space�time image sequence f�x� y� t� that we construct by translating a �d

image f��x� y� with a constant velocity u� The image intensity over time may be written as

f�x� y� t� � f��x� u�t� y � u�t��

At time t � � the spatiotemporal image is equal to f��x� y�� The three�dimensional Fourier trans�

form of f�x� y� t� is�

F ��x� �y� �t� �

Z Z Z
�

��

f�x� y� t�e�j���x�x�y�y�t�t�dxdydt� ����

To simplify this expression� we substitute f��x � u�t� y � u�t� for f�x� y� t� and arrange the order

of integration so that time is integrated last�

F ��x� �y� �t� �

Z �Z Z
�

��

f��x� u�t� y � u�t�e
�j���x�x�y�y�dxdy

�
e�j��t�tdt� ����

��



The term inside the square brackets is the �d Fourier transform of f��x� u�t� y � u�t� which can

be simpli
ed using the Fourier shift property to yield

F ��x� �y� �t� �

Z
�

��

F���x� �y�e
�j���u�t�x�u�t�y�e�j��t�tdt

� F���x� �y�

Z
�

��

e�j��t�u��x�u��y�e�j��t�tdt ����

where F���x� �y� is the �d Fourier transform of f��x� y�� The Fourier transform of a complex

exponential is a Dirac delta function� and therefore this expression simpli
es further to

F ��x� �y� �t� � F���x� �y� ��u��x � u��y � �t�

This equation shows that the Fourier transform is only nonzero on a plane� because the delta

function is only nonzero when u��x � u��y � �t � ��

There are many important reasons to understand motion in the frequency domain� For example�

if the motion of an image region may be approximated by translation in the image plane then the

velocity of the region may be computed by 
nding the plane �in the Fourier domain� in which all

the power resides� Figure � illustrates how a derivative 
lter can be used to determine which plane

contains the power� The frequency response of a spatiotemporal derivative 
lter is a symmetrically

positioned pair of �blobs�� The gradient constraint states that the blobs can be positioned �by

rotating them around the origin� so that multiplying the Fourier transform of the image sequence

�the plane� times the frequency response of the 
lter �blobs� gives zero�

Formally� we rely on Parseval�s theorem and the derivative theorem of the Fourier transform to

write the gradient method in the frequency domain� Parseval�s theorem states that the sum of the

squared values in space�time equals the sum of the power in the frequency domain�

X
x�y�t

jf�x� y� t�j� �
X

�x��y��t

jF ��x� �y� �t�j
�� ����

The derivative theorem states that the Fourier transform of the derivative of f equals the Fourier

transform of f itself multiplied by an imaginary ramp function of the form j�� For example�

F �fx�x� y� t�� � j�xF �f�x� y� t�� � j�xF ��x� �y� �t� ����

Combining Eqs� ��� ��� and ��� gives�

E�u�� u�� �
X
x�y�t

ju�fx�x� y� t� � u�fy�x� y� t� � ft�x� y� t�j
� ����

�
X

�x��y��t

ju��xF ��x� �y� �t� � u��yF ��x� �y� �t� � �tF ��x� �y� �t�j
�

�
X

�x��y��t

��u�� u�� �� � ��
� jF ���j��

If all of the assumptions and approximations hold precisely �notably� that the image is uniformly

translating for all space and time�� then this expression can be precisely minimized by choosing u

to satisfy� u��x � u��y � �t � �� If any of the approximations are violated then there will not

in general be any u that will satisfy the constraint perfectly� Minimizing Eq� �� is a weighted�

least�squares regression�

��



To be concrete� let �n � ��xn� �yn� �tn� for � � n � N be the spatiotemporals frequencies for

which we have samples of jF ���j� Rewriting Eq� �� in matrix notation gives�

E�u�� u�� � kAuk�� ����

where u � �u�� u�� ��
T and

A �

�
BBB	

F �����x� F �����y� F �����t�
F �����x� F �����y� F �����t�

���
���

���

F ��N ��xN F ��N ��yN F ��N ��tN



CCCA

Because of the weights� jF ���j� the regression depends most on those frequency components where

