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Chapter 1

Pattern Sensitivity

1.1 Introduction

In this chapter we will consider measurements and models of human visual
sensitivity to spatial and temporal patterns. We have covered topics relevant to
pattern sensitivity in earlier chapters as we reviewed image formation and the
receptor mosaic. Here, we will extend our analysis by reviewing a collection of
behavioral studies designed to reveal how the visual system as a whole detects and
discriminates spatio-temporal patterns.

The spatial pattern vision literature is dominated by detection and discrimination
experiments, not by experiments on what things look like. There are probably two
reasons why these measurements make up such a large part of the literature. First,
many visual technologies (e.g. televisions, printers, etc.) are capable of reproducing
images that appear similar to the original, but not exactly the same. The question of
which approximation to the original is visually best is important and often guides the
engineering development of the device. As a result, there is considerable interest in
developing a complete theory to predict when two different images will appear very
similar. When we cannot reproduce the image exactly a theory of discrimination
helps the device designer; the discriminability theory selects the image the device
can reproduce that appears most similar to the original. Threshold and
discrimination experiments are indispensable to the design of discrimination
theories.

Second, many authors believe that threshold and discrimination tasks can play a
special role in analyzing the neurophysiological mechanisms of vision. The rationale
for using threshold and discrimination to analyze the physiological mechanisms of
vision is rarely stated and thus rarely debated, but the argument can be put
something like this. Suppose the nervous system is built from a set of components,
or mechanisms, that analyze the spatial pattern of light on the retina. Then we should
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6 CHAPTER 1. PATTERN SENSITIVITY

identify and analyze these putative mechanisms to understand how they contribute
to perception of spatial patterns. Threshold performance offers us the best chance of
isolating the mechanisms because, at threshold, only the most sensitive mechanisms
contribute to visibility. If threshold performance depends upon the stimulation of a
single mechanism or small number of mechanisms, then threshold studies can serve
as a psychologist’s dissecting instrument: At threshold we can isolate different parts
of the visual pathways. After understanding the component mechanisms, we can
seek a unified theory of the visual system’s operation.

I am not sure whether this rationale in terms of visual mechanisms adequately
justifies the startling emphasis on threshold measurements. But, I think it is plain
that by now we have learned a lot from detection and discrimination experiments
(DeValois and DeValois, 1988; Graham, 1989). Many of the basic ideas used in image
representation and computer vision were derived from the work on detection and
discrimination of spatial patterns. This chapter is devoted to an exposition of some
of those experiments and ideas. In Chapters ??,?? and ?? we will take up the
question of what things look like.

1.2 A Single Resolution Theory

The problem of predicting human sensitivity to spatial contrast patterns has much in
common with other problems we have studied: image formation, color-matching, or
single unit neurophysiological responses. We want to make a small number of
measurements, say sensitivity to a small number of spatial contrast patterns, and
then use these measurements to predict sensitivity to all other spatial contrast
patterns.

In 1956, Otto Schade had some ideas about how to make these predictions and he set
out to build a photoelectric analog of the visual system in order to predict visual
sensitivity. His idea was to use the device to predict whether small changes in the
design parameters of a display would be noticeable to a human observer. For
example, in designing a new display monitor an engineer might want to alter the
spatial resolution of the device. To answer whether this difference is noticeable to a
human observer, Schade needed a way to predict the sensitivity of human observers
to the effect of the engineering change.

Figure 1.1 shows a schematic diagram of Schade’s computational eye. I include the
diagram to show that Schade created a very extensive model that incorporated
many visual functions, such as optical image formation, transduction, how to
combine signals from the different cone types, adaptation, spatial integration,
negative feedback, and even some thoughts about correction, interpretation and
correlation of the signals with stored information (i.e. memory). In this sense, his
work was a precursor to the computational vision models set forth by Marr (1980)
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Figure 1.1: A computational model of the human visual system. Otto Schade designed a
visual simulator to predict human visual sensitivity to patterns. His model incorpo-
rated many features of the visual pathway, and it may be the earliest computational
model of human vision (From Schade, 1956).
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(artist:  delete these lines)

Figure 1.2: The neural image is a psychophysical construct. The activity of a hypo-
thetical array of neurons, whose properties are selected to mimic some collection of
neurons in the visual pathway, are represented as an image. The intensity at each lo-
cation in the neural image is proportional to the response of a neuron whose receptive
field is centered at that image point.

and his colleagues.

The neural image.

A fundamental part of Schade’s computation — and one that has been retained by
the field of spatial pattern vision — is his suggestion that we can summarize the
effects of the many visual components using a single representation now called the
neural image1. A real image and several neural images are drawn suggestively in
Figure 1.2. The idea is that there is a collection of neurons whose responses, taken as
a population, capture the image information available to the observer. The responses
of a collection of neurons with similar receptive fields, differing only in that the
receptive fields are centered at various positions, make up a neural image.

Figure 1.2 shows how the neural image concept permits us to visualize the neural
response to an input image. At several places within the Figure, I have represented
the neural responses as an image. The intensity at each point in these neural images
represents the response of a neuron single whose receptive field is centered at the
corresponding image point. A bright value represents a neuron whose response is
increased by the stimulus and a dark value a neuron whose response is decreased.

The assumptions we make concerning the receptive field properties of neurons
comprising the neural image permit us to calculate the neural image using linear
methods. For example, suppose the receptive fields of a collection of neurons are

1To the best of my knowledge, John Robson suggested the phrase neural image.
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identical except for the position of the receptive field centers; further, suppose these
are uniformly spaced. In that case, we can calculate the mapping from the real image
to the responses of these neurons using a shift-invariant linear mapping, i.e.
convolution.

The neural images shown in Figure 1.2 illustrate the idea that different populations
of neurons may represent different types of information. One neural image is shown
near the optic nerve; this neural image is drawn to represent the responses of the
midget ganglion cells in a small region of the retina near the fovea. Near the fovea,
the receptive fields of the midget cells are all about the same, except for
displacements of the center of the receptive field; this neural image is a
shift-invariant linear transformation of the input image. The neural images located
near the cortical areas are transformed using oriented receptive fields. Of course, the
information represented in the neural image at coritcal locations depends on
transformations of the signal that take place all along the visual pathway, including
lens defocus, sampling by the photoreceptor mosaic, and noisy signaling by visual
neurons.

Schade’s single resolution theory.

Schade’s theory of pattern sensitivity is formulated mainly for foveal vision. Schade
assumed that foveal pattern sensitivity could be predicted by the information
available in a single neural image. He assumed that for this portion of the visual
field, the relevant neural image could be represented by a shift-invariant
transformation of the retinal image, much like the neural image shown near the
optic nerve in Figure 1.2. In this section we review the significance of this hypothesis
and also some empirical tests of it.

We know that a neural image spanning the entire visual field cannot really be
shift-invariant. In earlier chapters, we reviewed measurements showing that the
fovea contains many more photoreceptors and retinal ganglion cells than the
perihpery, and also that there is much more cortical area devoted to the fovea than
the periphery. Consequently, a neural image can have a shift-invariant
representation only over a relatively small portion of the visual field, say within the
fovea or a small patch of the peripheral visual field.

Still, a model of pattern discrimination in the fovea is a good place to begin. First,
the theory will be much simpler because we can avoid the complexities of visual
field inhomogeneities. Second, because of our continual use of eye movements in
normal viewing the fovea is our main source of pattern information. So, we begin by
reviewing theory and measurements of foveal pattern sensitivity in the fovea. Later,
we will consider how acuity varies across the visual field later in this chapter.

There are several ways the shift-invariant neural image hypothesis help us predict
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Figure 1.3: A shift-invariant linear neural image is formed by the responses of neu-
rons whose receptive fields are the same except for their spatial position. The matrix
tableau illustrates the computation of a shift-invariant linear transformation of a one-
dimensional image. The rows of the system matrix are the one-dimensional spatial
receptive fields of the neurons.

contrast sensitivity. Perhaps the most important is an idea we have seen several
times before: If the mapping from image to neural image is shift-invariant, then the
mapping from image to neural image is defined by knowing the shape of a single
receptive field. In a shift-invariant neural image there is only one basic receptive
field shape. Neurons that make up the neural image differ only with respect to their
receptive field positions.

The analogy between shift-invariant calculations and neural receptive fields is
useful. But, we should remember that we are reasoning about behavioral
measurements, not real neural receptive fields. Hence, it is useful to phrase our
measurements using the slightly more abstract language of linear computation. In
these calculations, the linear receptive field is equivalent to the convolution kernel of
the shift-invariant mapping. The shift-invariance hypothesis tells us that to
understand the neural image, we must estimate the convolution kernel. Its
properties determine which information is represented by the neural image and
which information is not.

As we have done several times earlier in this book, we will begin our analysis using
one-dimensional stimuli: vertical sinusoids varying only in the x-direction, If we use
only one-dimensional stimuli as inputs, then we can estimate only the
one-dimensional receptive field of the transformation. We can write the
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shift-invariant transformation the maps the one-dimensional contrast stimulus, �� to
the one-dimensional neural image, �� using the summation formula,

�� �
�

�

������� (1.1)

where �� is the one-dimensional receptive field. We also can express the
transformation in matrix tableau (see Figure 1.3). In matrix tableua it becomes clear
that the system matrix is very simple; the rows and columns are essentially all equal
to the receptive field (i.e., convolution kernel) except for a shift or a reversal. Hence,
by estimating the convolution kernel, we will be able to predict the transformation
from contrast image to neural image.

The overall plan for predicting an observer’s pattern sensitivity is this: First, we will
measure sensitivity to a collection of sinusoidal contrast patterns. These
measurements will define the observer’s contrast sensitivity function (see
Chapters ?? and ??). Because of the special relationship between harmonic functions
and shift-invariant linear systems described in the earlier chapters and the
appendix, we can use the contrast sensitivity function to estimate the convolution
kernel of the shift-invariant linear transformation from image to neural image, ��.
Finally, we will use the estimated kernel to calculate the neural image and predict
the observer’s sensitivity to other one-dimensional contrast patterns. This final step
will provide a test of the theory.

Shortly, it will become clear that we must make a few additional assumptions before
we can use the observer’s contrast sensitivity measurements to estimate the
convolution kernel. But, first, let’s review some measurements of the human spatial
contrast sensitivity function.

Spatial contrast sensitivity functions

Schade measured the contrast threshold sensitivity function by asking observers to
judge the visibility of sinusoidal patterns of varying contrast. The observer’s task
was to decide what contrast was necessary to render the pattern just barely visible.
Because of optical and neural factors, observers are not equally sensitive to all
spatial frequency patterns; the threshold contrast depends upon the pattern’s spatial
frequency.

To get a sense of the informal nature of Schade’s experiments, it is interesting to read
his description of the methods.

The test pattern is faded in by increasing the electrical modulation at a
fixed rate and observed on the modulation meter; the observer under test
gives a signal at the instant he recognizes the line test pattern, and the
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Figure 1.4: Contrast threshold and contrast sensitivity measurements of a human ob-
server. The contrast thresholds are plotted with respect to spatial frequency on the
display rather than cycles per degree of visual angle (Source: Schade, 1956).

person conducting the test reads and remembers the corresponding
modulation reading. The modulation is returned to zero, and within
seconds it is increased again at the same fixed rate to make a new
observation. By averaging 10 to 15 readings mentally and recording the
average reading directly on graph paper, the [contrast sensitivity]
function . . . can be observed in a short time and inconsistencies are
discovered immediately and checked by additional observations.

The contrast sensitivity function he measured is shown Figure 1.4. The horizontal
axis is spatial frequency as measured in terms of the display device. The vertical axis
is contrast sensitivity, namely �������� � � ��� � where � is the contrast of the pattern
at detection threshold. The contrast sensitivity function has two striking features.
First, there is a fall-off in sensitivity as the spatial frequency of the test pattern
increases. This effect is large, but it should not surprise you since we already know
many different components in the visual pathways are insensitive to high spatial
frequency targets: the optical blurring of the lens reduces the contrast of high spatial
frequency targets; retinal ganglion cells with center-surround receptive fields are
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Figure 1.5: Temporal variations change the shape of the human spatial contrast sensitivity
function. The contrast sensitivity functions shown here were measured with contrast-
reversing targets at several different temporal frequencies. At low temporal frequen-
cies the contrast sensitivity function is bandpass. At high temporal frequencies the
function is lowpass (Source: Robson, 1966).

less sensitive to high spatial frequency targets.

