Review

The primate basal ganglia: parallel and integrative networks

Suzanne N. Haber

Department of Pharmacology and Physiology, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, USA

Received 3 April 2003; received in revised form 20 August 2003; accepted 5 October 2003

Abstract

The basal ganglia and frontal cortex operate together to execute goal directed behaviors. This requires not only the execution of motor plans, but also the behaviors that lead to this execution, including emotions and motivation that drive behaviors, cognition that organizes and plans the general strategy, motor planning, and finally, the execution of that plan. The components of the frontal cortex that mediate these behaviors, are reflected in the organization, physiology, and connections between areas of frontal cortex and in their projections through basal ganglia circuits. This comprises a series of parallel pathways. However, this model does not address how information flows between circuits thereby developing new learned behaviors (or actions) from a combination of inputs from emotional, cognitive, and motor cortical areas. Recent anatomical evidence from primates demonstrates that the neuro-networks within basal ganglia pathways are in a position to move information across functional circuits. Two networks are: the striato-nigral-striatal network and the thalamo-cortical-thalamic network. Within each of these sets of connected structures, there are both reciprocal connections linking up regions associated with similar functions and non-reciprocal connections linking up regions that are associated with different cortical basal ganglia circuits. Each component of information (from limbic to motor outcome) sends both feedback connection, and also a feedforward connection, allowing the transfer of information. Information is channeled from limbic, to cognitive, to motor circuits. Action decision-making processes are thus influenced by motivation and cognitive inputs, allowing the animal to respond appropriate to environmental cues.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Striatum; Pallidum; Thalamus; Substantia nigra; Dopamine

1. Introduction

The basal ganglia (BG) work in concert with cortex to orchestrate and execute planned, motivated behaviors requiring motor, cognitive, and limbic circuits. While best known for their motor functions, the BG are involved in several aspects of goal-directed behaviors, including not only its expression through the control of movement, but also the processes that lead to movement, including the elements that drive actions, such as emotions, motivation, and cognition. Indeed, regions within each of the BG nuclei are anatomically and physiologically associated with each of these functional circuits. Ventral regions of the basal ganglia play a key role in reward and reinforcement and are important in the development of addictive behaviors and habit formation (Schultz, 1997; Wise, 1998; Koob, 1999; Rolls, 2000; Everitt et al., 2001). More central basal ganglia areas are involved in cognitive functions such as procedural learning and working memory tasks (Mishkin et al., 1984; Phillips and Carr, 1987; Jueptner et al., 1997; Levy et al., 1997; Jog et al., 1999). Finally, the dorsolateral portion of the striatum, caudal to the anterior commissure is associated with the control of movement. Consistent with this topography, diseases affecting mental health, including schizophrenia, drug addiction, and obsessive compulsive disorder, are all linked to pathology in the basal ganglia, as are diseases affecting motor control (Stevens, 1973; Kalivas et al., 1993; McGuire et al., 1994; Breiter et al., 1996; Koob and Nestler, 1997; Pantelis et al., 1997; Kegeles et al., 2000; Menon et al., 2001; Rauch et al., 2001). The association of the basal ganglia with frontal cortical function along with its relationship to multiple neurological and psychiatric diseases emphasizes the importance of understanding the basal ganglia with respect to cortical function. Differentiation of frontal cortex and basal ganglia structures as they relate to human function and disease are best modeled from a combination of physiological, anatomical, and imaging studies in primates (both human and non-human). Thus, the present review describes...
the organization of the primate basal ganglia from the perspective of cortical function. In some situations, when necessary and indicated, data are presented from rodent work. The BG includes the caudate n., putamen, and the globus pallidus and three closely related structures, the substantia nigra (SN), the ventral tegmental area (VTA), and the subthalamic nucleus (STh). Based on connectivity, histology, and functional considerations, the concept of the ventral striatum was introduced as the ventral extension of the striatum that includes the N. accumbens, the medial and ventral portions of the caudate n. and putamen, and the striatal cells of the olfactory tubercle (Heimer, 1978; Heimer et al., 1994). The ventral striatum contains a subregion, the shell. This region, which was first demonstrated in rodents (Zaborszky et al., 1985), is best distinguished by its lack of calbindin-positive staining (Martin et al., 1991; Meredith et al., 1996; Haber and McFarland, 1999). While the ventral and medial borders of the ventral striatum are relatively clear, the dorsal and lateral boundaries of the ventral striatum merge imperceptibly with the dorsal striatum (Fig. 1) (Haber and McFarland, 1999). The striatum is the main input structure to the basal ganglia. Its afferent projections are derived from three major sources: (1) cerebral cortex; (2) thalamus; and (3) brainstem. The striatum projects to the pallidal complex and to the substantia nigra, pars reticulata (SNr). The pallidal complex includes the external (GPe) and internal segments (GPi) of the globus pallidus and the ventral pallidum (VP), the pallidal segment connected to the ventral striatum. The substantia nigra (and VTA) contains the dopaminergic cells of the pars compacta (Snc/VTA), and the pars reticulata (SNr) (Fig. 2A). The outputs from the GPs and SNrs are to the thalamus, which then projects back to the cortex, completing what is referred to as the ‘direct’ cortico-basal ganglia pathway. The GPe is reciprocally connected to the STh, which in turn projects to the GPs. This is referred to as the ‘indirect’ cortico-basal ganglia pathway. For a comprehensive review of basal ganglia pathways (see Percheron et al., 1994; Graybiel, 1995; Parent and Hazrati, 1995; Parent et al., 2000; Middleton and Strick, 2002; Haber, 2003).