the power is concentrated� Equation �� is minimized by a vector v in the direction of the eigenvector

corresponding to the smallest eigenvalue of ATA� The image velocity estimate �u is obtained by

normalizing v so that its third element is ��

For real image sequences� the least�squares estimate of image velocity �Eq� ��� is de
nitely

preferred over the frequency domain regression estimate �Eq� ��� because the frequency domain

estimate requires computing a global Fourier transform� But for an image sequence containing a

uniformly translating pattern� the two estimates are the same�

� Multi�Scale� Iterative Motion Estimation

Temporal Aliasing� The image sequences we are given as input often have temporal sampling

rates that are slower than that required by the sampling theorem to uniquely represent the high

temporal frequencies in the signal� As a consequence� temporal aliasing is a common problem in

computing image velocity in real image sequences� The classic example of temporal aliasing is the

wagon wheel e�ect in old Western movies when the wheel rotates at the right speed relative to the

frame rate� its direction of rotation appears to reverse� This e�ect can most easily be understood

by considering the closest match for a given spoke as the wheel rotates from one frame to the next�

Let the angular spacing between spokes be �� If the wheel rotates by more than ��� but less than

� from one frame to the next� then the wheel will appear to rotate backwards� In fact� any integer

multiple of this range will also do so that rotations between k ��� and k � will appear to rotate

backwards �for any integer k��

Temporal aliasing can be a problem for any type of motion algorithm� For feature�based match�

ing algorithms� temporal aliasing gives rise to false matches� For 
ltering �and gradient�based�

methods� temporal aliasing becomes a problem whenever the motion is large compared to the spa�

tial extent of the 
lters� With phase�based methods the problems are also evident because phase

is only de
ned uniquely with a single wavelength of a bandpass signal� If the signal shifts by more

than one wavelength then the nearest location in the next image with the same phase will not yield

the correct match�

The e�ect of temporal aliasing may also be characterized in the spatiotemporal frequency do�

main� as illustrated in Fig� �� Consider a one�dimensional signal moving at a constant velocity� As

mentioned above� the power spectrum of this signal lies on a line through the origin� Temporal

sampling causes a replication of the signal spectrum at temporal frequency intervals of �	�T ra�

dians� where T is the time between frames� It is easy to see that these replicas could confuse a

gradient�based motion estimation algorithm because the derivative 
lters may respond as much �or

more� to the replicated spectra as they do to the original
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Figure �� Top�left� The power spectrum of a translating signal occupies a line in the spatiotemporal

frequency domain� Top�right� Sampling in time �to get the discrete frames of an image sequence�

gives rise to replicas of the spectra� that may result in temporal aliasing� These replicas can cause

severe problems for a gradient�based motion algorithm because the derivative 
lters may respond

as much �or more� to the replicated spectra as they do to the original� Bottom�left� The problem

can be alleviated by using coarse�scale derivative 
lters tuned for lower frequencies� i�e�� by blurring

the images a lot before computing derivatives� The frequency responses of these coarse�scale 
lters

avoid the replicas� Bottom�right� The velocity estimates from the coarse scale are used to warp

the images� thereby undoing most of the motion� The 
ner scale 
lters can now be used to estimate

the residual motion since the velocities �after warping� are slower� the frequency responses of the


ne scale 
lters may now avoid the replicas�
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Eliminating Temporal Aliasing by Coarse�to�FineWarping� An important observation

concerning this type of aliasing is that it usually a�ects only the higher spatial frequencies of an

image� In particular� for a 
xed velocity� those spatial frequencies moving more than half of their

period per frame will be aliased� but lower spatial frequencies will not�

This suggests a simple but e�ective approach for avoiding the problem of temporal aliasing� Es�

timate the velocity using coarse�scale 
lters �i�e�� spatially blur the individual frames of the sequence

before applying the derivative 
lters� to avoid the potentially aliased high spatial frequencies� These

velocity estimates will correspond to the average velocity over a large region of the image because

the coarse�scale 
lters are large in spatial extent� Given a uniformly translating image sequence�

we could stop here� But in typical image sequences� the velocity varies from one point to the next�

The coarse�scale 
lters miss much of this spatial variation in the �ow 
eld� To get better estimates

of local velocity� we need 
ner scale �higher frequency� 
lters with smaller spatial extents�

Towards this� following Bergen et al� ������ for example� the coarse motion estimates are used

to warp the images and �undo� the motion� roughly stabilizing the objects and features in the

images� Then 
ner scale 
lters are used to estimate the residual motion since the velocities �after

warping� are slower� the frequency responses of the 
ne scale 
lters may now avoid the temporally

aliased replicas �as illustrated in Fig� �C�� Typically� this is all done with an image pyramid data

structure�

Coarse�to�
ne methods are widely used to measure motion in video image sequences because of

the aliasing that regularly occurs� Despite this� it does have its drawbacks� stemming from the fact

that the 
ne�scale estimates can only be as reliable as their coarse�scale precursors� For example� if

there is little or no signal energy at coarse�scales� then coarse�scale estimates cannot be trusted and

we have no initial guess to o�er 
ner�scales� A related problem occurs if the coarse�scale estimate

is very poor� perhaps due to the broad spatial extent of the estimation� then the warping will not

signi
cantly decrease the e�ective velocity as desired� in which case the 
ner�scale estimation will

produce an equally poor result�

Iterative Re�nement of Velocity Estimates� Such coarse�to�
ne estimation strategies

are an example of iteratively re
ning and updating velocity measurements� The process involves

warping the images according to the current velocity estimate and then re�estimating the velocity

from the warped sequence� The warping is an attempt to remove the motion and therefore stabilize

the image sequence� This is a useful idea within a coarse�to�
ne strategy to avoid the adverse e�ects

of temporal aliasing as mentioned above�

It can also be used to re
ne the �ow estimates without necessarily changing scales� Remember

that derivative estimates are often noisy� and the assumptions upon which the velocity estimates

were based do not hold exactly� In particular� let�s return to the derivation of the gradient constraint

in the �d case� shown in Fig� �� where we wanted to 
nd the displacement d between f��x� and

f��x�� We linearized the signals to derive an estimate �d � �f��x� � f��x���f
�

��x�� As illustrated

in Fig� �� when f� is a linear signal� then d � �d� Otherwise� to leading order� the accuracy of the

estimate is bounded by the magnitude of the dispacement and the second derivative of f��

j �d� dj �
d� jf ��� �x�j

� jf ���x�j
� ����

For a su ciently small displacement� and bounded f ��� �f
�

�� we expect reasonably accurate estimates�

In any case� so long as the estimation error is smaller than jdj� then with Newton�s method we

can iterate the estimation to acheive our goal of having the estimate �d satisfy f��x� �d��f��x� � ��

��



Toward this end� assume we�re given an estimate �d�� and let the error be denoted u � d� �d�� Then�

because f��x� is a displaced version of f��x� we know that f��x� � f��x � �d� � u�� Accordingly�

using gradient�based estimation� Eq� ����� we form a new estimate of d given by �d� � �d�� �u� where

�u �
f��x� �d�� f��x�

f ���x�
�d�

� ����

Here� f��x� �d� is simply a warped version of f��x�� This process can be iterated to 
nd a succession

of estimates �dk that converge to d if the initial estimate is in the correct direction�

In the general �D problem� we are given an estimate of the optical �ow 
eld u� � �u��� u
�
��

T

�e�g�� it might have been estimated from the coarse scale�� and we create a warped image sequence

h�x� y� t��

h�x� y��t� �W�f�x� y� t��t��u��x� y�� � f�x� u���t� y � u���t� t��t��

where �t is the time between two consecutive frames� and W�f�u�� denotes the warping operation

that warps image f by the vector 
eld u�� Note that warping need only be done only over a range

of �t that are required for the temporal di�erentiation 
lter�

The warped image sequence h�x� y� t� is then used to estimate the residual �ow �eld�

�u �M�� b

where M and b are computed by taking derivatives �via convolution as above� of h�x� y� t�� Given

the residual �ow estimates �u� the re
ned velocity estimates become

u ��x� y� � u ��x� y� � �u�x� y��

This new �ow estimate is then used to rewarp the original sequence� and the residual �ow may be

estimated again� In the coarse�to�
ne process this new estimate of the �ow 
eld is used to warp

the images at the next 
ner scale� This process continues until the 
nest scale is reached and the

residual �ow is su ciently small�

� Higher�Order Gradient Constraints and Motion Models

There are two relatively straightforward ways in which the gradient�based approach introduced

above can be extended� The 
rst is to introduce other forms of image preprocessing before applying

the gradient constraint� If such processing is a derivative 
lter� then this amounts to deriving high�

order di�erential constraints on the optical �ow�

The second way we can generalize the method above is by introducing rich parametric models

of the optical �ow within the neighborhood over which contraints are combined� In the method

introduced above� we essentially compute a single estimate of the optical �ow in the neighborhood�

This amounts to an assumption that the �ow is well modelled with a constant �ow model within

the region� It is a relatively straightforward task to generalize this approach to include higher�

order models such as an a ne model that allows us to estimate rotation and scaling along with

translation in the neighborhood�

��



��� Using Higher Order Derivatives�

In the gradient�based approach discussed above� we tracked points of consistant intensity �or

smoothed version of image intensity� using only 
rst�order derivatives� One can� however use

various forms of pre
ltering before applying the gradient constraint� For example� the original

image sequence might be 
ltered to enhance image structure that is of particular interest� or to

suppress structure that one wishes to ignore� One may also do this to obtain further constraints

on the optical �ow at a single pixel�

For example� one could pre
lter the image with 
rst derivative 
lters gx and gy� Following

Nagel et al ������ and Verri et al ������� the gradient constraint could then be applied to fx and

fy �instead of f in as was done above in Eq� ���� This yields two constraints on the optical �ow at

each location�

u�fxx � u�fxy � fxt � � ����

u�fxy � u�fyy � fyt � ��

Alternatively� you might use second�order Gaussian derivatives gxx� gxy and gyy as pre
lters�

In this case you obtain three gradient constraints at each pixel�

u�fxxx � u�fxxy � fxxt � � ����

u�fxxy � u�fxyy � fxyt � �

u�fxyy � u�fyyy � fyyt � ��

where fxxx should be interpreted as f � gxxx� and likewise for the other derivatives� Equation ���

written in terms of third derivatives� gives three constraints on velocity�

An advantage of using higher order derivatives is that� in principle� there are more constraints

at a single spatial position� Even so� it is typically worthwhile combining constraints over a local

spatial region and computing a least�squares estimate of velocity by minimizing�

E�u�� u�� �
X
x�y

�u�fxxx � u�fxxy � fxxt�
�

�
X
x�y

�u�fxxy � u�fxyy � fxyt�
�

�
X
x�y

�u�fxyy � u�fyyy � fyyt�
�

The solutions can be written in the same form as Eq� ��� The only di�erences are� ��� that the

third derivative formulation uses a greater number of linear 
lters� and ��� that the third derivative


lters are more narrowly tuned for spatiotemporal orientation�

The intensity gradient constraint in Eq� �� is based on the intensity conservation assumption it

assumes that intensity is conserved �only shifting from one location to another location� over time�

The third derivative constraints� Eq� ��� are based on conservation of the second spatial derivatives

of intensity� i�e�� that fxx� fxy� and fyy are conserved over time�

It is worth noting that one can also view these higher�order constraints in terms of the conser�

vation of some image property� For example� following Eqs� ���� and ����� second�order constraints

arise from an assumption that the spatial gradient rf�x� y� t� is conserved� In e�ect� this assump�

tion is inconsistent with dilating and rotating deformations� By comparison� the assumption of

intensity conservation in Eq� ���� implies only that image must smoothly deform from one frame

to the next� but the form of the �ow 
eld is otherwise unrestricted�

��



��� Higher�Order Motion Models

The multiscale gradient	derivative methods described above compute velocity estimates separately

for each pixel� They compute the best estimate of translational optical �ow in each local neigh�

borhood of the image� Alternatively� one may wish to estimate more complex parametric models

over much larger image neighborhoods� For example� camera motion with respect to a planar sur�

face results in a quadratic �ow 
eld� If the entire image happens to correspond to a planar �or

nearly planar� surface then you can take advantage of this information� Even if the image does

not correspond to a planar surface� a model of the �ow 
eld may be a reasonable approximation

in local neighborhoods� Here we consider an a ne �ow model� but quadratic �ows can be handled

similarly�

A�ne Models� Many researchers have found that a ne models generally produce much

better velocity estimates than constant models �e�g�� Fleet and Jepson� ���� Bergen et al�� ������

An a ne motion model is expressed component�wise as

u��x� y� � p� � p�x� p�y

u��x� y� � p� � p�x� p	y

where p � �p�� p�� p�� p�� p�� p	�
T are the parameters to be estimated� This can be written in matrix

notation as�

u�x� y� � A�x� y�p ����

where

A�x� y� �

�
� x y � � �

� � � � x y

�

In this instance� the a ne model describes the �ow 
eld about an origin at location ������ if one

wished to consider an a ne model about the point �x�� y��
T then one might use

A�x� y� �

�
� x� x� y � y� � � �

� � � � x� y � y�

�

The gradient constraint may be written�

fs � u� ft � �� ����

where fs � �fx� fy�
T are the spatial derivatives� Combining Eqs� �� and �� gives�

fs
TAp� ft � ��

so we want to minimize�

E�p� �
X
x�y

�fs
TAp� ft�

�� ����

where the summation may be taken over the entire image �or over some reasonably large image

region�� Equation �� is quadratic in p so the estimate �p is derived in the usual �linear least�squares�

way by taking derivatives of E with respect to p� This yields the solution

�p � R�� s� ����

��



where

R �
X

AT fsfs
TA�

s � �
X

AT fsft�

and where
P
here means that each element of R and s is obtained by summing �element�by�

element� over the entire image region� When R is singular �or ill�conditioned� there is not su cient

image structure to estimate all six of the �ow 
eld parameters this has sometimes been called the

�generalized aperture problem� �but note as before that the problem is not really due to any

aperture��

Again� multiscale re
nement of the parameter estimates is needed to overcome temporal aliasing

when the motion is large� We use the following notation�

u � Ap u � � Ap � �u � A�p�

so that

�u � A�p� p ��� ����

As before� we let h denote the warped image sequence and we use its derivatives in the gradient

constraint�

hs ��u� gt � ��

Combining with Eq� �� gives�

hT
s Ap� �ht � hT

s Ap
�� � ��

so we want to minimize�

E�p� �
X
�hT

s Ap� �ht � hT
s Ap

����

The re
ned least�squares estimate of the �ow 
eld model parameters is therefore�

p � � R�� �s�Rp ��

� p � �R��s ����

where R and s are �as above� except with h instead of f��

R �
X

AThsh
T
s A�

s � �
X

AThsht�

In other words� the re
nement of the model parameters has the same form as the re
nement of the

�ow 
elds estimates above� The residual model parameters �p are given by

�p � R��s

Plane Perspective Models���� Another model that is common is the ��parameter plane

perspective model that models the deformation of the image of a plane that occurs with any rigid

transformation of the camera under perspective projection�

��



� Phase�Based Methods

The gradient constraint is useful for tracking any di�erentiable image property� We can apply it

other properties other than the image intensities or linearly 
lter versions of the image� One could

apply various forms of nonlinear preprocessing instead� There are two approximations underlying

the gradient constraint �see above�� ��� the image intensity conservation assumption� and ��� the

numerical approximation of 
rst�order partial derivatives in space and time� With raw image

intensities the intensity conservation assumption is often violated� and derivatives can be di cult

to estimate reliably� However� with appropriate preprocessing of the image sequence one may

satisfy the conservation approximation more closely and also improve the accuracy of numerical

di�erentiation� For example� local automatic gain control to compensate for changes in illumination

can make a signi
cant di�erence�

One successful example of nonlinear preprocessing� proposed by Fleet and Jepson ������ ������

is to use the phase output of quadrature�pair linear 
lters� Phase�based methods are a combination

of frequency�based and gradient�based approaches they use band�pass pre
lters along with gradient

constraints and a local a ne model to estimate optical �ow�

Phase Correlation� To explain phase�based approaches it is useful to begin with a method

called phase�correlation �Kuglin and Hines� ������ The method is often derived by assuming pure

translation between two signals �here in the �d case for simplicity��

f��x� � f��x� d� � ����

The Fourier shift theorem tells us that their Fourier transforms satisfy

F���� � F����e
�i d� � ����

Their amplitude spectra are identical� A���� � A����� and their phase spectra di�er by d�� i�e��


���� � 
����� d��

Taking the product of F���� and the complex conjugate of F����� and then dividing by the

product of their amplitude spectra� we obtain

F����F
�

� ���

A����A����
�

A����A����e
i�������������

A����A����
� ei�d ����

Here� ei�d is a sinusoidal function in the frequency domain� and therefore its inverse Fourier trans�

form is an impulse� located at the disparity d� that is� ��x � d�� Thus� in short� phase�correlation

methods measure disparity by 
nding peaks in

F��
�
F����F

�

� ���

A����A����

�
����

Phase correlation� by using a global Fourier basis� measures a single displacement for the entire

image� But for many applications of interest� we really want to measure image velocity locally� So�

a natural alternative to the Fourier basis is to use a wavelet basis� This gives us a local� self�similar

representation of the image from which we can still use phase information �Fleet� ������
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Local Phase Di�erences� To develop local phase�based methods� we 
rst need to introduce

some notation and terminology associated with band�pass signals� First� with �d signals and 
lters�

let�s assume that we have a band�pass 
lter h�x� and it�s response r�x�� perhaps from a wavelet

transform� Let�s also assume that r�x� is over�sampled to avoid aliasing in individual subbands�

Because r�x� is band�pass� we expect it to modulate at frequencies similar to those in the

passband� A good model is usually r�x� � a�x� cos���x��� where a�x� and ��x� are referred to as

the amplitude and phase components of the response� Another useful quantity is the instantaneous

frequency of r�x� at a point x� de
ned as k�x� � d��x��dx� To see that this de
nition makes

sense intuitively� remember that a sinusoidal signal with constant amplitude is given by sin��x�� in

which case the phase component is ��x� � � x� and the instantaneous frequency is k�x� � �� Here

the frequency is constant� but with more general classes of band�pass signals� the instantaneous

frequency is a function of spatial position�

Figure �� shows a band�pass signal� along with its amplitude and phase signals� and its instan�

taneous frequency� Figure ��A shows the real part of the signal� as a function of spatial position�

while Figures ��B!C show the amplitude and phase components of the signal� Unlike Fourier spec�

tra� these two signals are functions of spatial position and not frequency� The amplitude represents

the magnitude of the signal modulation� The phase component represents the local structure of

the signal �e�g�� whether the local structure is a peak� or a zero�crossing�� Figure ��D shows the

instantaneous frequency�

Normally� as can be seen in Figure ��� amplitude is slowly varying� the phase is close to linear�

and the instantaneous frequency is close to the center of the pass�band of the signal�s Fourier

spectrum� This characterization suggests a crude but e�ective model for a band�pass signal about

a point x�� i�e��

r�x� � a�x�� cos���x�� � �x� x���
��x��� � ����

This approximation involves a constant approximation to the amplitude signal and a 
rst�order

approximation to the phase component�

With respect to estimating displacements� we can now point to some of the interesting properties

��



of phase� First� if the signal translates from one frame to the next� then� as long as the 
lter is shift�

invariant� both the amplitude and phase components will also translate� Second� phase almost never

has a zero gradient� and it is linear over relatively large spatial extents compared to the signal itself�

These properties are useful since gradient�based techniques require division by the gradient� and

the accuracy of gradient�based measurements is a function of the linearity of the signal� Together�

all this is promising for phase�gradient methods�

Therefore� given two phase signals� ���x� and ���x�� we can estimate the displacement required

to match phase values at a position x using gradient constraints� Fleet et al� ������ proposed a

constraint of the form

�d �
b���x�� ���x�c

��������x� � ����x��
� ����

Here� the phase di�erence is only unique within a range of �	� and therefore b�c denotes a modulo