Second, and somewhat more surprisingly, is that there is no improvement of
sensitivity at low spatial frequencies; there is even a small loss of contrast sensitivity
at the lowest spatial frequency. The eye’s optical image formation does not reduce
sensitivity at low frequencies, so the fall in contrast sensitivity at low spatial
frequencies is due to neural factors. Center-surround receptive fields are one
possible reason for this low frequency fall-off.

Schade’s measurements were made using a steadily presented test pattern or a
drifting pattern. Robson (1966; see also Kelly, 1961) made additional measurements
using flickering contrast-reversing gratings. Contrast-reversing patterns are harmonic
spatial patterns with harmonic amplitude variation (see Chapter ??). For example,
suppose the mean illumination is �. Then the intensity of the contrast-reversing
stimulus at spatial frequency ��, temporal frequency ��, and contrast � is (cf.
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Equation ??)
� ��� � � 	�
�����	� 	�
�����
� ���

The intensity is always positive. The spatiotemporal contrast of the pattern is

� 	�
�����	� 	�
�����
��

The contrast can be both positive and negative.

As the data in Figure 1.5 show, the spatial sensitivity falls at low frequencies. when
we measure at a low temporal frequency (1 Hz). At high temporal frequencies, say
as one might encounter during a series of rapid eye movements, there is no low
frequency sensitivity loss. As we shall see later, the contrast sensitivity function also
varies with other stimulus parameters such as the mean illumination level and the
wavelength composition of the stimulus.

The psychophysical linespread function.

Now, let’s return to the problem of using the contrast sensitivity data to calculate the
convolution kernel, ��. Because this kernel defines both the rows and the columns of
the shift-invariant linear transformation, it is also called the psychophysical linespread
function, in analogy with the optical linespread function (see Chapter ??). By now
you have noticed that each time we apply linear systems theory, some special
feature of the measurement situation requires us to devise some slightly different
approach to calculating the system properties. The calculations involved in using
contrast sensitivity measurements to predict sensitivity to all contrast patterns are
no exception.

Let’s work out what we need to do to estimate the psychophysical linespread
function. The general linear problem is illustrated in the matrix tableau in Figure 1.3.
The input stimulus is shown as a column vector, specifying the one-dimensional
spatial contrast pattern. The matrix describes how the stimulus is transformed into
the neural image. We want to make a small number of measurements in order to
estimate the entries of the system matrix.

We have solved this problem before, but in this case we have a special challenge. In
our previous attempts to estimate linear transformations we have been able to
specify both the stimulus and the response. When we obtain the contrast sensitivity
measurements, however, we never measure the output neural image. We only
measure the input threshold stimulus and the observer’s detection threshold.
Hence, we have fairly limited information available.

Because we assumed that the neural image is a shift-invariant mapping, we do
know something about the neural image: when the input stimulus is a harmonic
function, the output must be a harmonic function at the same frequency. But, we do
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not know the amplitude or phase of the harmonic function in the hypothetical
neural image. To estimate the psychophysical linespread function, we must make
additional assumptions about the properties of a neural image that render it at
detection threshold. From these assumptions, we will then specify the phase and
amplitude of the neural image at detection threshold.

Two additional assumptions are commonly made. First, we assume that the spatial
phase of the neural image is the same as the spatial phase of the input spatial
contrast pattern2. Specifically when the input pattern is a one-dimensional
cosinusoid, 	�
��������, we assume the neural image output pattern is a scaled
copy of the input pattern, �� � �� 	�
��������. The scale factor, �� , depends on the
frequency of the input signal.

Second, we must make specify the amplitude of the neural image at detection
threshold. The amplitude of the neural image should be related to the visibility of
the pattern, and we can list a few properties that should be associated with pattern
visibility. For example, whether the change introduced by the signal increases or
decreases the firing rate should be irrelevant; any change from the spontaneous rate
ought to be detectable. Also, detectability should depend on responses pooled
across the neural image rather than the response of a single neuron. The squared
vector-length of the responses of the neural image is a measure that has both of these
properties. The squared vector-length of the neural image, �, is defined by the
formula

� �
��

���

��
�� (1.2)

This formula satisfies both of our requirements since (a) the signs of the individual
neural responses, ��, are not important because the neural image entry is squared,
and (b) the formula incorporates the responses from different neurons. Other
measures are possible. For example, one might assume that at detection threshold
the sum of the absolute values of the neural image is equal to a constant, or one
might make up a completely different rule. But, one must make some assumption
and the vector-length rule is a useful place to begin.

If we assume that at contrast detection threshold all neural images have the same
vector-length, then we can specify the amplitude of the harmonic functions in the
neural image. Hence, at this point we have made enough assumptions so that we
can specify the complete neural image and solve for the psychophysical linespread
function. Figure 1.6 shows three linespread functions estimated using these
assumptions. Figure 1.6a shows a psychophysical linespread computed from
Schade’s measurements (note that the spatial dimension is uncalibrated).
Figure 1.6bc show psychophysical linespreads, plotted in terms of degrees of visual
angle, derived from Robson’s measurements using 1 Hz and 6 Hz contrast-reversing
functions. No single linespread function applies to all stimulus conditions. We will

2We used the same assumption to infer the properties of the lens in Chapter ??.
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Figure 1.6: The psychophysical linespread function can be estimated from the contrast
sensitivity function. (a) A linespread estimated from Schade’s measurements. The
horizontal axis is in arbitrary units because the spatial frequency of the contrast sensi-
tivity function was reported in arbitrary units. (b,c) Linespread functions for contrast-
reversing targets at 1 and 6 Hz derived from Robson’s measurements. The horizontal
axis is in degrees of visual angle. 2
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consider how the linespread function changes with the stimulus conditions later in
this chapter.

Schade (1956) suggested that the general shape of the psychophysical linespread
function can be described using the difference of two Gaussian functions. This
description is the same one used by Rodieck (1965) and Enroth-Cugell and Robson
(1966) to model retinal ganglion cell receptive fields. The correspondence between
the psychophysical linespread function, derived from the behavioral measurement
of contrast sensitivity, and the receptive field functions of retinal ganglion cells,
derived from retinal physiology, is encouraging.

Discussion of the theory: Static nonlinearities

To estimate the convolution kernel of Schade’s hypothetical neural image, without
being able to measure the neural image directly, we have been forced make several
assumptions. It is wise to remember the three strong assumptions we have made:

(a) the neural image is a shift-invariant linear encoding,
(b) zero phase shift of the linear encoding, and
(c) vector-length rule determines visibility.

Taken as a whole, this is a nonlinear theory of pattern sensitivity. Although the
neural image is a linear representation of the input, indeed it is even a shift-invariant
representation, the vector-length rule linking the neural image to performance is
nonlinear. You can verify this by noting that when a stimulus vector �� has length �
and vector �� has length �, the vector �� � �� need not have length � � �. Thus,
even when �� and �� are at one half threshold, �� � �� may not be at threshold3.

The vector-length calculation is a static nonlinearity applied after a linear calculation
(see Chapter ??). This is a relatively simple nonlinearity, so that it is straightforward
to make certain general predictions about performance even though the theory is
nonlinear. In the next section, we consider some of these predictions as well as
experimental tests of them.

1.3 Experimental Tests

The contrast sensitivity function by itself offers no test of Schade’s theory other than
reasonableness: do the inferred linespread functions seem plausible? We have seen
that the linespread functions are plausible since they are quite similar to the
receptive fields of visual neurons. But, because we have made so many assumptions,

3The only case in which the lengths will add is when the vectors representing the neural images
point in the same direction.
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Figure 1.7: Mixtures of spatial contrast patterns can be used to test theories about pattern
sensitivity. Panels (a) and (b) show the contrast of cosinusoidal stimuli at 1 and 3 cpd.
The spatial contrasts of these two stimuli are shown added together in peaks add
spatial phase (c) and peaks subtract spatial phase (d).
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it is important to find general properties of the theory that we can test
experimentally and in that way gain confidence in the theory’s usefulness.

Harmonic functions will play a special role in testing the theory. There are two
separate reasons why harmonics are important for our new test. (1) Given the
assumed shift-invariance, the neural image of a harmonic is also a harmonic. We
have seen this property many times before and it will be important again. (2)
Harmonic functions at different frequencies are orthogonal to one another.
Geometrically, orthogonality means that the vectors are oriented perpendicular to
one another. Algebraically, we say two vectors, �� and �� are orthogonal when
� �
�

����. Sinusoids and cosinusoids are orthogonal to one another, and any pair of
harmonic functions at different frequencies are orthogonal to one another. We will
use these two properties, combined with the vector-length rule, to test Schade’s basic
theory.

Suppose we create a stimulus equal to the sum of two sinusoids at frequencies, ��,
and contrasts, ��, for � � �� �. According to the shift-invariant theory, the neural
image of these two sinusoids is the weighted sum of two sinusoids. Each sinusoid is
scaled by a factor, ��, that defines how well the stimulus is passed by the
shift-invariant system. The squared vector-length of the neural image created by the
sum of the two sinusoids is

� �
��

���

����� 
���������� � ���� 
������������� (1.3)

The squared term in the summation can be expanded into three terms

� � �����
��

���


������������ � �����
��

���


�����������

� ����������
��

���


���������� 
����������� (1.4)

Because sinusoids at different frequencies are orthogonal functions, the third term is
zero, leaving only

� � �����
��

���


������������ � �����
��

���


������������� (1.5)

We can group some terms to define a new equation,

� � ������
� � ������

�� (1.6)

where �� is a constant, namely ��
��

��� 
�����������.

Equation 1.6 tells us when a pair of contrasts of the two sinusoids, ���� ���, should be
at detection threshold. Figure 1.8 is a graphical representation of these predictions.
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Figure 1.8: The spatial test-mixture experiment provides a test of contrast sensitivity
models. We measure the visibility of a test-mixture whose sinusoidal components
have contrasts �� and ��. The set of contrast pairs such that the mixture stimulus is
at detection threshold define the detection contour. Schade’s hypothesis predicts that
the detection contour is an ellipse aligned with the axes of the graph, as shown by the
solid curve. If the peak stimulus contrast determines contrast sensitivity to the pair,
then detection contour should fall along the contour indicated by the dotted lines.

The axes of the graph represent the contrast levels of the two sinusoidal components
used in the mixture. The solutions to Equation 1.6 sweep out a curve called a
detection contour. As shown in Figure 1.8, Equation 1.6 is the equation of an ellipse
whose principal axes are aligned with the axes of the graph. The two unknown
quantities, the scale factors ��, are related to the lengths of the principal axes. Hence,
if we scale the contrast of the sinusoidal components so that threshold contrast for
each sinusoidal component is arbitrarily set to one, the predicted detection contour
will fall on a circle (Graham and Nachmias, 1971, Nielsen and Wandell, 1988).

Many alternative theories are possible. Had we supposed that threshold is
determined by the peak contrast of the pattern, then the detection contour would fall
on the diamond shape shown in Figure 1.8. The important point is that the shape of
the detection contour depends on the basic theory. The prediction using Schade’s
theory is clear, so that we can use the prediction to test the theory.
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Figure 1.9: Spatial test-mixture thresholds measured using a 1 cpd and 3 cpd grating.
The thresholds fall outside of the detection contour predicted by the shift-invariant
hypothesis and vector length rule (Source: Graham, et al. 1978).