2. Functional organization of the basal-ganglia pathways

Frontal cortex is the main driving force of the BG as indicated by its massive topographically and functionally organized pathways. Together they control the ability to carry all aspects of goal directed behaviors including the motivation and cognition that drives and organizes them, along with their execution. Frontal cortex in primates can be divided into several functional regions: the orbital and medial prefrontal cortex (OMPFC), involved in emotions and motivation; the dorsolateral prefrontal cortex (DLPFC), involved in higher cognitive processes or ‘executive functions’; the premotor and motor areas, involved in motor planning and the execution of those plans (see the section below). Furthermore, prefrontal, premotor, and motor cortices are thought to be organized in a hierarchical manner, with motor cortex being the final step to action (Fuster, 2001). Functionally defined regions of frontal cortex project topographically through the basal ganglia, to thalamus, and back to cortex.
Fig. 2. Photomicrographs of the tyrosine hydroxylase (TH) positive-staining in the midbrain. (A) A coronal section through the human midbrain, illustrating the distribution of the dopamine cells in the substantia nigra and adjacent ventral tegmental area. CP, cerebral peduncle; RN, red nucleus; SC, superior colliculus; SNC, substantia nigra pars compacta; SNr, substantia nigra pars reticulata; VTA, ventral tegmental area. (B) TH-positive fibers and cells of dorsal and ventral tiers. Scale = 100 μm. The cells and processes of the dorsal tier indicated by the box are shown magnified in C) revealing the horizontal arrangement of their dendritic processes. Scale = 50 μm. VT, ventral tier; DT, dorsal tier.

