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Abstract—

 

In a typical visual search experiment, observers look
through a set of items for a designated target that may or may not be
present. Reaction time (RT) is measured as a function of the number of
items in the display (set size), and inferences about the underlying
search processes are based on the slopes of the resulting RT 

 

×

 

 Set Size
functions. Most search experiments involve 5 to 15 subjects perform-
ing a few hundred trials each. In this retrospective study, I examine
results from 2,500 experimental sessions of a few hundred trials each
(approximately 1 million total trials). These data represent a wide
variety of search tasks. The resulting picture of human search behav-

 

ior requires changes in our theories of visual search. 

 

0

 

 

 

The visual search paradigm has been a pillar of research in visual
attention for more than 20 years. In a typical visual search experiment,
observers are presented with a display containing a number of items. On
each trial, the observers must determine if a specific 

 

target

 

 item is or is
not present among the 

 

distractor

 

 items. The number of items (

 

set size

 

)
varies from trial to trial. Experimenters measure the reaction time (RT),
the amount of time that is required to make a “target-present” or “target-
absent” response. They also note the accuracy of that response. Changes
in accuracy and RT as a function of set size constitute the preferred mea-
sures of search performance (for a review, see Wolfe, in press). 

The search paradigm is valuable because performance on these
tasks varies in a systematic way with the nature of the search stimuli.
For some tasks, performance does not depend on set size. For example,
in a search for a red spot among green spots, the number of green spots
is irrelevant. Accuracy will be high and RT fast for all set sizes. The
slope of the RT 

 

×

 

 Set Size function will be near zero. The independence
of RT and set size is consistent with parallel processing of all items. For
other tasks, RT is a roughly linear function of set size. For example, in a
search for an 

 

S

 

 among mirror-reversed 

 

S

 

s, RTs will increase at a rate of
approximately 20 to 30 ms/item for target-present trials and 40 to 60
ms/item for target-absent trials. The linear increase in RT and the 2:1
ratio between target-absent and target-present slopes is characteristic of
a serial, self-terminating search, though it is also consistent with vari-
ous limited-capacity (Townsend, 1971, 1990) and unlimited-capacity
(Palmer & McLean, 1995) parallel search processes. 

In part because of results of this sort, searches have been divided
into parallel searches, in which all items can be processed in a single
step, and serial searches, in which attention is deployed from item to
item until the target is found. Treisman and Gelade (1980) proposed
that searches for basic features like color, motion, and orientation are
parallel, whereas other searches, like those for 

 

S

 

s among mirror-
reversed 

 

S

 

s, are serial. Further, they argued that 

 

conjunction

 

 searches
fall into the serial category. These are searches in which the target is
defined by two or more basic features. For example, the target might be
a small blue item among big blue and small yellow items. Subsequent

 

0. 

research has shown that many conjunction searches are more efficient
than would be predicted by a strictly serial search (e.g., Cohen, 1993;
Cohen & Ivry, 1991; Dehaene, 1989; Egeth, Virzi, & Garbart, 1984;
McLeod, Driver, & Crisp, 1988; McLeod, Driver, Dienes, & Crisp,
1991; Nakayama & Silverman, 1986; Sagi, 1988; Theeuwes & Kooi,
1994; Treisman & Sato, 1990; von der Heydt & Dursteler, 1993; Wolfe,
1992; Zohary & Hochstein, 1989). A variety of models have attempted
to explain this range of results by proposing a continuum of search
tasks from highly efficient to inefficient (Duncan & Humphreys, 1989;
Nakayama, 1990; Treisman, 1993; Wolfe, 1994; Wolfe, Cave, & Fran-
zel, 1989; Wolfe & Gancarz, 1996). For example, I have argued that all
searches require the deployment of attention to the target and that dif-
ferent tasks vary only in the degree to which they can use parallel pro-
cesses to guide the deployment of attention. 

Arguments about the mechanisms of visual search are generally
based on search experiments involving 5 to 15 subjects. The purpose of
this article is to present an analysis of data from 2,500 sessions drawn
from 10 years of research in my laboratory. Each session involved a
single subject doing a single search task. The data yield 2,500 target-
present and 2,500 target-absent slopes—the product of approximately 1
million search trials. These data can be used to present a statistical pic-
ture of search performance that has been hitherto unavailable. The
results are inconsistent with a number of the assumptions that appear
regularly in the search literature. However, they can provide new
benchmarks for the analysis of search experiments. 