Graham, Robson and Nachmias (1978; Graham and Nachmias, 1971) measured
sensitivity to mixtures of sinusoidal gratings at 1 cpd and 3 cpd. They measured
thresholds using a careful psychophysical threshold estimation procedure called a
two-interval, forced-choice design. In this procedure each trial is divided into two
temporal periods, usually indicated by a tone that defines the onset of the first
temporal period, a second tone that defines the onset of the second temporal period,
and a final tone that indicates the end of the trial. A test stimulus is presented
during one of the two temporal intervals, and the observer must watch the display
and decide which interval contained the test stimulus. When the contrast of the test
pattern is very low, the observer is forced to guess and so performance is at chance.
When the contrast is very high, the observer will nearly always identify the correct
temporal interval. Hence, as the test pattern contrast increases, performance varies
from ��� to ���. The threshold performance level is arbitrary, but for technical
reasons described in their paper, Graham et al. defined threshold to be the contrast
level at which the observer was correct with probability ����

The test-mixture data in Figure 1.9 do not fall precisely along the predicted circular
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detection contour predicted by Schade’s single-resolution theory. Specifically,
thresholds measured in the 45 degree direction tend to fall just outside the predicted
detection contour; thresholds are a little too high compared to the prediction. The
theory predicts that the threshold contrasts of the individual components should be
reduced by a factor of �����, but thresholds are reduced by only a factor of ���. These
data are typical for these types of experimental measurements.

Is this an important difference? The point of this theory is to measure sensitivity to a
small number of spatial patterns and to use these measurements to predict
sensitivity to all other spatial patterns. If we see failures when we measure
sensitivity to a mixture of only two test patterns, we should be concerned. The
theory must be precise enough to tolerate decomposition of an arbitrary pattern into
a sum of many sinusoidal patterns, and then predict sensitivity to the mixtures of the
multiple components. If we already see failures with two components, we should
worry about how well the theory will do when we measure with three components.

The data in Figure 1.10 illustrate sensitivity measurements to the combination of
three sinusoidal gratings. In this case, the data are plotted as three psychometric
functions. Shown in this format, the dependence of performance on contrast is
explicit. The data points connected by the dashed curves show the observer’s
probability of correctly detecting the individual sinusoidal grating patterns at ����,
���, or �� cpd. The horizontal axis measures the scaled contrast of the sinusoids in
which the scale factor has been chosen to make the three curves align.

The visibility of two patterns formed by the mixtures of all three sinusoidal patterns,
whose contrast ratios have been adjusted to make the three sinusoidal patterns
equally visible, are shown as solid lines. One sum was formed with the peak
contrasts all aligned (cosine phase) and the other with their zero-crossings aligned
(sine phase).

Again, because the input signals are sinusoids or sums of sinusoids, we can predict
performance based on the shift-invariant neural image and the vector-length rule.
The neural image of the sum of three sinusoidal gratings will be the weighted sum
of three sinusoidal neural images. The predicted threshold to the mixture of the
three patterns is shown by the dot-dashed curve at the left of Figure 1.10. The
vector-length rule also predicts that that the probability correct will be the same in
both sine and cosine phase.

The model prediction is not completely wrong; the phase relationship of the gratings
does not have a significant influence on detection threshold for the mixture of three
targets. But the mixture patterns are less visible than predicted by the theory: The
contrasts of the three component mixtures are reduced by a factor of about ���
compared to their individual thresholds, while the theory predicts a contrast
reduction of ����. The basic theory has some good features, but the quantitative
predictions fail more and more as we apply the theory to increasingly complex
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Figure 1.10: A three component spatial test-mixture experiment. The probability of cor-
rect detection in a two-interval forced choice is shown as a function of normalized
contrast. The dashed lines on the right show detection for three simple sinusoidal
gratings at frequencies of 1.33, 4, and 12 cpd. The two solid lines show the probability
of detecting mixtures of these three components in cosine phase and sine phase. The
dot-dash curve on the left shows the predicted sensitivity using the shift-invariant
model and the vector-length rule (Source: Graham, 1989).
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patterns.

1.4 Intermediate Summary

We have begun formulating psychophysical theory using the simple computational
ideas of shift-invariance followed by a static nonlinearity. These ideas are
reminiscent of the properties of certain neurons in the visual pathway. While this
theoretical formulation is a vast simplification of what we know about the nervous
system, it is a reasonable place to begin. The nervous system is complex and
contains many different types of computational elements. While Schade’s effort to
capture all of the nuances of the neural representation is inspiring, it was perhaps a
bit premature. Much of the neural representation must be irrelevant to the tasks we
are studying. By beginning with simpler formulations, we can use psychophysical
model to discover those aspects of the neural representation that are essential for
predicting the behavior. By comparing and contrasting the behavioral data and the
neural data, we can discern the important functional elements of the neural
representation for different types of visual tasks.

While the shift-invariant theory did not succeed, it has served the useful purpose of
organizing some of our thinking and suggesting some experiments we should try.
And, for those of us who need to make some approximate predictions quickly rather
than precise predictions slowly, there are some good aspects of the calculation. For
example, the inferred psychophysical linespread is similar to the receptive fields of
some peripheral neurons. Also, for simple mixtures the theoretical predictions are
only off by by a modest factor. Still, the shift-invariant theory plainly does not fit the
data very well, and its performance will only deteriorate when we apply it to
complex stimuli, such as natural images. We need to find new insights and
experiments that might suggest how to elaborate the theory.

1.5 Multiresolution Theory

Schade’s single resolution theory of pattern sensitivity does not predict the pattern
sensitivity data accurately. But, the theory is not so far wrong that we should
abandon it entirely. The question we consider now is how to generalize the single
resolution theory, keeping the good parts.

The most widely adopted generalization of expanding the initial linear encoding.
Modern theories generally use an initial linear encoding consisting of a collection of
shift-invariant linear transformations, not just a single one. Each shift-invariant
linear transformations has its own convolution kernel and hence forms its own
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(a) (b) (c)

Figure 1.11: A size illusion and an orientation illusion based on visual pattern adaptation.
The bar widths and orientations of the two squarewave patterns in the middle are
the same. Stare at the fixation point between the two patterns in (a) for a minute,
adapting to the two patterns in your upper and lower visual fields. When you shift
your gaze to the patterns in (b) the patterns will appear to have different bar widths.
Then, stare at the fixation point between the two patterns in (c) and then examine
the middle pattern. When you shift your gaze to (b) the patterns will appear to have
different orientations (After Blakemore and Sutton, 1969; see also DeValois, 1977).

neural image. We will refer to the data represented by the individual shift-invariant
representations as a component-image of the full theory.

To fully specify the properties of the more general theory, we need to select
convolution kernels associated with each of the shift-invariant linear
transformations and the static nonlinearities that follow. Also, we need to specify
how the outputs of the different component-images are combined to form a single
detection decision. For reasons I will explain next, the properties of the convolution
kernels of the component-images are usually selected so that the expanded theory is
a multiresolution representation of the image, a term I will explain shortly.

Pattern Adaptation

The motivation for building a multiresolution theory comes from a collection of
empirical observations, such as the one illustrated in Figure 1.11. That figure



26 CHAPTER 1. PATTERN SENSITIVITY

1 3 10 30 100
0.5

1

2

4

(a) (b)

Spatial frequency (cpd)

C
on

tr
as

t 
se

n
si

ti
vi

ty

T
h

re
sh

ol
d
 e

le
va

ti
on

Spatial frequency (cpd)
1 3 10 30 100

1

3

10

30

100

300

1000

Figure 1.12: The effect of pattern adaptation on the contrast sensitivity function. (a) The
curve through the open circles shows the observer’s contrast sensitivity function be-
fore pattern adaptation. The plus symbols show contrast sensitivity following adap-
tation to a sinusoidal pattern 7.1 cpd. (b) Threshold elevation, that is the ratio of
contrast sensitivity before and after adaptation, is plotted as a function of spatial fre-
quency. Threshold is to test frequencies near the frequency of the adapting stimulus
(Source: Blakemore and Campbell, 1969).

demonstrates a phenomenon called pattern adaptation. To see the illusion, first notice
that the bars in the patterns on top and bottom of panel (b) are the same width.
Next, stare at the fixation target between the patterns in panel (a) for a minute or so.
These patterns are called the adapting patterns. When you stare, allow your eye to
wander across the dot between patterns, but do not let your gaze wander too far.
After you have spent a minute or so examining the adapting patterns, look at the
patterns in panel (b) again. Particularly at first, you will notice that the bars at the
top and bottom of the middle pattern will appear to have different sizes. You can try
the same experiment by fixating between the adapting patterns in panel (c) for a
minute or so. When you examine the bars in the middle, the top and bottom will
appear to have different orientation (Blakemore and Campbell, 1969; Blakemore and
Sutton, 1969; Blakemore, Nachmias and Sutton, 1970; Gilinsky, 1968; Pantle and
Sekuler, 1968)

The effect of pattern adaptation can be measured by comparing the contrast
sensitivity function before and after adaptation. The curve through the open
symbols in Figure 1.12a shows the contrast sensitivity function prior to pattern
adaptation. After adapting for several minutes to a sinusoidal contrast pattern,
much as you adapted to the patterns in Figure 1.11a, the observer’s contrast
sensitivity to stimuli near the frequency of the adapting pattern is reduced while
contrast sensitivity to other spatial frequency patterns remains unchanged (the ’+’
symbol). The ratio of contrast sensitivity before and after adaptation is shown in
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Figure 1.11b. When this experiment is repeated, using adapting patterns at other
spatial frequencies, contrast sensitivity falls for test patterns whose spatial frequency
is similar to that of the adapting pattern (Blakemore and Campbell, 1969).

The results of the pattern adaptation measurements suggest one way to generalize
the neural image from a single resolution theory to a multiresolution theory: Use a
neural representation that consists of a collection of component-images, each
sensitive to a narrow band of spatial frequencies and orientations. This separation of
the visual image information can be achieved by using a variety of convolution
kernels, each of which emphasizes a different spatial frequency range in the image.
This calculation might be implemented in the nervous system by creating neurons
with a variety of receptive field properties, much as we have found in the variety of
receptive fields of linear simple cells in the visual cortex; these cells have both
orientation and spatial frequency preferences (Chapter ??). Because the individual
component-images are assumed to represent different spatial frequency resolutions,
we say that the neural image is a multiresolution representation.

Multiresolution representations provide a simple framework to explain pattern
adaptation (see Figure 1.13). The visual system ordinarily encodes the image using a
collection of shift-invariant whose contrast sensitivity curves are shown on the top
of Figure 1.13a. Before adaptation, each of the component images represents the
squarewave at an amplitude that depends on the squarewave frequency and the
channel sensitivity. The amplitude of the component-image representations to the
test pattern before adaptation is plotted at the bottom of part (a) as the bar plot.

Adaptation to a low frequency squarewave suppresses sensitivity of some of the
component-images, as shown in the top of part (b) Consequently, the responses to
the test frequency following adaptation changes, as shown in the bottom of part (b).
The new pattern of responses is consistent with the responses that would be caused
by the unadapted response to a finer squarewave pattern. This is the explanation of
the observation that following adaptation to a low frequency squarewave the test
pattern appears to shift to a higher spatial frequency. Figure 1.13c illustrates the
component-image sensitivities following adaptation to a high frequency squarewave
(top) and how the amplitude of the component image responses are altered
(bottom). In this case, the pattern of responses is consistent with the unadapted
encoding of a lower frequency target.

According to the multiresolution model, pattern adaptation is much like a lesion
experiment. Adaptation reduces or eliminates the contribution of one set of neurons,
altering the balance of activity and producing a change in the perceptual response.
Following adaptation to a low frequency target, the excitation in component-images
at higher spatial frequencies is relatively greater, giving the test bars a narrower
appearance. Conversely, following adaptation to a high frequency target, the pattern
the excitation in component-images representing low spatial frequencies is relatively
greater, giving the test bars a wider appearance.
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Figure 1.13: A multiresolution model can explain certain aspects of pattern adaptation.
(a) In normal viewing, the bar width is inferred from the relative responses of a collec-
tion of component-images, each responding best to a selected spatial frequency band.
The spatial frequency selectivity of each component-image is shown above and the
amplitude of the component-image encoding of the test stimulus is shown in the bar
graph below. (b) Following adaptation to a low frequency stimulus (shown in inset),
the sensitivity of the neurons comprising certain component-images is reduced. Con-
sidering the responses of all the component-images, the response to the test is similar
to the unadapted response to a high frequency target. (c) Following adaptation to a
high frequency pattern (shown in inset), the neural representation is consistent with
the unadapted response to a low frequency target.
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In summary, the empirical observations using pattern adaptation suggest that
squarewave or sinusoidal adapting patterns only influence the contrast sensitivity of
patterns of roughly the same spatial frequency. This observation suggests that the
component-images might be organized at multiple spatial resolutions.