2.1. Functional and anatomical organization of cortical-striatal pathways

The association of different frontal regions with particular functions is derived from multiple sources including physiological and connectional studies, lesions, and imaging studies in both human and non-human primates. While frontal regions have been associated with different behaviors for some time, the understanding of how different aspects of these behaviors are specifically related frontal regions continues to evolve. Thus, for example, motor cortices continue to be defined by their physiology and connectivity (Kamishio and Haber, 1994; Lu et al., 1994; Dum and Strick, 1996; Matelli and Luppino, 1996; Picard and Strick, 1996; Tanji and Mushiake, 1996; Strick et al., 1998; Schieber, 1999a; Schieber, 1999b; Kakei et al., 2001; Dum and Strick, 2002). Caudal motor areas, including motor cortex (M1); supplementary motor area (SMA); caudal cingulate motor area, (CMAc); and caudal premotor area (PM) areas, are most closely involved with movement execution, are highly microexcitable, closely timed to the execution of movement, and send direct descending projections to spinal motor nuclei. Rostral motor areas, including PreSMA, CMAr, and rostral PM areas, project to caudal motor area, are involved in sequence generation, and motor learning, and are less microexcitable than the caudal motor areas, but more so than the prefrontal cortex. Their temporal firing pattern is less directly associated with movement than the caudal motor areas. These motor areas projection topographically to the striatum (Kemp and Powell, 1970; Kunzle, 1975; Kunzle,
1994; Meunier et al., 1997; Baxter et al., 2000; Hikosaka and
and Snyder, 1972; Benevento et al., 1977; Rolls and Baylis,
dprefrontal cortex (Carmichael and Price, 1996b; Petrides
DLPFC has close connections with the orbital and medial
parts of the ventral striatum (Kunishio and Haber, 1994;
Haber et al., 1995b; Chikama et al., 1997; Ferry et al., 2000).
Medial orbital areas 13ab and 14 projects to the
medial wall of the caudate n., extending ventralward
into the n. accumbens, lateral to the shell region. This area
receives an additional dense innervation from the medial
prefrontal cortex (the anterior cingulate cortex). The medial
prefrontal cortex, receives particularly dense innervations
from the orbital prefrontal cortex, the amygdala, and the
hypothalamus and is important in the expression of emotion
(Carmichael and Price, 1995; Mayberg et al., 1999).
The shell receives the densest innervation from medial areas
25, and 32 and from agranular insular cortex. Together, the
orbital and medial prefrontal cortex projects primarily to
the rostral striatum, including the n. accumbens, the medi
caudate n., and the medial and ventral rostral putamen.
This projection extends caudally and occupies a small ventro-
medial portion of the caudate n. and the most ventral and
medial part of the putamen (Pandya et al., 1981; Kunishio
and Haber, 1994; Haber et al., 1995b; Chikama et al., 1997;
Ferry et al., 2000; Freedman et al., 2000; Fudge and Haber,
2002). Together, we refer to this area as the ventral striatum
(Haber and McFarland, 1999). In addition, the ventral stria-
tum receives input from the amygdala and hippocampus
(Russchen et al., 1985; Fudge et al., 2002). Consistent with
input from the OMPFC, physiological and imaging studies
demonstrate the important role of the ventral striatum in
the development of reward-based learning and in mental health
diseases (Apicella et al., 1991; Breier et al., 1992; Kalia
et al., 1993; Bowman et al., 1996; Tremblay et al., 1998;
Wise, 1998; Robbins and Everitt, 1999; London et al., 2000;
Everitt et al., 2001; Hassani et al., 2001; Menon et al.,
2001). In summary, projections from frontal cortex form a
“functional gradient of inputs” from the ventromedial sec-
cor through the dorsolateral striatum, with the medial and
orbital prefrontal cortex terminating in the ventromedial
part, and the motor cortex terminating in the dorsolateral
region (Fig. 3).

2.2. The thalamostriatal projection

As seen with the cortico-striatal projection, thalamo-
striatal inputs are also topographically and functionally or-
ganized. The dorsal and intralaminar nuclei are the source
of the most widely reported thalamostriatal projections
(Jones and Leavitt, 1974; Nakano et al., 1990; Sadikot
Fig. 3. Diagram demonstrating the functional organization of A. frontal cortex and B. striatal afferent projections. (A) Schematic illustration of the functional connections linking frontal cortical brain regions. (B) Organization of cortical and subcortical inputs to the striatum. In both (A) and (B), the colors denote functional distinctions. Blue: motor cortex, execution of motor actions; green: premotor cortex, planning of movements; yellow: dorsal and lateral prefrontal cortex, cognitive and executive functions; orange: orbital prefrontal cortex, goal-directed behaviors and motivation; red: medial prefrontal cortex, goal-directed behaviors and emotional processing.