 

WHAT IS IN THE DATA SET? 

 

The slopes come from experiments with the following general
characteristics. The observer was told to look for a specific target item
during a block of 300 to 500 trials. A target was present on 50% of the
trials. The display was visible until the subject responded. The subject
was asked to respond as quickly and as accurately as possible. Error
rates (which are not presented) were almost always less than 10%, and
the majority were less than 5%. Three or more set sizes were randomly
intermixed during a block of trials. The range of set sizes varied
widely across experiments. In a standard experiment, 10 subjects were
tested, yielding 10 target-present and 10 target-absent slopes. Some
studies had fewer subjects, others more, but 10 is the modal value.
Subjects were generally young (ages 18–30). All had normal or cor-
rected-to-normal acuity and could pass the Ishihara color test. Testing
was binocular. An average subject would have had limited practice in
visual search tasks (several hundred trials). 

Selection of experiments for inclusion in this sample was driven,
frankly, by convenience. If the slopes were readily accessible on archive
disks, the experiment was included. This process is unlikely to have
made this sample systematically different from the full set of standard
search experiments conducted in this lab. Search tasks that fell outside
the domain of “standard search tasks” were excluded. Nonstandard
tasks include searches for multiple types of targets (e.g., search for the
red vertical or the green horizontal item), searches for multiple instances
of one type (e.g., Are there one or two red vertical items?), and searches
for properties of more than one item (e.g., Is there a pair of lines that

WHAT CAN 1 MILLION TRIALS TELL US ABOUT VISUAL SEARCH?

Jeremy M. Wolfe
Center for Ophthalmic Research, Brigham and Women’s Hospital, and Department of Ophthalmology, Harvard Medical School 

Address correspondence to Jeremy M. Wolfe, Center for Ophthalmic
Research, Brigham and Women’s Hospital, 221 Longwood Ave., Boston,
MA 02115; e-mail: wolfe@search.bwh.harvard.edu. 

 

Research Article

 



 

PSYCHOLOGICAL SCIENCE

 

34

 

VOL. 9, NO. 1, JANUARY 1998

 

1 Million Trials

 

form an acute angle?). The set of tasks included in this analysis is neces-
sarily skewed by the interests of my laboratory over the past decade.
Thus, experiments on conjunction search and orientation search are
overrepresented, and motion searches, to offer just one example, are
underrepresented. Given this inevitable bias, some questions cannot be
meaningfully addressed (e.g., What percentage of all search tasks will
have slopes less than 10 ms/item?). The possibility of expanding this
data set with results from other labs is discussed at the end of this article. 

The 2,500 pairs of slopes can be divided into six categories: 

•

 

Feature searches:

 

 490 pairs (19.6%). These are searches in which
the target is defined by a unique single feature. Most of these are
orientation or color searches. 

•

 

Hard feature searches:

 

 80 pairs (3.2%). These are orientation
searches in which the target is defined by a unique orientation but
in which, for theoretical reasons, search is expected to be uncharac-
teristically difficult. Specifically, my colleagues and I have found
that orientation feature searches are inefficient if the target cannot
be specified as categorically different from the distractors. Efficient
search requires that the target be the only item that is steep or shal-
low or tilted to the left or to the right. This issue is discussed in
Wolfe, Friedman-Hill, Stewart, and O’Connell (1992), the source
of most of these data. 

•

 

Conjunction searches:

 

 1,218 pairs (48.7%). In all of these conjunc-
tion searches, the targets are defined by conjunctions of two differ-
ent featural dimensions, such as color and orientation or curvature
and size. There are various other searches that have been described
in the literature as conjunction searches. For instance, it is possible
to consider a purple target to be defined by a conjunction of red and
blue. Such searches are not considered to be conjunction searches
in this analysis. 

•

 

Within-dimension conjunction searches:

 

 182 pairs (7.3%). In my
lab, we have conducted many experiments in which targets are
defined by a conjunction between two instances of the same type of
feature. An example would be a Color 

 

×

 

 Color conjunction search
in which subjects search for a target that is red and blue among dis-
tractors that are either red and yellow or blue and yellow. This sam-
ple includes Color 

 

×

 

 Color, Size 

 

×

 

 Size, and Orientation 

 

×

 

Orientation conjunction searches. 

