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Massive Cortical Reorganization After Sensory
Deafferentation in Adult Macaques
TIM P. PONS,* PRESTON E. GARRAGHTY, ALEXANDER K. OMMAYA,
JON H. KAAS, EDWARD TAUB, MORTIMER MISHKIN

After limited sensory deafferentations in adult primates, somatosensory cortical maps
reorganize over a distance of 1 to 2 millimeters mediolaterally, that is, in the dimension
along which different body parts are represented. This amount of reorganization was
considered to be an upper limit imposed by the size of the projection zones of
individual thalamocortical axons, which typically also extend a mediolateral distance of
1 to 2 millimeters. However, after extensive long-term deafferentations in adult
primates, changes in cortical maps were found to be an order of magnitude greater
than those previously described. These results show the need for a reevaluation ofboth
the upper limit of cortical reorganization in adult primates and the mechanisms
responsible for it.

M ERZENICH AND HIS COLLEAGUES

demonstrated that primary corti-
cal sensory maps in adult animals,

like those in infant animals, are capable of

reorganization after various peripheral sen-

sory perturbations (1, 2). Yet, compared to

the massive functional changes that have
been found in neonates, in which entire
cortical maps may be reorganized (3), the

changes reported in adults have been rela-

tively small, with an upper limit of 1 to
2 mm along the cortical surface (1, 2, 4).
Although the finding of any plasticity in

primary sensory maps of adult animals was

unexpected, the limited extent of the

changes suggested they were confined to the

projection zones of single thalamocortical
axons (1, 2). Both the limits of reorganiza-
tion and the mechanisms responsible must
now be reconsidered because of new evi-
dence in adult macaques showing reorgani-
zation in the cortex at least an order of
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magnitude greater than that reported previ-
ously.

Tactually elicited neuronal activity was

recorded in area SI (5) of four cynomolgus
monkeys (Macaca fascicularis) that had re-

ceived deafferentations of an upper limb,
three unilateral and one bilateral, more than
12 years before the recording session (6). All
procedures were carried out in accordance
with NIH guidelines on the care and use of
laboratory animals (7). Electrode penetra-
tions were placed approximately 0.75 mm
apart across the mediolateral extent of the
cortical region that had been deprived of its
normal input and less densely in parts of the
cortex containing maps of body parts that
were unaffected by the deafferentation pro-
cedure. We typically recorded activity for
each 300-,um advance of the electrode in a

penetration.
Normally the cortical representations of

body parts are organized into highly topo-
graphic maps (8, 9) (Fig. 1). In macaques,
the upper limb representation in SI is always
bordered by the representation of the trunk
medially and the face laterally (10). In the
region of the border of the face and hand
representations, which is located opposite
the tip ofthe intraparietal sulcus (8), the face
map contains the representation of the chin
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Fig. 1. (A) Lateral brain view indi-
cating location ofthe three parasag-
ittal sections (I through III) illus-
trated on the right. (B) Three
parasagittal sections through SI ofa
normal animal showing electrode
tracks (vertical lines) and recording
sites (dots). Numbered recording
sites (not all are identified by a
numeral because of a lack of space)
correspond to numbered receptive
fields on the body part shown to
the right of the parasagittal section.
As recording sites traverse the cau-
dal bank of the central sulcus
through area 3b, receptive fields on
both the trunk (I) and face (III)
shift laterally away from ventral
midline, while those on the digits
(II) shift distally. (C) Flattened
map of SI showing normal somato-
topy. Body part borders are marked
by horizontal lines, areal borders by
vertical lines, and central and post-
central sulci by dashed vertical
lines. The following abbreviations
are used: ce, central sulcus, pocs,
postcentral sulcus, and occ., oc-
ciput. Figure modified from (8).
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Fig. 2. (A) Lateral brain view showing the portion of the postcentral cortex
that was deprived of its normal inputs by the deafferentation procedure
("deafferented zone" marked by shading) and the locations of the six

parasagittal sections (I through VI) illustrated on the left. (B) Sections I and
VI show receptive field data from the cortex medial and lateral, respectively,
to the deafferented zone. The normal receptive field progression from ventral
midline to lateral body parts across the trunk and face was encountered as the
electrode traversed the caudal bank of the central sulcus through area 3b
(compare with Fig. 1). Sections II through V show the portion of the face

represented across the deafferented zone. In section II, located immediately
adjacent to the trunk representation, recording sites were still responsive to
stimulation ofthe face. Also, the normal sequence ofreceptive fields from the
ventral midline (chin) to the lateral parts offace (lower jaw) was apparent as

recording sites traversed area 3b, as was the mirror reversal of this sequence
in area 1 (sections IV through VI). (C) Two flattened maps of SI, the first
showing the deafferented zone (marked by shading), and the second the
recording site density in the animal illustrated (CM3). Other conventions as
in Fig. 1.
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and lower jaw and the hand map contains
the representation of the thumb. The entire
upper-limb representation extends laterome-
dially for 10 to 14 mm, from the lateral tip
of the intraparietal sulcus to the lateral tip of
the postcentral sulcus, where the trunk rep-

resentation is normally found.
The area of the cortex deprived of its

normal input by the deafferentation proce-

dure, which we refer to as the deafferented
zone, included the SI maps of the fingers,
palm, remaining upper limb, neck, and oc-

ciput (Fig. 2) (8). Our recordings unexpect-
edly revealed that this entire zone responded
to stimulation of the face. In the animal
illustrated in Fig. 2, we were able to obtain
vigorous neuronal responses to light stimu-
lation of the face in 124 recording sites
distributed throughout the deafferented
zone. Furthermore, none of the sites we

tested was unresponsive.
Virtually identical findings were obtained

in the three other animals. All 320 sites
tested in the deafferented zone in the four
animals were activated by face stimulation.
An additional 90 and 51 recording sites
located lateral and medial, respectively, to
the deafferented zone revealed the expected
normal topography of face and trunk (8,
10). Thus, in all cases, the medial border of
the expanded face representation abutted
the normal representation of the trunk.
There was no apparent elevation ofresponse
thresholds at any of the recording sites
across the new face map as compared to
those across the normal face map; in both, a

slight deflection of facial hairs was sufficient
to obtain a vigorous neuronal response.