2.3. Striato-pallidal/SNr-thalamic connections

The striatal projection to the pallidal complex and SNr are also topographically organized, thus maintaining the functional organization of the striatum in these output nuclei (Szabo, 1962; Nauta and Mehler, 1966; Szabo, 1967, 1970, 1980; Carpenter et al., 1981; Parent et al., 1984; Haber et al., 1990; Selemon and Goldman-Rakic, 1990; Hedreen and DeLong, 1991; Lynd-Balta and Haber, 1994c; Parent and Hazrati, 1994; Yelnik et al., 1996). Projections from the sensorimotor areas of the striatum terminate in the ventrolateral part of each pallidal segment and in the ventrolateral SNr. Projections from the central striatum terminate more centrally in both the pallidum and in the SNr. Finally, the ventral striatum terminates topographically in the ventral pallidum and in the dorsal part of the midbrain. The VA/VL/MD thalamic nuclei, which receive the bulk of the GP and SN output, are the source of the direct feedback to the cortex, forming the last link in the cortico-BG circuit. Both the projections from the GP and SNr to the VA/VL/MD and from these thalamic nuclei to the cortex are also functionally and topographically organized (Kuo and Carpenter, 1973; Kim et al., 1976; DeVito and Anderson,
Bar-Gad and Bergman, 2001; McFarland and Haber, 2002).

...Groenewegen et al., 1999b; Haber et al., 2000; 1997; Joel and Weiner, 1997; Groenewegen et al., 1999a; 1994; Joel and Weiner, 1994; Bevan et al., 1996; Bevan et al., 1997; Passingham, 1995; Wise, 1998; Bar-Gad and Bergman, 2001). Communication across functionally distinct circuits is required for this to occur. This communication is critical in order to continually evaluate and adjust to stimuli throughout the development of behaviors. Thus, models based on solely on parallel processing, do not address how information can be transformed across functional regions in order to help implement the learning and adaptability that is necessary in the development of goal-directed behaviors. Indeed, physiological, behavioral, and imaging studies support the role of the basal ganglia in this process (Grafton and Hazeline, 1995; Hikosaka et al., 1995; Jaeger et al., 1995; Doyon et al., 1997; Hikosaka et al., 1998; Jog et al., 1999; Everitt et al., 2001; Letchworth et al., 2001). While BG pathways are generally topographically organized through the one-way cortico-BG circuits, as reviewed above, other parts of the neural network argue against parallel processing as the only organizational rule.

An emerging literature in primates as well as in rodents supports the idea that there are pathways by which information from separate cortico-basal-ganglia loops can influence each other (Percheron and Filion, 1991; Francois et al., 1994; Joel and Weiner, 1994; Bevan et al., 1996; Bevan et al., 1997; Joel and Weiner, 1997; Groenewegen et al., 1999a; Groenewegen et al., 1999b; Haber et al., 2000; Bar-Gad and Bergman, 2001; McFarland and Haber, 2002).

For example, while projections from cortex terminate in a general topography through the BG structures, the dendrites and axons within each structure often cross functional boundaries. This has been suggested to be one mechanism that integrates information across regions. Thus, for example, the dendritic arbors in the GP are extensive and extending beyond functional domains. In this way, distal dendrites from one region invade an adjacent functional area. Another mechanism is through a convergence of terminals from functionally adjacent fields onto progressively smaller basal-ganglia structures (Percheron and Filion, 1991; Yelnik et al., 1997; Yelnik, 2002). The fact the adjacent areas overlap in function is not surprising. Many cortical areas are tightly linked to the immediately adjacent cortex. Thus, ‘edges’ of functionally identified regions are likely to process mixed signals. Furthermore, the interface between functional circuits increases with the complexity of interconnections within the intrinsic BG circuitry and with the compression of pathways to successively smaller structures(Smith et al., 1998; Bar-Gad and Bergman, 2001).