Pattern Discrimination and Masking

There are several other experimental observations, in addition to pattern adaptation,
that can be used to support multiresolution representations for human perception.
Historically, one of the most important papers on this point was Campbell and
Robson’s (1968) detection and discrimination measurements using squarewave
gratings and other periodic spatial patterns.

Squarewaves, like all periodic stimuli, can be expressed as the weighted sum of
sinusoidal components using the Discrete Fourier Series. A squarewave, ���
�, that
oscillates between plus and minus one, with a frequency of � , can be expressed in
terms of sinusoidal components as

���
� �
�

�

��

���

�

��� �

�������� ���
� � (1.7)

A squarewave at frequency � is equal to the sum of a series of sinusoids at the odd
numbered frequencies, � , �� , �� , and so forth. The amplitude of the sinusoids
declines with increasing frequency; the amplitude of the �� sinusoid is one-third the
amplitude of the component at � , the amplitude of the �� sinusoid is one-fifth, and
so forth. When the overall contrast of the squarewave is very low, the amplitude of
the higher order terms is extremely small and they can be ignored. At low
squarewave contrasts only one or two sinusoidal terms are necessary to generate a
pattern that is very similar in appearance to the true squarewave. For low contrast
values, then, the squarewave pattern can be well-approximated by the pattern
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Campbell and Robson used squarewaves (and other periodic patterns) to test the
multiresolution hypothesis in several ways. First, they measured the smallest
contrast level at which observers could detect the squarewave grating. Notice that
the amplitude of the lowest frequency component, which is called the fundamental, is
���. Since the fundamental has the largest contrast, and for patterns above 1 cpd
sensitivity begins to decrease, Campbell and Robson argued that the neurons whose
receptive field size are well-matched to the fundamental component will signal the
presence of the squarewave first. If this is the most important term in defining the
visibility of the squarewave, then the threshold contrast of the squarewave should
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Figure 1.14: Contrast sensitivity measured using squarewave gratings greater than 1 cpd
can be predicted from the contrast of squarewave fundamental frequency. The plus
signs and open circles show contrast sensitivity to squarewaves and sinewaves, re-
spectively. The filled circles show the ratio of contrast sensitivities at each spatial
frequency. The solid line is drawn at a value of ��� � �����, the amplitude of a
squarewave fundamental in a unit contrast squarewave (Source: Campbell and Rob-
son, 1968).
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Figure 1.15: Discrimination of sinusoidal and squarewave gratings becomes possible when
the third harmonic in the squarewave reaches its own independent threshold. The
open circles plot contrast sensitivity function. The plus signs show the contrast level
at which a squarewave can be discriminated from its fundamental frequency. The
filled circles show the squarewave discrimination data shifted by a factor of 3 in both
frequency and contrast. The alignment of the shifted curve with the contrast sensi-
tivity function suggests that squarewaves are discriminated when the third harmonic
reaches its own threshold level (Source: Campbell and Robson, 1968).

be ��� times the threshold contrast of a sinusoidal grating at the same frequency.
The data in Figure 1.14 show contrast sensitivity functions to both sinusoidal and
squarewave targets, and the ratios of the contrast sensitivities. As predicted4 for
patterns above 1 cpd the ratio of contrasts at detection threshold is ���� � ���.

In addition to detection thresholds, Campbell and Robson also measured how well
observers can discriminate between squarewaves and sinusoids. In these
experiments, observers were presented with a squarewave and a sinewave at

4Campbell and Robson’s squarewave detection experiment is a special case of the test-mixture ex-
periment we reviewed earlier. The results show that the �� and higher frequency components do
not help the observer detect the squarewave grating. The more general question of how different fre-
quency components combine is answered by test-mixture experiments, such as those performed by
Graham and Nachmias (1971), in which the relative contrast of all the components are varied freely.
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frequency � . The two patterns were set in a contrast ratio of ���, insuring that the
fundamental component of the square and the sinusoid had equal contrast. The
observers adjusted the contrast of the two patterns, maintaining this fixed contrast
ratio, until the squarewave and sinusoid were barely discriminable. Since the
contrast of the squarewave fundamental was held equal to the contrast of the
sinusoid, the stimuli could only be discriminated based on the frequency
components at �� and higher.

Campbell and Robson found that observers discriminated between the sinusoid and
the squarewave when the contrast in the third harmonic reached its own threshold
level. Their conclusions are based on the measurements shown in Figure 1.15. The
filled circles show the contrast sensitivity function. The open circles show the
contrast of the squarewave when it is just discriminable from the sinusoid.
Evidently, the squarewave contrast needed to discriminate the two patterns exceeds
the contrast needed to detect the squarewave. But, we can explain the increased
contrast by considering the contrast in the �� component of the squarewave. Recall
that this component has ��� the contrast of the squarewave. By shifting the
squarewave discrimination data (open circles) to the left by a factor of three for
spatial frequency, and downwards by a factor of three for contrast, we compensate
for these two factors. The plus signs show the open circles shifted in this way. The
plus signs align with the original contrast sensitivity measurements. From the
alignment of the shifted discrimination data with the contrast sensitivity
measurements, we can conclude that the squarewave can be discriminated from the
sinusoid when the �� component is at detection threshold visible.

Campbell and Robson’s discrimination results are consistent with a multiresolution
representation of of the pattern. It is as if the fundamental and third harmonics are
encoded by different component-images. Because the amplitude of the fundamental
component is the same in the squarewave and sinusoid, the observer cannot use that
information to discriminate between them. When the contrast of the third harmonic
exceeds its own independent threshold, the observer can use the information and
discriminate the two patterns.

Although multiresolution representations are consistent with this result, we should
ask whether the evidence is powerful. Specifically, we should ask whether the data
might be explained by simpler theories. One more general hypothesis we should
consider is this: observers discriminate two spatial patterns, � and � ���,
whenever �� is at its own threshold. This is the phenomenon that Campbell and
Robson report for their when � and �� are low contrast stimuli, widely separated in
spatial frequency. Can subjects always discriminate � from � ��� when �� is at its
own threshold hold generally?

No. In fact, the case described by Campbell and Robson describe is very rare. In
many cases the two patterns � and � ��� cannot be discriminated even though ��,
seen alone, is plainly visible. In this case, we say the stimulus � masks the stimulus
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��. There are also cases when � and � ��� can be discriminated even though ��,
seen alone, cannot be detected. In this case, we say the stimulus � facilitates the
detection of ��. Masking and facilitation are quite common; the absence of masking
and facilitation, as in the data reported by Campbell and Robson are fairly unusual.

The images in Figure 1.16a demonstrate the phenomenon of visual masking. The
pattern shown on the left is the target contrast pattern, ��. This contrast pattern is
added into one of the masking patterns shown in the middle column. The masking
pattern on the top is similar to the target in orientation, but different by a factor of
three in spatial frequency. If you look carefully, you will see a difference between the
mask alone and the mask plus the target: Specifically, near the center of the pattern
several of the bars on the left appear darkened and several bars on the right appear
lightened. The second mask is similar to the target in both orientation and spatial
frequency. In this case, it is harder to see the added contrast, ��. The third mask is
similar in spatial frequency but different in orientation. In this case, it is easy to
detect the added target.

Figure 1.16b shows measurements of masking and facilitation between patterns with
with similar spatial frequency and the same orientation (Legge and Foley, 1981).
Observers discriminated a mask, �, from a mask plus a two cycle per degree
sinusoidal target, � ���. The vertical axis measures the threshold contrast of the
target needed to make the discrimination and the horizontal axis measures the
contrast of the masking stimulus �. The different curves show results for maskers of
various spatial frequencies. In general, the presence of � facilitates detection at low
contrasts and masks detection at high contrasts. When the spatial frequencies of ��
and � differ by a factor of two, the amount of facilitation is small, though there is
still considerable masking. Other experimental measurements show that when the
spatial frequencies of the test and mask differ by a factor of three, the effect of
masking is reduced (Wilson et al., 1983; DeValois, 1977). We will discuss the effect of
orientation on masking later in this chapter.

The implications of these experiments for multiresolution models can be
summarized in two parts. First, Campbell and Robson’s data show no facilitation or
masking when � and �� are low contrast and widely separated in spatial frequency.
Second, the Legge and Foley data show that for many stimulus pairs more similar in
spatial frequency, � influences the visibility of an increment ��. Taken together,
these results are consistent with the idea that stimuli with widely different spatial
frequencies are encoded by different component-images.

The Conceptual Advantage of Multiresolution Theories

Today, many different disciplines represent images using the multiresolution format;
that is, by separating the original data into a collection of component-images that
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Figure 1.16: Masking and facilitation. (a) These images illustrate visual masking. The
test contrast pattern is shown on the left, and three different masking contrast pat-
terns are shown in the middle column. The sum of the test and mask contrasts are
shown in the right column. When the spatial frequency of the test and mask differ
by a factor of three (top), it is possible to see the effect of the test pattern. When the
spatial frequency of the test and mask are similar (middle) it is difficult to perceive
the added test. When the orientations of the test and mask are very different (bottom)
it is very easy to see the added test. (b) The contrast needed to detect a 2 cpd target
(��, vertical axis) depends on the contrast of the masking pattern (�, horizontal axis).
Each curve measures the effect of a different spatial frequency pattern, �. When � is
of low contrast and similar spatial frequency and orientation, it facilitates detection
of the target; when it is of high contrast pattern it masks detection of the target. The
curves have been displaced along the vertical axis so that each can be seen clearly
(Source: Legge and Foley, 1980).
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differ mainly in their peak spatial frequency selectivity. The multiresolution
representation has opened up a large set of research issues, and I will discuss several
of these in Chapter ??. While the behavioral evidence for multiresolution is
interesting, it is hardly enough to explain why multiresolution hypothesis have led
to something of a revolution in vision science. Rather, I think that it is the conceptual
advantages of multiresolution representations, described below, that have made
them an important part of vision science.

When theorists abandon the simple shift-invariance hypothesis for the initial linear
encoding, two problems arise. First, the set of possible encoding functions, even just
linear encoding functions, becomes enormous. How can one choose among all of the
possible linear transformations? Second, without shift-invariance, the theorist loses
considerable predictive power, some many important derivations we have made
depend on shift-invariance. For example, without shift-invariance we can not derive
the same quantitative prediction to the test-mixture threshold of a pair of sinusoids
(Equation 1.6).

Simply abandoning shift-invariance opens up the set of possible encodings too far;
theorists need some method of organizing their choices amongst the set of possible
linear encodings. The multiresolution structure helps to organize the theorist’s
choices. To specify a multiresolution model we must specify the properties of the
collection of shift-invariant calculations that make up the multiresolution theory.
This organization helps the theorist reason and describe the properties of the linear
encoding.

The multiresolution hypothesis also permits theorists to introduce organizational
properties into the component-images that make these images seem more like the
cortical response of nerve cells. A model with only a single shift-invariant model can
not have an orientation selective convolution kernel or a single frequency selective
kernel. If the convolution kernel (i.e., neural receptive field) encodes one orientation
more effectively than others, or one spatial resolution more strongly, then the
observer also must be more sensitive to stimuli with this orientation. Since observers
show no strong orientation or resolution bias, a shift-invariant model must use a
circularly symmetric pointspread function with fairly broad spatial resolution.

Multiresolution theories, however, can incorporate receptive fields with a variety of
orientations and resolutions. As long as all orientations are represented, the model
as a whole will retain equal sensitivity to all orientations. The use of oriented
convolution kernels with restricted spatial resolution makes the analogy between
the convolution kernels and cortical receptive fields much closer (see Chapter ??).