•

 

Spatial-configuration searches:

 

 205 pairs (8.2%). These are
searches in which the target is defined not by any simple feature
properties, but rather by the spatial arrangement of line segments.
Spatial relationships do not appear to be processed in parallel
across multiple items (Logan, 1995). These tasks represent some-
thing of a gold standard for “serial” search (Braun & Sagi, 1990;
Egeth & Dagenbach, 1991; Kwak, Dagenbach, & Egeth, 1991;
Moore, Egeth, Berglan, & Luck, 1996) because models that hold
that subjects are attending to one item at a time would predict
serial, self-terminating search in these cases. The two tasks repre-
sented in this group are a search for a 

 

T

 

 among 

 

L

 

s (with 

 

T

 

s and 

 

L

 

s
rotated by 0

 

°

 

, 90

 

°

 

, 180

 

°

 

, or 270

 

°

 

) and a search for an 

 

S

 

 among mir-
ror-reversed 

 

S

 

s (or vice versa). In some versions, these stimuli are
upright. In others, they are rotated by 90

 

°

 

. 

•

 

Other searches:

 

 325 pairs (13%). The remaining 325 pairs of
slopes are drawn from a variety of tasks that do not fit well into the
categories just given. These include a number of tasks in which
subjects search for a target defined by its unique shape. These are

not feature searches because it does not appear that overall shape is
a basic feature in search (Wolfe & Bennett, 1997), nor are these
“gold-standard” serial searches. Also included in this category are
a variety of hybrid conjunction tasks, for example, Color 

 

×

 

 Color 

 

×

 

Orientation search. 

The bulk of the analysis reported here compares the feature, con-
junction, and spatial-configuration categories because those have been
the topics of the most general theoretical interest. Data from most of
the individual experiments included in this sample have been reported
in previous publications. The purpose of this report is not to review
those individual results but to analyze the combined data set. 

The 2,500 pairs of slopes do not come from 2,500 different subjects,
as subjects were generally tested in several conditions. A reasonable
estimate is that these data represent about 650 subjects. Thus, the slopes
are not fully statistically independent. However, this limitation does not
appear to have important consequences for the present analysis.

 

1

 

 

 

RESULTS 

Properties of the Sample as a Whole 

 

Figure 1 shows a histogram of all slopes less than 150 ms/item
counted in bins that are 5 ms/item wide. Not included are the 8 target-
present slopes and 54 target-absent slopes greater than 150 ms/item.
Table 1 gives the basic statistics for the two distributions. 

The most important point is that the distributions are unimodal.
When the data in the region from 0 to 25 ms/item are examined at a
finer grain with bins 1 ms/item wide, there is still no evidence of a
bimodal distribution. This result suggests that any effort to divide tasks
into serial and parallel search on the basis of search slope alone will be
futile. Many people in many places have tried to lay this dichotomy to
rest, yet the literature remains replete with efforts to characterize
search tasks as either parallel or serial on the basis of slope magnitude.
A favorite strategy has been to invoke a mythical threshold of about 10
ms/item that divides parallel from serial search. I refrain from offering
specific citations of this error in the literature lest someone look at my
previous publications and suggest that one without sin should cast the
first citation. In any event, the present analysis makes it quite clear that
a successful model of human search behavior should not produce a
bimodal or multimodal distribution. 

 

1. Because subjects were tested in multiple experiments, the data pre-
sented here violate strict assumptions about the statistical independence of
measures. Subject identity was not preserved in this data set, but it is possi-
ble to estimate the worst-case effects of this lack of independence. The
sample of 2,500 slope pairs represents an estimated 650 subjects. Suppose
there is no within-subjects variability (an intraclass correlation of 1.0—the
worst case). In that case, a conservative approach would be to use the num-
ber of subjects minus 1 as the degree of freedom rather than the number of
observations minus 1. For most of the 

 

t

 

 statistics, such a change in the
degrees of freedom will be essentially irrelevant because the degrees of
freedom will still be large and 

 

p

 

 values change little when 

 

df

 

 > 50.
Decreasing degrees of freedom by a factor of 4 would double the 95% con-
fidence interval (e.g., Fig. 7). In fact, the situation is better than this. It is
possible to estimate an intraclass correlation from experiments in which
subjects were tested twice on the same task. 

