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There are a lot of ways to design discrete, linear filters (e.g., see Ch. 7 of Oppenheim
and Schafer). Here, we derive a weighted least-squares design method, a very simple
method that works pretty well most of the time.

We want to design a real-valued filter with a finite (hopefully very small) number
of taps such that it has a desired frequency response, . For example, a 5-tap filter has
frequency response:

(1)

for and . Here is the frequency response of , i.e., it is
the DFT of the impulse response for an impulse sequence of length .

Let’s say that is the desired frequency response. Our goal is to choose the filter
taps, , to minimize:

Even-Symmetric Filters. First, let’s work through an example for a 5-tap, even symmet-
ric filter. That is:

where are the three distinct filter taps. There are only three distinct taps
because we are enforcing even symmetry. The frequency response of this filter is obtained
by writing out all the terms in Eq 1:

Using the fact that ,
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Hence, we want to choose to minimize:

(2)

where the vector is the desired frequency response, , and where is an x
matrix. The columns of are cosine basis vectors. The zeroth column is: , the
first column is: , and the second column is: .

The least-squares (regression) solution is given by the usual formula:

(3)

where means the transpose of .

Odd-Symmetric Filters. We can use the same approach to design an odd symmetric
filter. For a 5-tap odd symmetric filter the vector is given by:

The derivation is essentially the same except that you end up with sinusoids instead of
cosinusoids in the columns of because the frequency response of the filter is now given
by:

Weighted Least-Squares. Often, we care more about some frequency components than
others. For example, we might want to enforce that the filter have zero dc response. Or
we might want to enforce that the frequency response be very small (or zero) for some
other set of frequency components. In these cases, it is helpful to use a weighted least
squares method. Use large weights for frequency components that you care a lot about
and use small (or zero) weights for the other frequency components. Using weighted
least squares, we want to choose to minimize:

where are the weights. This can be written in matrix notation as follows:

where is aweighted version of the desired frequency response. The columns
of are weighted versions of the (co)sine basis vectors (columns of ). In particular, the
th column of is given by: . The solution (as above) is given by:
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Derivative Filters Many image processing algorithms depend on computing deriva-
tives of a digital image: edge detectors (Laplacian zero crossings, gradient magnitude),
steerable filters, motion estimation, depth from stereo, anisotropic diffusion. But deriva-
tives are only defined for continuous functions of continuous variables, not for discretely-
sampled and quantized signals. Often, people use simple differences between an adjacent
pair of pixels to approximate the derivative. But one can do much better by designing a
set of matched pairs of derivative filters and lowpass prefilters.

We conceive of the derivative operation (on a discrete signal) as performing three
steps:

1. Reconstruct (interpolate) a continuous function from the discrete signal: .
Here is a discrete signal, is an interpolation filter (e.g., a sinc or some other
low pass filter), and means convolution.

2. Take the derivative of the interpolated continuous signal: .

3. Sample the continuous derivative: , where is the sampling oper-
ation.

Altogether, these three steps are the same as convolving with a discrete filter:

where is a discrete filter kernel (the sampled derivative of a lowpass
prefilter).

One could use an ideal lowpass (sinc) function for the prefilter, or a gentler function
such as a Gaussian. But for many practical applications, we would like a relatively small
filter kernel so we cannot use an ideal lowpass filter (which would have an infinite size
kernel). On the other hand, the important thing for many applications is that we end up
with a pair of signals, one which is the derivative of the other. A non-ideal interpolator
will introduce some distortions, making it inappropriate to compare the original signal
with its “derivative.” This suggests that we should compute two convolution results: (1)
the prefiltered original computed by convolving with the discrete prefilter , and (2) the
derivative of the prefiltered original computed by convolving with the discrete derivative
filter .

Now we wish to design a discrete prefilter and a discrete derivative
filter so that the latter is the derivative of the former. In the frequency
domain, we want:

where is the frequency response of , is the frequency response of , and
. This equation is based on the derivative property of the Fourier trans-

form: the Fourier transform of the derivative of a function equals a complex ramp
times Fourier transform of the original function. For an intuition for the derivative prop-
erty, recall that the derivative of .
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Figure 1: Frequency responses of 2-tap, finite difference (left) and 5-tap (right) deriva-
tive/prefilter pairs. Shown are the magnitude of the Fourier transforms of: a) the deriva-
tive kernel (dashed line), and b) the frequency-domain derivative of the prefilter (that is,
its Fourier magnitude multiplied by .

Using weighted least-squares, we want to minimize:

This can be rewritten as:

where is a vector containing the prefilter kernel, is a vector containing the derivative
kernel, contains weighted versions of the Fourier basis functions as above, and is a
similar matrix containing the Fourier basis functions multiplied by . After
consolidating terms, we want to minimize:

where

The solution is given by the eigenvector corresponding to the smallest eigenvalue of
. Then the filters are both renormalized (by the same scale factor) so that has

unit dc response (i.e., the samples of sum to one).

An example of a pair of 5-tap filters are:

The frequency responses of these two filters are compared in the figure.
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