The complexity of the calculations is an important challenge in developing
multiresolution models of human pattern sensitivity. Figure 1.17 is an overview of a
fairly simple multiresolution model described by Wilson and Regan (1984; Wilson
and Gelb, 1984; (A. B. Watson, 1983; Foley and Legge, 1980; Watt and Morgan, 1985).
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Figure 1.17: A multiresolution model of spatial pattern sensitivity. The stimulus is con-
volved with a collection of spatial filters with different peak spatial frequency sen-
sitivity. The filter outputs are modified by a nonlinear compression, noise is added,
and the result is combined into a neural image (Source: Spillman and Werner, 1990).
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The initial image is transformed linearly into a neural image comprising a set of
component-images. In a recent implementation of this model, Wilson and Regan
(1984) suggest that the neural image consists of forty-eight component-images,
organized by six spatial scales and eight orientations (i.e. all scales at all
orientations). Each component-image is followed by a static nonlinearity that are
modifications of the vector-length measure. To see the development of an even more
extensive model, the reader should consult the work by Watson and his colleagues(
e.g. Watson, 1983; Watson and Ahumada, 1989). They have developed a
substantially larger multiresolution model, using very sophisticated assumptions
concerning the observer’s internal noise and decision-making capabilities.

It is difficult to reason about the performance of these multiresolution models from
first principles (though see Nielsen and Wandell, 1988; Bowne ,1990). Consequently,
most of the predictions from these models are derived using computer simulation.
Analyzing the model properties closely could easily fill up a book; and, in fact,
Norma Graham (1989) has completed an authoritative account of the present status
of work in this area. I am pleased to refer the reader to her account.

1.6 Challenges to Multiresolution Theory

Multiresolution theories are the main tool that theorists use to reason about pattern
sensitivity. As we reviewed in the preceding section, multiresolution representations
have many useful features and they can be used to explain several important
experimental results. There are, however, a number of empirical challenges to the
multiresolution theories. In this section, I will describe a few of the measurements
that represent a challenge to multiresolution theories of human pattern sensitivity.
As you will see, many of these challenges derive from the same source as challenges
to a shift-invariant theory: mixture experiments.

Pattern Adaptation to Mixtures

If we are to use pattern adaptation to justify multiresolution theories, then we
should spend a little more time studying the general properties of pattern
adaptation measurements. Perhaps the first step we should take is to extend the
pattern adaptation measurements from simple sinusoids to more general patterns
consisting of the mixture of two patterns.

Nachmias et al. (1973) performed a pattern adaptation experiment using individual
sinusoidal stimuli and their mixtures as adapting stimuli. The question they pose, as
in all mixture experiments, is whether we can use the individual measurements to
predict the behavioral performance to the sum.
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Figure 1.18: Pattern adaptation mixture experiments. These curves measures log thresh-
old contrast elevation at various test frequencies following adaptation. The curves
show the results following adaptation to a 3 cpd sinusoid (solid), a 9 cpd sinusoid
(dash), and their sum (dot-dash). Threshold elevation following adaptation to the
sum is smaller than threshold elevation following adaptation to the individual com-
ponents (Source: Nachmias et al., 1973).
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The results of their measurements are shown in Figure 1.18. Each curve in 1.18
represents threshold elevation of sinusoidal test gratings at different spatial
frequencies. The solid curve measures threshold elevation when the adapting
stimulus was a three cycles per degree sinusoidal grating. Confirming Blakemore
and Campbell (1969), there is considerable threshold elevation at 3 cycles per degree
and less adaptation at both higher and lower spatial frequencies. The dashed curve
measures threshold elevation when the adapting field was a 9 cycle per degree
grating. For historical reasons, the contrast of this grating was one third the contrast
of the grating at the fundamental. Even at this reduced contrast, the nine cycle per
degree grating also causes a significant threshold elevation for nine cycles per
degree test stimuli.

The dot-dash curve shows the threshold elevation following adaptation to the
mixture of the two adapting stimuli. For this observer, adaptation to the mixture
shows no threshold elevation to test gratings at 9 cpd. For all of the observers in this
study, the threshold elevation at 9 cpd following adaptation to the mixture is smaller
than the threshold elevation following adaptation to the 3 cpd adapting stimulus.
The mixture of 3 and 9 is less potent than adapting to 9 alone.

This result is difficult to reconcile with the simple interpretation of adaptation and
spatial frequency channels in Figure 1.13. If the adaptation to 3 cpd stimulates a
different set of neurons from adaptation to 9 cpd, then why should adapting to 3 cpd
and 9 cpd improve sensitivity at 3 cpd? I am unaware of any explanations of this
phenomenon that also preserve the basic logical structure of the multiresolution
representations.

The results of these mixture experiments should motivate us to rethink the basic
mechanisms of pattern adaptation. If we plan on using this experimental method to
provide support for a notion as significant as multiresolution representation of
pattern, then we should understand the adaptation phenomenon. Figure 1.19
illustrates one of the difficulties we face when we try to integrate results from
detection and adaptation experiments. When we group results from detection and
adaptation experiments, we assume implicitly that the visual mechanisms that limit
detection are the same as those that alter visual sensitivity following pattern
adaptation. But behavioral measurements provide no direct evidence that the
neurons that limit sensitivity are the same as those that underly adaptation.

The diagram in Figure 1.19 illustrates one way in which this assumption may fail.
Suppose that neurons indicated as Group T are located early in the visual pathways,
and that these neurons are noisy and have low contrast gain. If these are the least
reliable neurons in the pathway, then the sensitivity may be limited by their
properties. In that case, we can improve the observer’s detection performance by
testing with stimuli that are well-matched to response properties of the Group T
neurons.
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Figure 1.19: The neurons that limit detection and those that cause pattern adaptation may
not be the same. For example, one group of neurons (Group T) may be noisy and
have low contrast gain. Because of their noise properties, this group would limit
detection threshold. Neurons in a second population (Group A) may integrate the
responses of the first group of neurons and have high contrast gain. Because of their
high gain, this group of neurons may fatigue easily and be the neural basis of pattern
adaptation. If the neural units that limit these two types of behavioral responses are
different, then the spatial receptive fields of neurons that are inferred from detection
and pattern adaptation experiments may well be different.
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We have assumed that the effects of pattern adaptation are due to neural fatigue
caused by strong stimulus excitation. Because the Group T neurons have relatively
low gain, they will not respond very strongly to most stimuli and consequently they
may not be susceptible to pattern adaptation. Instead, it may be that another group
of neurons, Group A neurons, are the ones most influenced by the adapting pattern. I
have shown these neurons in Figure 1.19 at a later stage in the visual pathways. The
spatial spatial properties of the pattern adaptation experiment, for example the way
test sensitivity varies with the spatial properties of the adapting pattern, may be due
to the spatial receptive field properties of the Group A neurons. Group T and Group
A neurons may have quite different spatial receptive fields5.

From this analysis, it should be clear that the spatial properties of the neural
encoding derived from pattern adaptation may differ from the spatial properties of
the neural encoding derived from detection tasks, To argue that the mechanisms
limiting detection and mediating pattern adaptation are the same, we must find
behavioral experimental measurements that prove this point. In that case, we can
piece together the results from detection and pattern adaptation to infer the
organization within multiresolution models.

Masking with Mixtures

In Campbell and Robson’s (1968) discrimination experiment, the observer was asked
to distinguish between two stimuli � and � ���, where � and ��, effectively, were
sinusoidal patterns. Campbell and Robson found that when � and �� were
sinusoidal stimuli at well-separated spatial frequencies the two patterns were
discriminable when �� was at its own threshold. In reviewing their experiments we
considered how masking depends on the relative spatial frequency of the test and
masking patterns (Figure 1.16).

The data in Figure 1.20 show how masking depends on the relative orientation of the
target and masker (Phillips and Wilson, 1984). In this study, the masker � and test
�� were at the same spatial frequency. Phillips and Wilson measured the contrast
needed in the test to discriminate � ��� from � for various orientations of the
masker. The horizontal axis in Figure 1.20 measures the orientation of the masking
stimulus, �. The vertical axis measures the threshold elevation of the test. As the
difference in orientation between the test stimulus �� and masking stimulus �
increases, the masking effect decreases. In this data set, when the orientation
difference exceeds 40 degrees � ��� can be discriminated from � when �� is at its

5You should also consider the possibility that the basic mechanism of neural fatigue is not the
main source of pattern adaptation. Recently, Barlow and Foldiak (1989) have put forward an entirely
different explanation of pattern adaptation that is based on the learning principles, not on neural
fatigue. While the work on this topic is too preliminary for me to include in this volume, I think
this line of research has great potential for clarifying many visual phenomenon.
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Figure 1.20: Orientation tuning in the masking experiment. Threshold elevation to a
2 cpd test as a function of the orientation of a 2 cpd masking stimulus. The data
include only maskers with positive orientations since masking is symmetric with re-
spect to the orientation of the masking stimulus. The two curves show data from two
observers and the error bars are one standard error of the mean (Source: Phillips and
Wilson, 1984).
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Figure 1.21: Masking mixture experiments. When a test and masking grating are sepa-
rated in orientation by 67.5 deg, the masker has no influence on the visibility of the
test. But, the combination of two masking gratings at 67.5 deg, neither of which alone
has any effect, acts as a powerful masker. (Source: Derrington and Henning, 1989).

own threshold level.

Based on these measurements, one might suspect that one-dimensional contrast
patterns separated in orientation by 40 degrees are encoded by separate neurons.
Experimental results like these might be used to determine the orientation selectivity
properties of convolution kernels used in multiresolution models.

Results from test-mixture experiments based on visual masking challenge the
validity of this conclusion. Derrington and Henning (1989) report mixture
experiments in which they measured threshold elevation using two separate
masking patterns and their mixture. The individual masking patterns were 3 cpd
sinusoidal gratings; one grating was oriented at plus 67.5 degrees and the other
minus 67.5 degrees relative to vertical. They measured the effect of these masking
patterns on a variety of vertically oriented sinusoidal gratings.

If the two masking stimuli are represented by neurons that are different from those
that represent the vertical test patterns, then the superposition of these two masking
stimuli should not influence the target visibility. The data in Figure 1.21 show that
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this is not the case. The mixture of the two masking patterns is a potent mask even
though each alone fails to have any effect6.

Intermediate Summary.

The multiresolution representations are very important theoretical tool. They help us
think about the general problem of pattern sensitivity and they provide a framework
for organizing computational models of pattern sensitivity and other pattern-related
tasks. There is some evidence that these representations are an important part of the
human visual pathways. But, there is a bewildering array of experimental methods
– ranging from detection to pattern adaptation to masking – whose results are
inconsistent with the central notions of multiresolution representations. As we have
seen, mixture experiments using pattern adaptation and masking are difficult to
understand if we believe that components of the image in spatial frequency and
orientation bands are encoded by independent sets of neurons.

The conflicting pattern of experimental results show us that we haven’t yet achieved
a complete understanding of the basic neural processes that cause adaptation and
masking. Nor do we understand how these neural processes are related to the
neural processes that limit pattern sensitivity. Achieving this understanding is
important because these experiments provide the key results that support
multiresolution representations. Perhaps, once we understand the properties these
separate experimental methods more fully, we will understand the role of
multiresolution representations and find a way to make sense of complete set of
experimental findings. Up to this point, I think you should see that we are well
underway in understanding these issues, but many questions remain unanswered.

1.7 Pattern Sensitivity Depends on Other Viewing
Parameters

Next, we will review how pattern sensitivity depends on other aspects of the
viewing conditions, such as the mean illumination level, the temporal parameters of
the stimulus, and the wavelength properties of the pattern. In each of these cases,
we will use some form of the contrast sensitivity function as a summary of the
observer’s behavior.

In the remainder of this chapter, the contrast sensitivity function plays a different
role from the way we have used it up to now. To this point, I have emphasized the

6Similar difficulties in interpreting the effects of masking, but with respect to mixtures of sinusoidal
gratings, have been studied by Nachmias and Rogowitz (1983, Perkins and Landy, 1991)
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special role of the contrast sensitivity function in linear systems theories. If we
understand the structure of the data well enough, then the contrast sensitivity
function can be used to predict sensitivity to many other different patterns. A clear
example of this is Schade’s use of the contrast sensitivity function: if visual
sensitivity is limited by a shift-invariant neural image, then we can use the contrast
sensitivity function to predict sensitivity to any other pattern.