A third mechanism is through complex non-reciprocal arrangements between structures (Joel and Weiner, 1997; Haber et al., 2000; McFarland and Haber, 2002). These pathways provide a directional flow of information between regions. For example, the idea that the limbic striatum could influence motor output was first demonstrated in rodents via the striato-nigro-striatal (SNS) pathway. These studies demonstrated, both at the light microscopic level and at the EM level, pathways by which the ventral striatum could influence the dorsal striatum via the midbrain dopamine neurons (Nauta et al., 1978; Somogyi et al., 1981). The possibility of a second feedforward loop has also been proposed by which the shell of the ventral striatum could influence the core through striato-pallido-thalamic pathways (Zahn and Brog, 1992). In addition, connections of the subthalamic n. to the two pallidal segments are in a position to allow associative regions to influence both limbic and motor areas (Joel and Weiner, 1997). As such, mechanisms by which information can ‘flow’ through functional circuits exists and are fundamental (along with the parallel circuits) for understanding how the execution of goal-directed actions evolves from reward and cognition, shaping final motor outcomes. Two examples of neuronal network systems that extend beyond connecting adjacent regions are the striato-nigro-striatal network and thalamo-cortico-thalamic network. These networks provide a potential continuous feedforward mechanism of information flow. In this way, limbic pathways can interact with cognitive pathways, which, in turn, interact with motor pathways.

2.5. The striato-nigro-striatal network

While behavioral and pharmacological studies of dopamine pathways have lead to the association of the mesolimbic pathway and nigrostriatal pathway with reward...
and motor activity, respectively. More recently, both of these cell groups have been associated with the development of reward-based learning, the acquisition of newly acquired behaviors, and plasticity (Ljungberg et al., 1991; Anglade et al., 1996; Hollerman and Schultz, 1998; Schultz, 1998; Bonci and Malenka, 1999; Matsumoto et al., 1999; Berke and Hyman, 2000; Song and Haber, 2000). The midbrain dopamine cells project to the striatum and also receive striatal output. Based on anatomical criteria, the midbrain dopamine neurons are divided into two tiers: a dorsal tier and a ventral tier (Fig. 4A) (Francois et al., 1985; Francois et al., 1987; Lavoie and Parent, 1991; Parent and Lavoie, 1993; Haber et al., 1995a; Francois et al., 1999). The dorsal tier includes the dorsal SNc, the contiguous VTA, and retrorubral cell group (Figs. 2 and 4). The ventral tier includes most of the SNc (a densocellular group and the cell columns). There is an inverse dorsal-ventral topographic organization to the midbrain striatal projection. The dorsal and medial dopaminergic cells project to the ventral and medial parts of the striatum, while the ventral and lateral cells project to the dorsal and lateral parts of the striatum (Carpenter and Peter, 1972; Szabo, 1979, 1980; Parent et al., 1983; Hedreen and DeLong, 1991; Lynd-Balta and Haber, 1994a,b; Francois et al., 1999; Haber et al., 2000). The shell region of the ventral striatum receives the most limited midbrain input, primarily derived from the VTA. The rest of the ventral striatum receives input from the entire dorsal tier from the most medial and dorsal part of the densocellular group. The central striatal area (the region innervated by the DLPC) receives input from a wide region of the densocellular group. The ventral tier projects to the dorsolateral striatum, with the cell columns projecting almost exclusively to there. The dorsolateral striatum receives the largest midbrain projection, while the ventral striatum receives the most limited dopamine cell input. Thus, in addition to an inverse topography there is also a differential ratio of dopamine projections to the different striatal areas. Projections from the striatum to the midbrain are also arranged in an inverse dorsal-ventral topography. The dorsal aspects of the striatum terminate in the ventral...
regions of the midbrain, while the ventral areas terminate dorsally (Szabo, 1967, 1970, 1980; Haber et al., 1990; Selemon and Goldman-Rakic, 1990; Hedreen and DeLong, 1991; Lynd-Balta and Haber, 1994c; Parent and Hazrati, 1994). Projections from the ventromedial striatum terminate throughout an extensive dorsal region, including the VTA and the medial SNc, along with the medial pars reticulata. The ventral striatum projects not only throughout the rostrocaudal extent of the substantia nigra, but also innervates a wide mediolateral range of dopaminergic cells including much of the densocellular SNc. The central striatum projection terminates more ventrally, primarily in the ventral densocellular region (and associated pars reticulata). The dorsolateral striatum projection terminates in the ventrolateral midbrain in the pars reticulata and in the dopaminergic cell columns that extend into this region.