 

R

 

 is approximately .5, sug-
gesting that the problem is less severe than the worst case. 
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Two notes about this conclusion: First, it does not mean that there
are no meaningful differences between search tasks. As I illustrate
later, different search tasks produce different patterns of results.
Rather, this conclusion simply means that readers should be suspi-
cious of claims such as “The slopes averaged less than 10 ms/item;
therefore, this is a parallel search.” Second, the exact distribution
shown here is dependent on the mix of search tasks, though it is worth
noting that the distribution is not bimodal even if restricted to only fea-
ture and spatial-configurations tasks. 

 

The Relationship of Target-Present 
to Target-Absent Slopes 

 

Target-present and -absent slopes are strongly positively corre-
lated. The regression line relating target-absent slope to target-present
slope has a slope of 1.8 and an 

 

r

 

2

 

 value of .785. This regression line
might be unduly influenced by the few very large slopes included in
the sample. Though there are other reasons for very steep search
slopes (Wolfe & Bennett, 1997), mandatory eye movements should be
suspected when target-present slopes are greater than 100 ms/item or
target-absent slopes are greater than 200 ms/item. Figure 2 shows the
results of restricting the analysis of the relationship of target-present
and target-absent slopes to those cases in which target-present slopes
are less than 60 ms/item. This analysis retains 2,426 (97%) pairs of
slopes. 

The regression slope of 2.0 does not mean that the slope ratios are
2:1, as would be predicted in a serial, self-terminating search. Note
that the regression line does not pass through the origin. In fact, the
mean slope ratio differs significantly from 2.0. The distribution of
slope ratios is shown in Figure 3 and Table 2. Log ratios are plotted
because the distribution of untransformed ratios is strongly positively
skewed. A log transform makes the distribution roughly normal. 

The mean slope ratio is greater than 2.0 using either raw ratios or
their logs, log(slope ratio): 

 

t

 

 > 7.0, 

 

df

 

 > 2200, 

 

p

 

 < .0001. 

 

N

 

 is less than

2,500 because of the removal of cases in which the slope ratio is nega-
tive. There are 1,292 ratios greater than 2.0 and 1,155 less than 2.0 in
this data set. 

Slope ratios become large as the denominator, the target-present
slope, approaches zero. However, mean slope ratios remain signifi-
cantly greater than 2.0 over a wide range of target-present slopes. This
can be seen in Figure 4, where slope ratio is plotted as a function of
target-present slope. To compensate for the positive skew of the raw
ratio data, the figure also shows mean log(ratio) and median ratio as a
function of target-present slope. Although these manipulations reduce
the magnitude of the effect of small target-present slopes, it remains

Fig. 1. Distribution of search slopes for the entire data set.

Table 1. Distribution statistics for the entire sample

Statistic

Target-present 
slopes 

(ms/item)

Target-absent 
slopes 

(ms/item) 

Mean 14.6 33.0
Standard deviation 20.9 42.6
Minimum –12.8 –19.4
Maximum 207.2 476.4
10th percentile 0.5 1.0
50th percentile (median) 8.4 20.1
90th percentile 37.0 82.0

Fig. 2. Target-absent slopes as a function of target-present slopes for
the 97% of data points for which the target-present slope is less than
60 ms/item.
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the case that slope ratios are elevated above 2.0 for the more efficient
searches. Statistical tests on the log(ratio) data and raw ratio data pro-
duce similar results. 

Instead of analyzing ratio data, one can test the following hypothesis: 

.

For the four most efficient slope categories (slopes < 20 ms/item),

 

t

 

 tests reject this hypothesis (

 

p

 

 < .001). 
The analysis of slope ratios suggests that a successful model of

search behavior will produce ratios that are on average a bit greater
than 2.0 and that the regression line relating target-absent to target-
present slope will have a slope of about 2.0 and a positive 

 

y

 

-intercept. 

 

Differences Between Types of Search Task

 

Thus far, the analysis has treated search tasks as a homogeneous
set, but they are not. To begin, it is a relief to see that “feature,” “con-
junction,” and “spatial configuration” are not arbitrary distinctions in
visual search. Figure 5 shows the mean slope for target-present and
target-absent trials for each of these three tasks. With the large num-
bers of data points involved, standard errors are very small (invisible
on this graph), and all differences are highly significant (

 

p

 

 < .0001 by 

 

t

 

test, with 

 

df

 

 > 100 for all tests). 
These data show that if you know the search task, then you can pre-

dict the slope (if P, then Q). However, neither the data nor the rules of
logic permit the reverse inference: If you know the slope, then you can
infer the type of task (if Q, then P). The failure of the reverse inference
is made apparent when the distributions of target-present slopes are
plotted for feature, conjunction, and spatial-configuration searches.
The distributions are shown in 5-ms bins in Figure 6. Although it is
true that a slope of 15 ms/item is unlikely to come from a feature
search, and a slope of 5 ms/item is unlikely to come from a spatial-
configuration search, the distributions overlap considerably. 