�	 operator� Also� rather than divide by the gradient of one signal� we divide by the average of

the two gradients� As with intensity gradient�based methods� this estimator can be iterated using

a form of Newton�s method to obtain a 
nal estimate� However� in many cases the estimator is

accurate enough that only one or two iterations are necessary�

	D Phase�Based Flow and Practical Issues� This method generalizes straightforwardly

to �d� yielding one phase�based gradient constraint at every pixel for every 
lter� A natural class

of 
lters would be a steerable pyramid� the 
lters of which are orientation� and scale�tuned�

With a steerable pyramid� the easiest way to extract phase and instantaneous frequency is to

use quadrature pair 
lters� These a complex�valued 
lters the real and imaginary parts of which are

Hilbert transforms of one another� In the Fourier domain� they occupy space in only one half�plane�

And because the 
lter are complex�valued �a pair of real�valued 
lters�� the output r�x� y� t� is also

complex�valued� Accordingly� the amplitude components of the output is just the square�root of

the sum of the squares of the real and imaginary outputs� i�e� jr�x�j� The phase component is the

phase angle of r�x�� often written as arg�r�x��� and computed using atan��

In order to compute the phase di�erence� it is convenient to use

b���x�� ���x�c � arg�r��x� r
�

��x�� � ����

And to compute the phase gradient it is convenient to use the identity

d��x�

dx
�

fr��x�r��x�

jr�x�j�
� ����

This is convenient since� because r�x� is band�pass we know how to interpolate and di�erentiate

it� Conversely� because phase is only unique in the interval ��	� 	�� there are phase wrap�arounds

from 	 to �	 which makes explicit di�erentiation of phase awkward�

Finally� because the responses r�x� y� t� have two spatial dimensions� we take partical derivatives

of phase with respect to both x and y� yielding gradient constraint equations of the form

u��x�x� y� t� � u��y�x� y� t� � ���x� y� t� � � � ����

where ���x� y� t� � ��x� y� t� ��� ��x� y� t�� Since we have many 
lters in the steerable pyramid�

we get one such constraint from each 
lter at each pixels� We may combine such constraints over

��



all 
lters within a local neighbourhood and then compute the best least�squares 
t to a motion

model �e�g� an a ne model�� And of course this can be iterated to acheive convergence as above�

Also� if it is known that aliasing does not exist in the spatiotemporal signal� then we can also

di�erentiate the response in time� and hence compute the temporal phase derivative� This yields

constraints of the form

u��x�x� y� t� � u��y�x� y� t� � �t�x� y� t� � � � ����

And we may use phase constraints at all scales simultaneously to estimate a local model of the

optical �ow�

Multiscale Phase Di�erences Of course� as is often the case with conventional image se�

quences� like those taken with a video camera� there may be aliasing so that one can not di�erentiate

the signal with respect to time� With respect to phase�based techniques� any signal that is displaced

more than half a wavelength is aliased� and therefore phase�based estimates of the displacement

will be incorrect� Thus� estimates from responses from 
lters tuned to higher frequencies will have

problems at smaller displacements than responses from 
lters tuned to lower frequency�

For example� Figure �� shows the consequences of aliasing� The bandwidth of the � 
lters

was approximately � octaves� and the passbands were centered at frequencies with wavelengths

� � �� �� ��� and �� pixels� Figure ��A shows the distributions of instantaneous frequency �weighted

by amplitude� that one obtains from these 
lters with the Einstein image� For relatively large

amplitudes� the instantaneous frequencies are concentrated in the respective passbands�

So instantaneous frequencies in the response to the 
lter with � � � are generally close to

�	��� According� we expect to see aliasing appear when the displacements approach � pixels �half

a wavelength�� Indeed� Figure ��B shows that the distribution of displacement estimates obtained

from the four 
lters is very accurate when the displacement is very small� By comparison� when the

displacement is ���� pixels� as in Figure ��C� one can see that the distribution of estimates from the

high frequency 
lter broadens� As expected� given wavelengths near � and a displacement of �����

the aliased distribution of estimates occurs near a disparity of ��� pixels� When the displacement is

�� in Figure ��D� the high frequency 
lter produces a broad distribution of aliased estimates near