When considered separately, each pathway of the system (striato-nigral or nigro-striatal pathway) creates a loose topographic organization demonstrating that the VTA and medial SN are associated with the limbic system, and the lateral and ventral SN are related to the associative and motor striatal regions. However, the ascending and descending limb for each functional area of the striatum differs in their proportional projections. The ventral striatum receives a limited midbrain input, but projects to a large region. In contrast, the dorsolateral striatum receives a wide input, but projects to a limited region. Thus the ventral striatum influences a wide range of dopamine neurons, but is itself influenced by a relatively limited group of dopamine cells. In contrast, the dorsolateral striatum influences a limited midbrain region, but is affected by a relatively large midbrain region. In addition, for each striatal region there is one reciprocal and two non-reciprocal connections with the midbrain. Dorsal to the reciprocal connection lies a group of cells that project to the striatal region, but does not receive projections from it. Ventral to the reciprocal component lies efferent terminals without an ascending reciprocal connection. Finally, these three components for each SNS projection system occupy a different position within the midbrain. The ventral striatum system lies dorsomedially, the dorsolateral striatum system lies ventrolaterally, and the central striatum system is positioned between the two (Fig. 4B) (Haber et al., 2000). With this arrangement, information from the limbic system can reach the motor system through a series of connections. The ventral striatum, which receives input from the OMPFC sends an efferent projection to the midbrain that extends beyond

Fig. 6. Diagram of the organization of thalamo-cortico-thalamic projections. Through the non-reciprocal cortico-thalamic projection, cells in layer V may also interface with other cortico-basal ganglia circuit by projecting to a thalamic region that is part of another circuit system.
reciprocal connection, terminating lateral and ventral to it. This terminal region projects to the central (or associative) striatum. The central striatum is reciprocally connected to the dorsolateral (or motor) striatum. Taken together, the interface between different striatal regions via the midbrain DA cells is organized in an ascending spiral interconnecting different functional regions of the striatum and creating a feed forward organization (Fig. 5). Information can thus be channeled from the shell to the core, to the central striatum, and finally to the dorsolateral striatum. In this way, information flows from limbic to cognitive to motor circuits.

2.6. Thalamo-cortico-thalamic interface

The thalamic-cortical pathway is the last link in the circuit and is often treated as a simple ‘one-way relay’ back to cortex. However, this pathway does not transfer information passively but rather plays a key role in regulating cortical ensembles of neurons through its projections to different cortical layers and by non-reciprocal cortico-thalamic projections (Jones, 1985; Sherman and Guillery, 1996; Castro-Alamancos and Connors, 1997; McFarland and Haber, 2002). Like the SNS system, the thalamo-cortico-thalamic system is in a critical position for integrating information across functional circuits.

While cortico-thalamic projections to specific relay nuclei are thought to follow a general rule of reciprocity, cortico-thalamic projections to VAA/VL and central MD sites, as seen in other thalamocortical systems, are more extensive than thalamocortical projections (Sherman and Guillery, 1996; Deschenes et al., 1998; Jones, 1998; Darian-Smith et al., 1999; McFarland and Haber, 2002). Furthermore, they are derived from areas not innervated by the same thalamic region, indicating non-reciprocal cortico-thalamic projections to specific basal-ganglia relay nuclei. Although each thalamic nucleus completes the cortico-basal-ganglia segregated circuit, the non-reciprocal component is derived from a functionally distinct frontal cortical area. For example, the central MD has reciprocal connections with the lateral and orbital prefrontal areas and also a non-reciprocal input from medial prefrontal areas; VAA has reciprocal connections with dorsal premotor areas, and caudal area DLPMC and also a non-reciprocal connection from medial prefrontal areas; and VLo has reciprocal connections with caudal motor areas along with a non-reciprocal connection from rostral motor regions. The potential for relaying information between circuits through thalamic connections, therefore, is accomplished through the non-reciprocal cortico-thalamic pathways (Fig. 6). Thus, similar to the basal-ganglia-thalamic relay nuclei appear to mediate information flow from higher cortical “association” areas of the prefrontal cortex to rostral motor areas involved in “cognitive” or integrative aspects of motor control to primary motor areas that direct movement execution.