The lack of a clear division between serial and parallel tasks has
been accepted by most recent models of visual search. Indeed, they
have often taken the opposite position, positing that one mechanism
underlies all these different types of search. For example, the guided

Fig. 3. Distribution of log(slope ratios) for all the data.

Fig. 4. Slope ratio as a function of target-presents slope. Values at the
tops of the bars are significance values for two-tailed t tests for the
hypothesis that log(ratio) = log(2.0). These are not corrected for multi-
ple comparisons. Degrees of freedom are based on the number of
slopes in each category, shown in parentheses on the x-axis. Error bars
(± 1 sd) are shown for mean ratios.

target-absent slope 2 * target-present slope( )– 0=

Table 2. Distribution statistics for the log(slope ratios)

Statistic Log value 10log value 

Mean 0.355 2.26
Standard deviation 0.344 2.21
Minimum –1.57 0.027
Maximum 1.79 61.66
10th percentile 0 1.0
50th percentile (median) 0.350 2.24
90th percentile 0.748 5.60

Fig. 5. Mean target-present and target-absent slopes as a function of
search task. Error bars show ± 1 sd.
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search model holds that feature, conjunction, and spatial-configuration
search differ from each other only in the amount of guidance that pre-
attentive feature processes can provide. More guidance yields shal-
lower slopes (Wolfe, 1994; Wolfe et al., 1989; Wolfe & Gancarz,
1996). Other theories lead to similar conclusions by rather different
routes (e.g., similarity theory, Duncan & Humphreys, 1989; or signal
detection approaches, Chun & Wolfe, 1996; Eckstein, Thomas,
Palmer, & Shimozaki, 1996; Hübner, 1993; Palmer, 1994; Swensson
& Judy, 1981; Verghese & Nakayama, 1994). 

If tasks differ only in the strength of the target signal, and if target-
present slopes reflect that strength, then all searches with the same
target-present slope should be the same. For instance, searches with
the same target-present slope should have the same target-absent slope
and, thus, the same slope ratio. This hypothesis can be rejected by
examining the slope ratio data in Figure 7. Because ratio measures
become very unstable as the denominator gets close to zero, cases in
which the target slope is less than 1.0 are eliminated in this analysis.

This restriction reduces the range of slope ratios from (–617, 198) to
(–3, 40). The mean slope ratio for feature searches in this range is 1.7,
significantly less than the mean slope ratio of 2.9 for conjunction
searches or 2.8 for spatial-configuration searches, unpaired 

 

t

 

 > 3.0, 

 

df

 

> 100, 

 

p

 

 < .0001. Conjunction and spatial-configuration searches do
not differ significantly overall. However, if analysis is restricted to the
roughly asymptotic range of the data (target-present slopes between 15
and 60 ms/item), then the mean ratio for conjunction searches, 2.1, is
significantly less than the mean ratio for spatial-configuration
searches, 2.6, unpaired 

 

t

 

 = 6.5, 

 

df

 

 > 100, 

 

p

 

 < .0001. Because the ratio
distribution is positively skewed, the estimates of the ratios are all
somewhat lower if medians or log(ratios) are used. However, the pat-
tern of results is not changed. 

These results mean that even when target-present slopes are
equated, the behavior of subjects on target-absent trials depends on the
task. Subjects will terminate unsuccessful feature searches more
readily than unsuccessful conjunction searches and unsuccessful con-
junction searches more readily than unsuccessful spatial-configuration
searches. This is not a speed-accuracy trade-off because error rates
tend to be lowest for feature searches and highest for spatial-configu-
ration searches. A speed-accuracy trade-off would require the opposite
pattern. 

These task differences represent a challenge and an opportunity for
models of search behavior. Models with a signal detection flavor have
generally assumed that the target is a signal of some size and the dis-
tractors are drawn from a noise distribution, generally assumed to be
normal. The ratio results suggest that the distractors in different tasks
make different noise distributions. These different distributions could
induce subjects to adopt different criteria for quitting unsuccessful
searches. The challenge for models is to capture these differences. 