We do not have yet a complete theory that permits us to use the contrast sensitivity
function to characterize behavior generally. My purpose in continuing to describe
pattern sensitivity in terms of the contrast sensitivity function now is that it serves as
a summary measure of visual pattern sensitivity. Hence, in the remainder of this
chapter, we will not look at the contrast sensitivity function as a complete
description of the observer’s pattern sensitivity. Rather, we will use it as a
descriptive tool to help us learn something about the general pattern sensitivity of
the visual system.

Part of the reason for standardizing on the contrast sensitivity function is this: The
measure is used widely in both physiology and psychophysics. Hence, behavioral
measurements of the contrast sensitivity function can provide us with a measure
that we can compare with the neural response at different points in the visual
pathway. If a particular class of neurons, say retinal ganglion cells, limit visual
sensitivity, we should expect behavioral contrast sensitivity curves and neural
contrast sensitivity curves to covary as we change the experimental conditions.

Light Adaptation

Figure 1.22 shows that the contrast sensitivity function changes when it is measured
at different mean background intensities. The curve in the lower left shows a
contrast sensitivity function measured at a low mean luminance level (�� ����

trolands) when rods dominate vision. Under these conditions the contrast sensitivity
function peaks at 1-3 cpd and the curve is lowpass rather than bandpass. The curve
on the upper right shows a contrast sensitivity function measured on a bright
photopic background, one million times more intense. Under these conditions the
peak of the contrast sensitivity function is near 6-8 cpd and the shape of the curve is
bandpass. At mean background intensities higher than 1000 trolands, the contrast
sensitivity function remains unchanged (Westheimer, 1960; van Ness and Bouman,
1967).

The change in the shape of the contrast sensitivity function is consistent with a few
simple imaging principles. The first principle concerns the importance of achieving
adequate signal under the ambient viewing conditions. At very low light levels, the
observer needs to integrate light across the retina in order to achieve a reliable
signal. If the observer must spatially average the light signal to obtain a reliable
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Figure 1.22: Human contrast sensitivity varies with mean field luminance. Each curve
shows a contrast sensitivity function at a different mean field luminance level ranging
from �� ���� trolands to �� ��� trolands, increasing by a factor of ten from curve to
curve. The stimulus consisted of monochromatic light at 525 nm. At the lowest level,
under scotopic conditions, the contrast sensitivity function is lowpass and peaks near
1 cpd. On intense photopic backgrounds the curve is bandpass and peaks near 8
cpd Above these mean background levels, the contrast sensitivity function remains
constant (Source: van Ness and Bouman, 1967).
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signal, then the observer cannot also resolve high spatial frequencies. Consequently,
under dim, scotopic conditions the observer should have poor sensitivity to high
spatial frequencies, as they do. On more intense backgrounds, when quanta are
plentiful, the observer can integrate information over smaller spatial regions and
spatial frequency resolution improves.

The second principle concerns the importance of contrast, rather than absolute
intensity, for visual processing. Figure 1.22 shows that contrast sensitivity of low
spatial frequency patterns (below 1 cpd) rises with mean luminance and then
becomes constant. The range in which contrast sensitivity becomes constant is called
the Weber’s law regime. For low spatial frequency patterns, Weber’s law is a good
description of the results. At higher spatial frequencies, contrast sensitivity
continues to rise with the mean luminance. For these patterns Weber’s law is not a
precise description of behavior of sensitivity.

Even though Weber’s law is imprecise it does contain a kernel of truth. Consider the
overall dynamic ranges we are measuring. The background intensities used in these
experiments vary by a factor of one million, i.e., six orders of magnitude. Yet, the
contrast sensitivity generally varies by only a factor of 20 or so, only one order of
magnitude while sensitivity to absolute light level varies by 4 or 5 orders of
magnitude. The pattern of results suggests that the visual system preserves contrast
sensitivity, as suggested by Weber’s law, rather than absolute intensity. The visual
system succeeds quite well at Weber’s law behavior at low spatial frequencies, and it
comes close at high spatial frequencies. The significance of contrast rather than
absolute intensity for vision confirms the general view we have adopted, beginning
with measurements of contrast sensitivity in retinal ganglion cells and cat behavior
described in Chapter ??.

Spatio-temporal contrast sensitivity

Figure 1.5 showed several contrast sensitivity functions measured using
contrast-reversing sinusoids. Those data illustrate how the contrast sensitivity
function varies when we measure at a few different temporal frequencies.
Figure 1.23 contains a surface plot that represents how spatial contrast sensitivity
function when we measure at many different temporal frequencies. One axis of the
graph shows the spatial frequency of the test pattern, a second axis shows the test
pattern’s temporal frequency. The height of the surface represents the observer’s
contrast sensitivity. The surface represents the observer’s spatiotemporal contrast
sensitivity function. This single surface represents a large range of spatial and
temporal contrast sensitivity functions. Paths through the surface running parallel to
the spatial frequency axis represent the spatial contrast sensitivity function; paths
through the surface running parallel to the temporal frequency axis represent
temporal contrast sensitivity functions. Kelly (1979) derived the analytic curve that
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yields the surface shape from an extensive set of psychophysical measurements.

If the spatial contrast sensitivity functions had the same shape up to a scale factor,
and similarly for the temporal contrast sensitivity functions, we would say that
human spatio-temporal contrast sensitivity is space-time separable7. From the shape
of the contrast sensitivity surface, it is apparent that the spatial contrast sensitivity
curves have different shapes when measured at different temporal frequencies (cf.
Figure 1.5). Hence, human contrast sensitivity is not space-time separable (Kelly and
Burbeck, 1984).

There are several considerations that make space-time separability an important
property. First, in Chapter ?? I explained that only space-time separable systems
have unique spatial and temporal sensitivity functions. When a system is not
separable it does not have a unique contrast sensitivity function; rather it has a
different function for each temporal measurement condition.

Second, space-time separability is significant because it simplifies computations and
representations. For example, suppose we want to represent the spatiotemporal
contrast sensitivity function at � � �� spatial and � � �� temporal frequencies. If
the contrast sensitivity function is not separable, we may need to store as many as
�� � ���� values of the sensitivity function. But, if the function is space-time
separable, we need to represent only the the spatial contrast sensitivity function and
the temporal contrast sensitivity function (�� � ���). Sensitivity to any space-time
pattern can be calculated from the products of these two functions.

While the observer’s behavior as a whole is not space-time separable, it is not
necessary that we forego all of the advantages of space-time separability. Thus, even
though the observer’s performance as a whole is not space-time separable, we may
be able to describe the observer’s performance as if it depends on the combination of
a few space-time separable mechanisms8. We first saw this approach in Chapter ??
when we studied the receptive field of retinal ganglion cells. Although their
receptive fields are not space-time separable, we could model them as comprised of
two space-time separable components, namely the center and surround.

Kelly (1971, 1979; Kelly and Burbeck, 1984) has modeled the human spatiotemporal
contrast sensitivity function as if visual sensitivity is limited by contributions from
two space-time separable component. This description of contrast sensitivity is a
single-resolution description, much like Schade’s. The convolution kernel of the
system is composed of a central and a surround region, much like a difference of
Gaussian, in which the two components are each space-time separable. When the
two components are summed, as for retinal ganglion cells, the resulting convolution
is not separable. Using suitable parameters for the Gaussians and temporal

7See Chapter ?? near Equation ?? for a discussion of space-time separability of receptive fields
8Indeed, it is possible to show this is always a theoretical possibility. The result follows from an

important representation in linear algebra called the singular value decomposition.
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Figure 1.23: Human spatiotemporal contrast sensitivity function. The two lower axes rep-
resent the spatial and temporal frequencies of a contrast-reversing pattern. The verti-
cal axis represents the observer’s contrast sensitivity to each of the contrast reversing
patterns. The data used to estimate this surface were made on a mean background
luminance of 1000 trolands. Curves running parallel to the spatial frequency axis
define a set of spatial contrast sensitivity functions measured at different temporal
frequencies (cf. Figure 1.5). Curves running parallel to the temporal frequency axis
represent the temporal contrast sensitivity measured at different spatial frequencies.
Human spatiotemporal contrast sensitivity is not space-time separable (Source: Kelly,
1966,1979).
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Figure 1.24: Human temporal sensitivity measured at various mean background illumi-
nance levels. (a) Temporal contrast sensitivity. The spatial pattern was a two degree
disk presented on a large background. Each curve measures contrast sensitivity (ver-
tical axis) as a function of temporal frequency (horizontal axis). The curves show
measurements on a variety of backgrounds In sequence from lowest curve to high-
est the mean luminance was 0.375, 1, 3.75, 10, 37.5, 100, 1000, 10,000 tds. Once the
background illumination reaches roughly 5 trolands, contrast sensitivity to low tem-
poral frequencies remains constant, consistent with Weber’s law (Source: de Lange,
1958). (b) Temporal amplitude sensitivity. The spatial pattern was a 60 degree disk.
Each curve measures the threshold amplitude, not contrast, as a function of temporal
frequency. The mean background levels are 0.85, 7.1, 8.5 and 850 trolands. Notice
that at high temporal frequencies the threshold amplitude appear to fall along a sin-
gle curve, independent of the mean background level. This convergence is consistent
with a purely linear response, involving and no light adaptation, for high temporal
frequency stimuli (Source: Kelly 1961).

parameters, it is possible to approximate the the contrast sensitivity surface by
computing the output of the convolution kernel. This single-resolution convolution
kernel provides a convenient method for computing the surface, but as we have seen
in other parts of this chapter the single-resolution system does not generalize well to
predict sensitivity to other space-time patterns formed by the mixture of harmonic
functions.

Temporal Sensitivity and Mean luminance

The temporal contrast sensitivity function measures sensitivity to temporal sinusoidal
variations in the stimulus contrast. Figure 1.24a shows the temporal contrast
sensitivity function measured at a variety of mean background intensities.
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First, consider how contrast sensitivity to the lowest temporal frequencies varies
with background intensity. At the very lowest background levels, contrast sensitivity
increases with mean luminance. Once the mean background luminance reaches 5
trolands, contrast sensitivity to low frequencies changes by less than a factor of two
while the background intensity changes over a factor of 100. For low temporal
frequencies, contrast sensitivity remains relatively constant across changes in the
mean background intensity. This is the form of light adaptation called Weber’s Law.

Second, consider the contrast sensitivity at high temporal frequencies. For these
tests, contrast sensitivity increases systematically at all background levels, a
deviation from Weber’s Law. The nature of the deviation can be clarified by
replotting the data as shown in Figure 1.24b where sensitivity is plotted as a function
of the amplitude of the high frequency flicker, not contrast (which is the amplitude
divided by the mean level). When plotted as a function of amplitude, the temporal
flicker sensitivity curves converge at high temporal frequencies. The convergence of
the functions measured at many different mean luminance levels implies that
sensitivity to high temporal frequency signals is predicted by the amplitude of the
signal, not its contrast. This is the behavior one expects from a pure linear system,
without light adaptation. In this temporal frequency range, then, Weber’s Law does
not describe the data well at all. These data show that light adaptation does not play
a significant role in determining the visibility of high temporal frequency flicker.

Pattern-Color Sensitivity

There is a very powerful relationship between the wavelength composition of a
target and our sensitivity to pattern. In Chapter ?? we reviewed one of the most
important factors that relates wavelength and pattern sensitivity: the chromatic
aberration of the optics. The consequences of chromatic aberration are quite
significant for the organization of the entire visual pathways. For example, based on
the measurements we reviewed in earlier chapters, the chromatic aberration of the
lens, coupled with the wide spacing of the S cones, imply that a signal beginning in
the S cones can only represent signals less than 3-4 cycles per degree (cf. Figure ??).
This compares to the basic optical and sampling limit of nearly 50 cpd for signals
initiated by a mixture of L and M cones. The consequences of these neural
limitations and others can be measured easily in people’s ability to detect,
discriminate and perceive colored patterns: People’s ability to resolve
short-wavelength patterns is very poor (Williams, 1986).