Not all of the face, however, was repre-

sented in the reorganized region; rather,
stimulation ofonly a relatively small portion
of the face, from the chin to the lower jaw,
was found to activate neurons in this zone.

At the same time, the pattern of reorganiza-
tion in this new part of the face map was not
random but highly systematic. As in normal
face maps (Fig. 1), the midline ofthe face, in
this case the chin, was represented caudally
in area 3b (that is, near the border of areas 1
and 3b), whereas progressively more lateral
parts of the face, in this case the lateral parts
of the lower jaw, were represented in pro-
gressively more rostral parts of area 3b (that
is, toward the border of areas 3b and 3a).
Normally, the representation ofthe chin and
lower jaw is located immediately adjacent to
the hand representation. Consequently, it
appeared as though each point on the nor-

mal face map along the original border of
the hand and face representations had been
stretched medially into a line approximately
10 to 14 mm long, the length of the deaf-
ferented zone. This resulted in the apparent
stretching of the entire chin and lower jaw

28 JUNE 1991

map [at least in areas 3b and 1 (5)] onto a

cortical sheet 10 to 14 mm long, until the
expanded face representation met the nor-

mal trunk map (11). These findings extend
the previously proposed upper limit (4, 12)
for reorganization in adult primates by an

order of magnitude and leave open the
possibility that the limit is even greater.
What mechanisms could account for such

massive cortical reorganization in mature
animals? In earlier studies on the effects of
peripheral deafferentations in adult pri-
mates, the deafferentations were relatively
restricted, involving small parts of the hand
(1, 2) or visual field (13), and the deaffer-
ented zone came to represent the sensory

surfaces mapped along the zone's lateral and
medial edges, with each of these two repre-

sentations expanding toward the deaffer-
ented zone's center. Furthermore, the occu-

pation ofthe deafferented zone by these new
inputs was often incomplete, with small
islands of tissue remaining unresponsive to
stimulation of any body part (1, 2, 4).
Because of those features and the spatial
limit of reorganization, which was generally
in the range of 1 to 2 mm, it was reasonable
to relate the filling in of the map to the
mediolateral arborization of single thalamo-
cortical axons (1, 2), which is also in the
range of 1 to 2 mm (14). Because of the
spatial extent of such arborization, neurons

at a given cortical site could receive overlap-
ping thalamic projections from two popula-
tions of axons, one representing a dominant
skin region and the other an adjacent, non-

dominant skin region; if so, then loss of the
former would allow neuronal activation by
the latter, either immediately or after a de-
lay. Although such a mechanism may suffice
for the limited changes described previously,
it is insufficient to account for the extensive
reorganization reported here.
An alternative possibility is that preexist-

ing inputs from face representations in cor-

tical areas outside SI came to activate the
deafferented zone. Such a possibility seems

remote, however, because all connections of
these areas with SI are between somatotopi-
cally matched representations (15), a cir-
cumstance that should impose the same

constraints on reorganization as the somato-
topically matched thalamocortical projec-
tions. If the reorganization we found took
place exclusively at the cortical level (1, 2, 4),
then the only alternative to the immediate or

delayed unmasking (16) of preexisting
thalamocortical or corticocortical projec-
tions would be the sprouting ofnew projec-
tions across the deafferented zone. Yet there
is no evidence to date ofeven limited sprout-
ing of sensory terminals in the neocortex
after peripheral nervous system injury in
adult mammals.

These considerations lead us to propose

that much of the functional reorganization
we observed was a reflection of changes that
had taken place subcortically and were then
simply relayed to the cortex (17). Body part

maps are represented within a much smaller
neural space in the brain stem than in the
thalamus, and in the thalamus than in the
cortex, reflecting the extensive divergence
that occurs along pathways connecting the
brainstem, thalamus, and cortex (18); as a

result, reorganization over a relatively small
distance at the brain stem or thalamic levels
would be reflected as much larger changes at

the cortical level (19). Thus, ifprojections to
or from brain stem nuclei representing the
face were to have synapsed onto all or most
of the brain stem or thalamic cells that had
previously represented the upper limb, then
the entire upper limb representation in the
cortex would likewise have come to repre-

sent the face. Furthermore, axonal sprouting
after deafferentation has been reported to
occur in the spinal cord (20), making it more
plausible that such changes could also be
taking place at higher subcortical stations.
Our finding of extensive reorganization

after peripheral deafferentation raises many
additional questions. For example, why was

the deafferented zone not occupied by an

expanded trunk as well as by an expanded
face representation (21)? Did the expanded
face representation mediate tactile percep-

tion, and could it serve as a substitute for the
normal face representation? Was the neural
activity in the expanded representation re-

layed to higher order cortical and subcortical
stations? Answers to such questions about
mechanism and function could lead to har-
nessing the immense reorganizational capa-

bility of the adult nervous system for thera-
peutic purposes (22).
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