The ratio differences are an opportunity because they offer a new
hope of categorizing search tasks on the basis of RT 

 

×

 

 Set Size func-
tions, the very act I derided earlier in this article. Although it would
not be wise to declare a task to be a feature search simply because the
average slope is below 10 ms/item, shallow slopes combined with suit-
ably low slope ratios would be diagnostic. Diagnostics of this form,
combining slopes and ratios, have been proposed before, but these
data show that we have been using the wrong benchmarks. For
instance, if feature searches were really unlimited-capacity parallel
searches, then slopes should be near zero and similar for both target-
present and target-absent trials. Real feature searches differ systemati-
cally from these predictions. If experimenters had a new candidate for
a basic feature, they would do better to test the similarity of their data
against data from established features rather than against a theoretical
ideal that appears to be invalid. The benchmarks from this data set
could be used as the priors in a Bayesian strategy for categorizing
search tasks. A similar argument can be made about less efficient
searches. If such searches were serial and self-terminating, then slope
ratios should average 2.0. However, the ratios in the data are systemat-
ically greater than 2.0, suggesting that a simple serial, self-terminating
account is inadequate. 

 

AND THERE IS MORE ... 

 

Many more nuggets can be mined out of these data. For example,
this short article did not discuss the categories of hard feature searches
and within-dimension conjunction searches. More important, although
this may be the largest published data set on visual search, it still

Fig. 6. Distribution of target-present slopes (ms/item) for different
classes of search tasks.

Fig. 7. Slope ratio as a function of target-present slope for different
search tasks. Error bars show ± 1 sd. The dotted line shows the 2:1
slope ratio predicted by simple serial, self-terminating search models.

 



 

PSYCHOLOGICAL SCIENCE

 

38

 

VOL. 9, NO. 1, JANUARY 1998

 

1 Million Trials

 

includes only the data from one lab. It is possible, if unlikely, that this
limitation skews the results for tasks included in the set. It is unques-
tionable that there are many basic types of search task that are not in
the data set at present. Accordingly, the data set is posted on our web
site (www.dahlen.com/kari/wolfe.html), and visitors to that site will
find a description of a procedure for adding their published visual
search results to the database, which will be maintained by my lab.
Other researchers are welcome to use the data set to address their
own questions. We would like to be kept informed and request that the
support of the Air Force Office of Scientific Research be noted in any
publications. 

 

PUNCHLINES 

 

The take-home messages from the analyses reported here are as
follows: 

1. The overall distribution of search slopes is unimodal and provides
no support for a simple, data-driven division of searches into
“serial” and “parallel” (or anything else). 

2. Different types of search task (as defined by the nature of the stimuli)
produce slopes that differ in their means and distributions. 

3. Those distributions overlap sufficiently so that no simple slope
threshold can be used to divide one class (e.g., feature, or pop-out,
search) from another (e.g., conjunction). 

4. The average ratio of target-absent to target-present slopes is greater
than 2:1. 

5. Slope ratios vary systematically with search efficiency and with
search task. 

6. It follows from Item 5 that search tasks of similar efficiency (as
measured by target-present slopes) are not identical. 

7. The different patterns of slopes and slope ratios for different tasks
could be used to create diagnostic tests that could categorize search
tasks (e.g., one could argue, “

 

X

 

 is a basic feature in visual search
because it produces shallow slopes and ratios significantly less
than 2.0.”). 

8. Your favorite theory of visual search is wrong. So is mine. No cur-
rent model of visual search generates the pattern of results in this
data set. This is not to say that no current model could do so. Mod-
els must be adjusted to fit this new picture of reality. 

Finally, suppose one were to take the most depressing view of these
data and conclude that it is simply impossible to categorize search
tasks on the basis of slope data. Would this somehow render the visual
search paradigm useless? The answer, unequivocally, is “no.” Search
is an important visual behavior. Some search tasks are efficient and
some are not. That fact demands explanation if we want to understand
how to find needles in haystacks or friends on the beach. When
brought into the lab, these differences in the ease of search show up as
differences in the slopes of RT 

 

×

 

 Set Size functions. A substantial dif-
ference in the slopes of two search tasks can tell us about the rules for
the allocation of visual attention even if those slopes cannot tell us that
these tasks lie on opposite sides of some mythical divide between
serial and parallel search. 
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