While it is easy to understand some of the relationship between pattern and color in
terms of the optics and the cone mosaic, the limitations that relate color and pattern
are best understood by thinking about the neural pathways that encode color, rather
than the cones. A great deal of physiological and behavioral evidence (see
Chapters ?? and ??) demonstrate that we perceive color via neural pathways that
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combine the signals from the three cone classes. One pathway carries the sum of the
cone signals, while other pathways, called color opponent-pathways, carry signals
representing the difference between cone signals. Signals are represented on these
pathways at very different spatial resolution (Mullen, 1988; Noorlander and
Koenderink, 1983; Poirson and Wandell, 1993; Sekiguchi, et al. 1993).

High spatial frequency signals (20-60 cpd) appear to excite only the pathway formed
by summing the cone signals. We experience these patterns as light-dark
modulations around the mean luminance. Spatial frequency patterns below 12 cpd
can excite a pathway that encodes the difference between L and M signals. Only the
lowest spatial frequencies excite the third pathway, a pathway that includes the S
cones.

These effects have been roughly understood for many years. For example, the color
television broadcast system that is transmitted into many homes is organized into
three color signals that correspond to a light-dark signal and two color difference
signals. Only the light-dark signal includes high spatial frequency information about
the image; the two color channels represent only low spatial frequency information.
This representation is very efficient for transmission since leaving out high spatial
frequencies in two of the signals permits a large compression in the bandwidth of
the signal. Despite the missing spatial frequency information, the broadcast images
do not appear spatially blurred. The reason is that the high spatial frequency color
information that is omitted in the transmission is not ordinarily perceived.

The color pathways also differ in their temporal sensitivity. Perhaps the most
important observation is based on the flicker photometry experiment. In this
experimental procedure a pair of test lights alternate with one another. When the
lights are alternated slowly the pattern appears to change between the colors of the
two lights. When the lights alternate rapidly, observers fail to see the color
modulation, and all differences appear as a light-dark modulation upon a steady
colored background. Our temporal resolution for distinguishing blue-yellow flicker
is poorest, red-green in the middle, and light-dark is best.

The relationship between spatial resolution and temporal resolution suggest a
hypothesis that we considered in Chapter ??: namely, that spatial and temporal
resolution covary because they are both related through the rigid motion of objects.
If the most important source of temporal variation in the image is due to motions of
the eye or motions of an object, temporal frequency and spatial frequency resolution
should covary. At a single velocity, the motion of a low spatial frequency image
produces a slower temporal variation than motion of a high spatial frequency image.
Hence, in those wavelength bands where only low spatial frequencies are imaged
the visual system may not require high temporal frequency resolution.

I have summarized the covariation of color, space and time in the color image shown
in Figure 1.25. The image represents how color appearance varies across different
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Figure 1.25: Color sensitivity and appearance depends on the spatiotemporal pattern. We
perceive blue-yellow, red-green and light-dark variations at the lowest spatiotempo-
ral frequencies. When the spatial frequency of the pattern exceeds 3 or 4 cpd, we fail
to see blue-yellow variation. For spatial (temporal) frequencies greater than 16 cpd
(Hz), we see the world only as light-dark modulations about the mean color. In this
spatiotemporal region our perception is monochromatic.
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spatiotemporal frequency ranges. We are trichromatic only in a relatively small
range of low spatial and temporal frequencies represented near the origin of the
figure. As the spatial or temporal frequency increases we fail to see blue-yellow
variation and vision becomes dichromatic. At the higher spatial and temporal
frequencies we are monochromatic, and we see only light-dark variation.

Retinal Eccentricity

The contrast senstivity measurements we have reviewed were all made using small
patches of sinusoidal grating presented within the central few degrees of the visual
field. As one measures contrast sensitivity at increasingly peripheral locations in the
visual field, sensitivity decreases. There are a number of neural factors9 that conspire
to reduce both absolute sensitivity and spatial resolution. The density of the cone
mosaic falls off rapidly as a function of visual eccentricity, so that there are fewer
sensors available to encode the signal. The retinal ganglion cell density falls as well,
as does the amount of cortical area devoted to representing the periphery.
Approximately one half of primary visual cortex represents only the central ten
degrees of the visual field (314 square degrees), while the remaing half of visual
cortex must represents the rest of the visual field, which extends to a radius of 80
degrees (20,000 square degrees; see Chapters ?? and ??).

Figure 1.26a shows a set of contrast sensitivity functions measured using a small
grating patch at several different visual eccentricities. The top curve shows the
observer’s contrast sensitivity in the fovea. The observer’s peak contrast sensitivity
is 100 for gratings near 5-8 cpd, meaning that the observer can detect these at one
percent contrast. In the fovea, the observer can resolve gratings as fine as 40-60 cpd.
When the same stimulus is used to make measurements in the visual periphery,
observers become less sensitive in all regards so that stimuli 30 degrees in the
periphery have a peak sensitivity of 3 and an upper limit of 2 cpd.

We don’t notice ordinarily this decrease in contrast sensitivity. When asked, most
people believe that their spatial resolution is fairly uniform over a much wider
extent of the image than just 2 degrees (their thumb nail at arms length). Yet, from
the curves in Figure 1.26a, it is plain that our visual resolution is very poor by 7-10
degrees (a fist at arms length). Hence, our impression of seeing sharply over a large
spatial extent must be due in part to our ability to integrate spatial information
using eye movements.

Rovamo et al., (1978; Rovamo and Virsu, 1979, Virsu and Rovamo, 1979) suggested
that the decrease in contrast sensitivity with eccentric viewing can be explained
quantitatively by the reduced representation of the visual field in the cortex.

9The quality of the optics does not appear to decline significantly over the first 20 degress of visual
angle (Jennings and Charman, 1981).
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Figure 1.26: The contrast sensitivity function varies with retinal eccentricity. (a) Contrast
sensitivity functions measured using a � ����� ��� grating patch at retinal eccentric-
ities of 0, 1.5, 4, 7.5, 14, and 30 degrees retinal eccentricity are shown. Contrast sensi-
tivity measured using this stimulus is highest in the fovea and falls dramatically with
retinal eccentricity. (b) Contrast sensitivity functions measured with test stimulus
scaled in size and spatial frequency in order to compensate roughly for the reduced
cortical area devoted to different retinal eccentricities (Source: Rovamo et al.,1978).

Qualitatively, the decrease in contrast sensitivity and the coarse neural
representation of the periphery do parallel one another. The rough agreement
between these factors is demonstrated by the results in Figure 1.26b. These contrast
sensitivity functions, like those in Figure 1.26a, were made at different retinal
eccentricities. For these measurements, however, the size and spatial frequency of
the grating patch were scaled to compensate for the reduced cortical representation
at that retinal eccentricity. When the size and spatial frequency of the stimulus are
adjusted to compensate for the reduced cortical representation, the contrast
sensitivity functions become fairly similar.

Visual performance deteriorates with eccentricity for all known spatial-acuity tasks
and spatial localization tasks that we will review later in this chapter; but, the
performance decrease as a function of retinal eccentricity varies considerably across
observers and across tasks. The reduced representation of the periphery is present in
all of the neural representations beginning with the photoreceptors and continuing
into the central nervous system. The variance in observers’ performance coupled
with the wide number of neural representations with similar decrease in the
peripheral representation, make it difficult to attribute the decline in performance
with any single anatomical structure. The decline of acuity with eccentric viewing is
an important and widespread feature of the visual system; it may not be possible to
localize its cause to a single site in the visual pathways (e.g., Farrell and Desmarais,
1990; Ludvigh, 1941; Legge and Kersten, 1987; Levi et al., 1985; Westheimer, 1979,
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Yap et al., 1989).

Linking Hypotheses.

We have now reviewed several instances in which the variation of behavioral
contrast sensitivity functions with stimulus conditions is similar to the variation of
retinal ganglion cell responses. These correlations suggests that there is a causal
relationship between the retinal ganglion cells receptive fields and the behavioral
measurements. But, such a relationship is quite difficult to prove with the certainty
that we would like to have. At this point, I think it is worth reviewing what we have
learned about making such inferences.

Behavioral and neural theorizing supplement one another. Psychophysicists
measure behavioral responses and then build theories about neural mechanisms.
The properties of the theoretical neural mechanisms summarize the data and lead to
new behavioral predictions. Neurophysiological measurements tell us about the
neural activity directly. But, we must theorize about how the neural activity
influences behavior. Each field contributes part of the information about visual
function.

In an influential chapter in his book, Brindley (1970) called hypotheses that connect
measurements in the two fields linking hypotheses. He took a very conservative view
concerning the type of experiments that could be used to reason about physiology
from performance. His comments initiated a discussion that continues to this day
(Westheimer, 1990; Teller, 1990). Brindley felt that the only truly secure argument
connecting physiology and perception is this:

. . . whenever two stimuli cause physically indistinguishable signals to be
sent from the sense organs to the brain, the sensations produced by these
stimuli, as reported by the subject in words, symbols, or actions, must
also be indistinguishable (Brindley, 1970, p. 133.)

By stating his hypothesis clearly and forcefully, Brindley has drawn a great deal of
attention to the problem of linking results between the separate disciplines. My
purpose in writing this section is to question whether he may have succeeded too
well; the emphasis on linking results from behavioral and physiological studies
sometimes distracts us from assuring that the experimental logic within each
discipline is complete.

We establish the most secure links between behavior and physiology when we first
understand the separate measurements very well. For example, the relationship
between the color-matching functions and photopigment sensitivities are strong
because we have extensive quantitative studies, ranging over many measurement
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conditions, that tell us about each set of measurement conditions on their own. The
color-matching experiment stands no matter what the photochemist observers, and
the cone photopigment measurements stand no matter what the psychophysicist
observes. Because each set of results stands powerfully on its own, we can feel
confident that their relationship is a strong case for a connection between the two
fields. If we require that the analysis within each discipline stands on its own, then
when it comes time to join the two sets of observations we can have greater
confidence in the link.

I mean to contrast the view stated here with an alternative approach in which the
behaviorist uses the discovery of a particular neural response as the logical basis for
a purely behavioral experiment. Or, conversely the case in which a physiologist
explains a set of recordings in terms of some potentially related behavioral measure.
Such ideas may be useful in the background to help formulate specific experimental
measurements. But, the logic of theories and experiments based on a web of
interconnections from behavior to physiology often serve to entangle our thinking.

Given this standard, what should we think about the connection between behavioral
contrast sensitivity and neural receptive fields? In this chapter we have found that
there is a powerful theory underlying behavioral contrast sensitivity functions. This
theory is a good match to the logic of receptive field organization we reviewed in
earlier chapters. The psychophysical results based on the contrast sensitivity
function, however, do not fully support the basic theory. We cannot yet generalize
from contrast sensitivity functions to sensitivity to other stimuli. Hence, the
association between receptive field properties and contrast sensitivity functions are
far more tentative than the connection between the color-matching functions and the
photopigment spectral sensitivities.

Having stated this limitation in our current understanding, I don’t think we should
be discouraged. The similarities between the properties of the contrast sensitivity
functions and neural receptive fields are too striking to ignore. By continuing to
improve on the models for behavior and receptive fields separately, the links we
forge and quantitative comparisons we make could well turn out to form a complete
model, linking behavioral pattern sensitivity and neural receptive fields.

1.8 Spatial Localization

In this section we will review how well human observers can localize the position of
a target. Wulfing (1892) showed that human observers can make surprisingly fine
discriminations between the positions of two objects. Observers can reliably
distinguish spatial offsets between a pair of lines as small as one fifth the width of a
single cone photoreceptor. Moreover, people can distinguish this spatial offset even
when the objects are moving (Westheimer, 1979).
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Figure 1.27: A comparison of localization and spatial resolution experiments. In a two-line
spatial acuity experiment, the observer distinguishes between a stimulus consisting
of a single line from a stimulus consisting of a pair of lines separated by a small
amount. The images on the left side show the estimated retinal light distribution
of a reference line and of three pairs of lines separated by increasing amounts. In a
localization experiment, the observer distinguishes the position of a single line from
the position of a displaced line. The images on the right side of the figure show a
reference line and the estimated retinal light distribution of three offset lines.