2.7. A role for both parallel circuit and integrative networks

Within each area of connected cortico-BG structures, there are both reciprocal connections linking up regions associated with similar functions (maintaining parallel networks). However, in addition, there are non-reciprocal connections linking up regions that are associated with different cortical-BG circuits (Fig. 7). The development and modification of goal-directed behaviors require continual processing of complex chain of events, which is reflected in the feedforward organization of both the striato-nigral connections and the thalamo-cortical connections. Information can thus be channeled from limbic, to cognitive, to motor circuits, allowing the animal to respond appropriate to environmental cues. Parallel circuits and integrative circuits must work together, so that the coordinated behaviors are maintained, and focused (via parallel networks), but also can be modified and changed according the appropriate external and internal stimuli (via integrative networks). Indeed, both the inability to maintain and to focus in the execution of specific behaviors, as well as the inability to adapt appropriately to external and internal cues, are key deficits in basal ganglia diseases which affect these aspects of motor control, cognition and motivation.

Acknowledgements

This work was supported by NIH Grants NS22311 and MH45573.
References

Aker, K., Hartmann-von Monakow, K., 1998. Relationships of precen-
tral, premotor and prefrontal cortex to the midolfacial and intralam-
nular nuclei of the monkey thalamus. Acta Neurobiol. Exp. 48, 7–
25.

Aldridge, J.W., Anderson, R.J., Murphy, J.T., 1980. Sensory-motor pro-
cessing in the caudate nucleus and globus pallidus: a single-unit study in

mate neostriatum. I. Physiological properties of striatal microexcitable

e neostriatum. II. Somatotopic organization of striatal microexcitable
zones and their relation to neuronal response properties. J. Neuro-
physiol. 53, 1417–1431.

systems. In: Asbury, McKhann, McDonald (Eds.), Diseases of the Nervous


functionally segregated circuits linking basal ganglia and cortex. Annu.
Rev. Neurosci. 9, 357–381.

Anglade, P., Blanchard, V., Raisman-Vozari, R., Fawcett, B.A., Her-
ner, M.T., O祯os, J.A., Mount-Pigott, A., Kastner, A., Stadil, O.,
deuath accompanied by concomitant nerve plasticity? In: Battistin, L.,
Scalfati, G., Caraceni, T., Baggeri, S. (Eds.), Parkinson’s Disease.

Aosaki, T., Graybiel, A.M., Kimura, M., 1994a. Effect of the nigrostriatal
system on acquired neural responses in the striatum of

Aosaki, T., Tsuhabokura, H., Ishida, A., Watanabe, K., Graybiel, A.M.,
Kimura, M., 1994b. Responses of tonically active neurons in the
primate’s striatum undergo systematic changes during behavioral sen-

activity in monkey striatum related to the expectation of predictable
environmental events. J. Neurosci. 12, 603–615.

Breier, A., Buchanan, R.W., Elkashef, A., Munsen, R.C., Kolpak, B.,
resonance imaging study of limbic, prefrontal cortex, and caudate

Breier, H.C., Rach, S.L., Kwong, K.K., Boker, J.R., Weiskoff, R.M.,
Kendawy, D.N., Kendrick, A.D., Davis, T.L., Jiang, A., Cohen, M.S.,
Stem, C.E., Belliveau, J.W., Buxy, L., O’Sullivan, R.L., Savage, C.R.,
Jenike, M.A., Rosen, B.R., 1996. Functional magnetic resonance imag-
ing of symptom provocation in obsessive-compulsive disorder. Arch.

Baxter, M.G., Parker, A., Lindner, C.C., Izquierdo, A.D., Murray, E.A.,
2000. Addiction, dopamine, and the molecular

Bevans, M.D., Smith, A.D., Bolam, J.P., 1996. The substantia nigra as a site
of synaptic integration of functionally diverse information arising from
the ventral pallidum and the globus pallidus in the rat. Neuroscience
75, 5–12.