�� The 
lter tuned to � � � also begins to show signs of aliasing� Finally� in Figure ��E� with a

displacement of ����� aliasing causes erroneous estimates is all but the lowest frequency 
lter�

Clearly� some form of control structure is required so that errors due to aliasing can be detected

and ignored� When talking about gradient based methods we introduced a coarse�to�
ne control

strategy that could be used here as well� The phase correlation methods suggests another approach�

Another approach� somewhat similar to phase correlation is to consider evidence through scale at

a wide variety of shifts� and choose that displacement at which the evidence at all channels is

consistent� This approach is beyond the scope of this handout�

Phase Stability and Singularities There are several reasons for the success of phase�based

techniques for measuring displacements and optical �ow� One is that phase signals from band�pass


lters are pseudo�linear in local space�time neighborhoods of an image sequence� The extent of the

linearity can be shown to depend on the bandwidth of the 
lters narrow bandwidth 
lters produce

linear phase behavior over larger regions �Fleet and Jepson� ������

Another interesting property of phase is it stability with respect to deformations other than

translation between views of a �d scene� Fleet and Jepson ����������� showed that phase is stable

��
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with respect to small a ne deformations of the image �e�g�� scaling the image intensities and	or

adding a constant to the image intensities�� so that local phase is more often conserved over time�

Again� it turns out that the expected stability of phase through scale depends on the bandwidth

of the 
lters� The broader the bandwidth the more stable phase becomes�

For example� Figure ��B�C show the amplitude and phase components of a scale�space expansion

S�x� �� of the Gaussian noise signal in Figure ��A� This is the response of a complex�valued Gabor


lter with a half�amplitude bandwidth of ��� octaves� as a function of spatial position x and

wavelength �� where �� � � � �� pixels� Level contours of amplitude and phase are shown below

in Figure ��D�E� In the context of the scale�space expansion� an image property is said to be stable

for image matching where its level contours are vertical� In this 
gure� notice that the amplitude

contours are not generally vertical� By contrast� the phase contours are vertical� except for several

isolated regions�

These isolated regions of instability are called singularities neighborhoods� In such regions� it

can be shown that phase is remarkably unstable� even to small perturbations of scale or of spatial

position �Fleet et al� ���� Fleet and Jepson� ������ Accordingly� phase constraints on motion

estimation should not be trusted in singularity neighborhoods� To detect pixels in singularity
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neighborhoods� Fleet and Jepson ������ derive the following reliability condition�

����

���� ��x logS�x� �� � i k���

���� �  � ����

where k��� � �	��� and ���� is the standard deviation of the Gaussian envelope of the Gabor 
lter�

which increases with wavelength� As  decreases� this constraint detects larger neighbourhoods

about the singular points� In e�ect� the left�hand side of Eqn ���� is the inverse scale�space distance

to a singular point� For example� Figure ��F shows phase contours that survive the stability

��



constraint� with  � ���� � while Figure ��G shows the phase contours in regions removed by the

constraint� which amounts to about ��" of the entire scale�space area�

	 Multiple Motions

When an a ne or constant model is a good approximation to the image motion� the area�based

regression methods using gradient�based constraints are very e�ective� One of the main reasons is

that� with these methods one estimates only a small number of parameters �� for the a ne �ow

model� given hundreds or thousands of constraints �one constraint for each pixel throughout a large

image region�� Another reason is the simplicity of the linear estimation method that follows from

the gradient�based constraints and the linear parametric motion models�

The problem with such model�based methods is that large image regions are often not well

modeled by a single parametric motion due to the complexity of the motion or the presence of

multiple moving objects� Smaller regions on the other hand may not provide su cient constraints

for estimating the parameters �the generalized aperture problem discussed above�� Recent research

has extended model�based �ow estimation approach by using a piecewise a ne model for the �ow


eld� and simultaneously estimating the boundaries between each region and the a ne parameters

within each region �Wang and Adelson� ���� Black and Jepson� ����� Ju et al�� ������ Another

exciting development is the use of mixture models where multiple parameterized models are used

simultaneously in a given image neighorhood to model and estimate the optical �ow�
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