The ability to discriminate between targets at different spatial positions is an aspect
of human spatial resolution. It is important to recognize that that the ability to
localize a target is different kind of resolution from the spatial resolution we measure
when we ask observers to discriminate a pattern from a uniform background10. The
differences between the tasks are illustrated in Figure 1.27. The left side of the image
in Figure 1.27 shows the estimated retinal light distributions of several stimuli a
subject might be shown in a spatial resolution task. In this experiment, the subject
must discriminate between the light distribution of a single dine line (top left) from
the light distribution of a line-pair in which the two lines are separated by a small
amount (bottom left). In this task, the stimuli are all centered at the same point, so
there is no difference in where they are located. The right side of the image in
Figure 1.27 Figure 1.27b shows the retinal light distributions of stimuli a subject
might be shown in a spatial localization task. In this experiment, the subject must
discriminate the position of the retinal light distribution created by reference line
(top right) from the positions of the light distributions of a line that is offset (bottom
right).

10The terminology associated with these two types of spatial tasks can be confusing. The word hy-
peracuity, refers to the fact that people localize spatial position with very high precision. Unfortunately
acuity is also used to refer to the spatial frequency sensitivity of the observer, which is a different
matter. Here, I will use the term localization to refer to spatial resolution for position.
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Figure 1.28: Localization sensitivity. Subjects detected whether a line was offset to the
right or left of the tip of a chevron for a variety of angles of the opening of the chevron.
Data from two observers are shown. Both observers could reliably report offsets as
small as six seconds of arc (left vertical scale) which is one-fifth the width of a single
photoreceptor (right vertical scale) (Source: McKee and Westheimer, 1977).
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McKee and Westheimer (1977) measured observers ability to localize a line (see
Figure 1.28). Subjects judged whether a line was located to the right or left of the tip
of a chevron (see inset in the figure). The vertical axis of the graph measures the
displacement needed to discriminate reliably when the line is offset from the middle
of the chevron. This task was repeated for chevrons with various angles; for all
angles, the offsets thresholds are on the order of 5 seconds of arc, roughly one-fifth
the width of a single cone. Performance does not vary much as we change the
stimulus. This suggests that localization performance is robust with respect to
spatial manipulations of the target. This very fine localization applies to many
different kinds of stimuli, including the relative positions of a pair of vertical lines,
moving lines, and many other targets (Westheimer, 1979).

At first, it seems surprising to learn that we can localize targets at a finer resolution
than the spacing of the cone mosaic. We know that the sampling grid determined by
the cone mosaic imposes a fundamental limit on spatial pattern resolution through
the phenomenon of aliasing (see Chapter ??). Shouldn’t the cone mosaic also impose
a limitation on our ability to localize position?

In fact, a coarse sampling grid does not eliminate the possibility of localizing a target
precisely. The physical principles we can use to achieve fine spatial localization on a
coarse sampling grid are illustrated in Figure 1.29. The main portion of the figure
shows the pattern of cone absorptions we expect in response to a reference line
centered over a cone and a line that is displaced to the right by 12 sec of arc. The
separation between the tick-marks on the horizontal axis are set at 30 sec, the size of
an individual cone. The values were calculated using Westheimer’s optical
linespread function (Chapter ??).

Because the offset is very small compared to the sampling, the same cones respond
to the reference line and the offset line. It follows that the identity of the cones
cannot be used to estimate the locations of the two lines. Although the same cones
respond to the two lines, the spatial pattern of cone absorptions when the lines are in
these two positions is quite different. The inset to Figure 1.29 shows the ratio of the
cone absorptions to the two different lines. A small spatial shift of 12 sec of arc
causes a fifty percent change in the absorption rate at an individual cone. Hence, the
spatial pattern of absorption rates is a reliable signal that can be interpreted to infer that
the line position at a resolution finer than the spacing of the cone mosaic.

Notice that the optical blurring of the light distribution is essential if we wish to
localize the line at positions finer than the sampling grid. Were there no optical
blurring, the image of a line would fall within the width of a photoreceptor and
spatial displacements less than a photoreceptor width would not be detectable.
Optical blur, which seems like a nuisance when we consider spatial resolution of
contrast patterns, is a help when we consider spatial resolution to localize targets.

Our ability to localize the position of edges and lines is very robust with respect to
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Figure 1.29: A physical basis for localization in localization tasks. The points in the main
graph show the estimated rate of light absorption by foveal cones to a fine line. The
x’s show absorptions to a reference line and the open circles show the absorptions to a
line offset by 12 seconds of arc. The tick marks on the horizontal axis are separated by
the width of a single cone. The solid and dashed lines linearly connect the estimated
absorption rates. The inset shows the ratio of cone absorptions from the reference
line and the displaced line at each cone position. The graphs shows that a 12 sec
shift, roughly ��� the width of a photoreceptor, changes the cone absorption rate by
as much as 50 percent. This information can be used to localize the position of the
line at a resolution that is substantially finer than the separation between cones.
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various stimulus manipulations. If we vary the target contrast, set the display into
motion, or flash the display briefly, performance remains excellent. Since
performance is robust with respect to these experimental manipulations, it is clear
that the simple calculation shown in Figure 1.29 is only a demonstration of how
localization is possible. The visual system must use a much more sophisticated and
robust method to calculate position than the simple calculation described in the
Figure. Eye movements during examination of a static display, or tracking errors
during examination of a visual display, will make it impossible to compare the
outputs of a single small set of cones. Rather, people must be capable of estimating
the position at fine precision even though the precise identity of the cones mediating
the signal varies. Although we have some basic principles to work from, how we
estimate the relative position of moving targets using active eyes remains an
important challenge to study.

1.9 Summary

Theories of human pattern sensitivity are organized around a few basic principles.
In the earliest and simplest theories, the visibility of different types of test patterns
was explained by the properties of a single shift-invariant linear system. This type of
theory is simple for computation and also parallels nicely our understanding of the
initial encoding of light by retinal nerve cells in certain visual streams. The
convolution kernel of the shift-invariant linear system and the neural receptive field
play analogous roles and provide a natural basis for comparison of behavioral and
physiological data. By using common experimental measures, such as contrast
sensitivity functions, the properties of neural mechanisms and behavioral theories
can be compared directly.

While certain aspects of single-resolution theories provide a reasonable description
of human pattern sensitivity, they fail a number of direct empirical tests.
Consequently, theorists have tried to assemble new theories in which the pattern
representation is based on a collection of shift-invariant representations, not just a
single one. This idea parallels the physiological notion that the visual system
contains a set of visual streams. The more complex modern theories must specify a
larger number of convolution kernels (receptive fields). To keep these organized,
and to parallel some of the properties of cortical receptive fields, theorists generally
choose convolution kernels that respond best to restricted bands of spatial frequency
and to restricted stimulus orientations. These theories can predict more
experimental results, but there remain many computational and experimental
challenges before we will have a complete satisfactory theory of pattern sensitivity.

Because human vision constantly adapts to new viewing conditions, human pattern
sensitivity cannot be described by a single pattern sensitivity function. Pattern



1.9. SUMMARY 63

sensitivity covaries with the temporal properties of the test stimulus, the mean
background level, and with the wavelength composition of the stimulus. Thus, a
general specification of human pattern sensitivity must take all of these factors into
account.

Behavioral experiments show that people are also exquisitely sensitive the spatial
location of targets. Observers can localize test stimuli to a resolution that is
considerably finer than the spacing of the cone mosaic. The ability to localize is quite
robust, surviving many different stimulus manipulations. The principles of how one
might local to a very fine resolution are clear, but the methods that the visual
pathways use to acquire the necessary information remain to be determined.
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Exercises

1. Use a computer program, such as Matlab or Mathematica, and experiment
with vector-length calculations.

(a) Define a discrete representation of a one-dimensional sinusoidal stimulus.
Using a range of locations for 
 from 0 to 1 degree, and �� sample values,
create two sinusoidal patterns, �� and ��.

(b) Compute the contrast patterns �� � �� and �� � ��. Plot them and compare
the deviations around zero.

(c) Compute the vector-length of a vector �� using a matrix multiplication of
the form ��

�
��.

(d) Show that a shift-invariant/vector-length calculation predicts that the
visibility of the pattern 
�����
� � 
��������
� is the same as the
visibility of 
�����
�� 
��������
�.

(e) Show that a shift-invariant/vector-length calculation predicts that the
visibility of the pattern 
�����
� � 
��������
� is the same as the
visibility of 	�
����
� � 	�
�������
�.

2. Answer these questions about shift-invariant vector-length calculations.

(a) Consider the two stimulus contrast patterns, 	�
����
� and 	�
�������
�.
Suppose the contrast threshold for the sinusoid alone is �� , and the
contrast threshold for the cosinusoid alone is ��� . Compute the predicted
contrast contrast threshold be for the mixture 	�
����
� � 	�
�������
�
according to a shift-invariant, vector-length theory.

(b) What will the contrast threshold for 
�����
� be?

(c) What will the contrast threshold for 
�����
� � 	�
�������
� be?

(d) Suppose we have a one-degree wide monitor region that has �� lines.
Using the Fourier Series, we can describe a contrast pattern of a line as the
sum of a set of �� cosinusoids of equal amplitude and frequencies of
�� �� � � � � �� cycles per degree. Assume you know the visual sensitivity to
each of these cosinusoids (call them ��). Use the shift invariant
vector-length theory to predict the when the contrast line will be visible.

3. Answer these questions about texture and spatial frequency.

(a) Suppose we are looking at a texture pattern on a wall. As we walk
towards the wall, the spatial frequency content of the image incident at
our cornea changes. Describe the nature of the change of the amplitude of
the different spatial frequency components.
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(b) Describe the nature of the change of the phase components of the image

(c) There are many instances in which we would like to predict whether one
image is a good replica of another. There is a field of engineering in which
individuals have developed image quality metrics to compute whether
small differences will be perceptible and if so how perceptible. Consider
only the problems of black and white images and answer the following
questions.

(d) What image formation factors do you think should be included in an
image quality metric?

(e) How would you incorporate the human contrast sensitivity function into
an image quality metric?

(f) Many investigators do not use the human contrast sensitivity function to
evaluate the quality of the reproduction. Instead they evaluate the error of
the replication by computing the mean squared error between the original
and the replica. Can you devise a thought experiment to illustrate when
this procedure will surely fail?

(g) For many images, the mean squared error between the original and the
replica performs reasonably well as a predictor of the perceptual
difference between the image and its replica. Can you explain what
factors might make this so?

4. Answer these questions about light adaptation.

(a) Design a set of stimuli and experimental procedure for measuring the
contrast sensitivity function by signals initiated in the L cone mosaic.
What will be the main difficulties in creating the stimuli? What about for
the S cone mosaic?

(b) The experiments we reviewed in this chapter were based mainly on
backgrounds and targets that appear light-dark. Suppose that we adjust
the color of the background light such that the L cones are adapted to a
much higher level of illumination than the S cones. What do you think
will happen to the contrast sensitivity function measured with a
light-dark modulation? What do you think will happen to the contrast
sensitivity function measured with a colored target?

(c) Why should contrast sensitivity, rather than absolute light sensitivity, be a
key visual variable preserved by adaptation?

(d) As the mean background intensity increases, people can perceive
increasingly rapid flicker. What imaging principles does this illustrate?

5. Answer these questions about wavelength and pattern.
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(a) Chromatic aberration reduces spatial resolution in the short-wavelength
portion of the spectrum. Does this mean that a blue-yellow neural
pathway must have poor spatial resolution?

(b) Define pattern-color separability.

(c) Suppose that pattern-color separability is a desirable feature of a
opponent-color pathway. How would you create a blue-yellow neural
signal that is pattern-color separable?

(d) Suppose that pattern-color separability is not important, but only spatial
resolution is valuable. Describe how you would create a blue-yellow
neural signal?

6. Answer these questions about the physical basis for localization.

(a) Is there any reason that localization would improve were the human
cones spaced more finely?

(b) How well should we be able to localize using only the signals from the S
cone mosaic?

(c) Is there any reason that localization would deteriorate were the human
cones spaced more coarsely? What effect would broadening (narrowing)
the linespread function have on localization?