Bevans, M.D., Clarke, N.P., Bolam, J.P., 1997. Synaptic integration of
functionally diverse pallidal information in the entopeduncular nu-
cleus and subthalamic nucleus in the rat. J. Neurosci. 17, 308–
324.

Bocskoc, H., Agster, A., Ceballos-Baumann, A.O., Paus, B., Paus, B.,
Samuel, M., Pezton, K.I., Policic, J., Dittmers, C., Conrad, B., Borka,
D.J., 1999. Role of the human rostral supplementary motor area and
the basal ganglia in motor sequence control: investigations with H2

Bonsi, A., Melenka, R.C., 1999. Properties and plasticity of excitatory
synapses on dopaminergic and GABAergic cells in the ventral tegmen-

Bowman, E.M., Aigner, T.G., Richmond, B.J., 1996. Neural signals in the
monkey ventral striatum related to motivation for juice and cocaine

Breier, A., Buchanan, R.W., Elkashef, A., Munsen, R.C., Kolpakk, B.,
resonance imaging study of limbic, prefrontal cortex, and caudate

Breier, H.C., Rach, S.L., Kwong, K.K., Boker, J.R., Weiskoff, R.M.,
Kendawy, D.N., Kendrick, A.D., Davis, T.L., Jiang, A., Cohen, M.S.,
Stem, C.E., Belliveau, J.W., Buxy, L., O’Sullivan, R.L., Savage, C.R.,
Jenike, M.A., Rosen, B.R., 1996. Functional magnetic resonance imag-
ing of symptom provocation in obsessive-compulsive disorder. Arch.

Butter, C.M., Snyder, D.R., 1972. Alterations in aversive and aggressive
behaviors following orbital frontal lesions in rhesus monkeys. Acta

Butters, N., Rosvold, H.E., 1968. Effect of caudate and septal male-
torial lesions on resistance to extinction and delayed-alternation. J.
Comp. Physiol. Psychol. 65 (3), 397–403.

and medial prefrontal cortex in macaque monkeys. J. Comp. Neurol. 363,
615–641.

Carmichael, S.T., Price, J.L., 1996a. Sensory and premotor connec-
tions of the orbital and medial prefrontal cortex of macaque monkeys.
ICN 363, 640–642.

Carmichael, S.T., Price, J.L., 1996b. Combination networks within the or-
bitofrontal and medial prefrontal cortex of Macaque monkeys. J. Comp.
Neurol. 371, 179–207.

Carpenter, M.B., 1972. Nigrostriatal and nigrothalamic fibers in the

Carpenter, M.B., Eaton, R.O., Carlson, S.C., Keller, J.T., 1981. Intercon-
nections and organization of pallidal and subthalamic nuclear neurons

Prog. Neurobiol. 51, 381–408.

cortical projections to functional regions of the striatum correlate with
17 (24), 9068–9075.

Cummings, J.L., 1995. Anatomical and behavioral aspects of frontal-
subcortical circuits: review. Ann. N.Y. Acad. Sci. 769, 1–13 (69 ref-
erences).

Datar-Smith, C., Tan, A., Edwards, S., 1999. Comparing thalamocorti-
cal and corticothalamic microstructure and spatial reciprocity in
the macaque ventral postero-lateral nucleus (VPLa) and medial pulvin-


functionally segregated circuits linking basal ganglia and cortex. Annu.
Rev. Neurosci. 9, 357–381.

Darian-Smith, C., Tan, A., Edwards, S., 1999. Comparing thalamocorti-
cal and corticothalamic microstructure and spatial reciprocity in
the macaque ventral postero-lateral nucleus (VPLa) and medial pulvin-


Kegeles, L.S., Abi-Dargham, A., Zea-Ponce, Y., Rodenhiser-Hill, J., Mann,
Jueptner, M., Frith, C.D., Brooks, D.J., Frackowiak, R.S., Passingham,


Joel, D., Weiner, I., 1997. The connections of the primate subthalamic

Joel, D., Weiner, I., 1994. The organization of the basal


demonstration of non-specific projections to the cerebral cortex and


