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Chapter 1

The Retinal Representation

1.1 An Overview of the Retina

In this chapter we will review the structure of the retina and its role in organizing
visual information. The retina is a thin layer of neural tissue that lines the eye. After
the retinal image is encoded by the photoreceptors, neurons within the retina
transform the photoreceptor signals into a new representation that is carried by the
optic nerve to a variety of locations in the brain. The retina is important for several
reasons. First, the retina is important to neuroscientists because it is a very accessible
part of the central nervous system making it an important site for scientific study
Second, the retina is important to clinicians since it is the only part of the central
nervous system that can be examined directly, by using an opthalmoscope. Third,
the retina is important to vision scientists because it has several important visual
functions, including encoding the image and transforming it into a collection of
separate pathways that send information about the entire retinal image to the brain.
Since retinal neurons develop from the same progenitor cells that give rise to the
brain, the organization of information within these retinal pathways is also an
important clue about the organization within the brain as well.

Retinal structure

Over most of its extent, the primate retina is approximately 0.5 mm thick and
consists of three layers of cell bodies and two layers containing the synaptic
interconnections between the neurons. Near the optical axis of the eye, however, the
primate retina contains a specialized region, the fovea, consisting of only a single
layer of neurons, the cone photoreceptors. Both of these structural properties of the
retina can be seen in the anatomical cross-section section of a human retina shown in
Figure 1.1.
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6 CHAPTER 1. THE RETINAL REPRESENTATION
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Figure 1.1: The human retina is a thin layer of neural tissue that lines the back of the
eye. In the near periphery and periphery the retina is a layered structure. The cornea
and lens would be at the top of this picture, so that in the periphery light must pass
through the retinal layers before being absorbed by the photoreceptors. In the fovea
the retina consists of only a single layer of photoreceptors as the neurons responsible
for carrying the responses of the foveal cones are displaced to the side, out of the light
path. (Source: A. Hendrickson, personal communication).

Figure 1.2 shows two types of retinal neurons and identifies some of their parts,
including the dendritic fields, cell bodies, and axon. The dendritic fields receive input
from other neurons; the axon, which may branch, carries the neuron’s output to its
destination1. The shape of a neuron’s dendritic field and its axonal branches are
generally important features for distinguishing broad classes of neurons. We will
use many features, including the locations of cell bodies, dendrites and axons; the
size and shape of their cell bodies and dendritic fields; and, their interconnections
with other neurons, to classify and understand retinal neurons.

There are five basic categories of retinal neurons, although each category has several
subclassifications. The major categories of retinal neurons are distinguished by the
location of their cell bodies, dendritic fields, and axon terminals. The
photoreceptors’ cell bodies are located in the outer nuclear layer of the layer. The
synaptic terminals of the photoreceptors make contact with the dendritic fields of
the bipolar and horizontal cells in the outer plexiform layer. The cell bodies of the
bipolar and horizontal cells are located in the inner nuclear layer. Both the dendrites
and the branching axon terminals of the horizontal cells make connections with cells
in the outer nuclear layer. The bipolar cells, however, make connections onto the the

1Some neurons have no axon, exerting their influence only at local interconnections at synapses
within the dendritic field.
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Figure 1.2: Retinal neurons have many different shapes and sizes. A midget bipolar and
a parasol-type ganglion cell are shown. (a) The cell body of a bipolar cell resides in
the outer nuclear layer. Its dendrites make contact with the photoreceptors and hor-
izontal cells and its axon carries the output of the bipolar cell to the inner plexiform
layer where it contacts the dendritic field of a ganglion cell. There are several differ-
ent types of bipolar cells; the cell shown is a midget bipolar whose dendritic tree makes
contact with a single photoreceptor and whose axon makes contact with a single gan-
glion cell. (Source: Kuffler et al., 1984). (b) The retinal ganglion cell bodies reside in
the ganglion cell layer of the retina. The axons of the retinal ganglion cells comprise
the optic nerve. Several types of retinal ganglion cells can be distinguished based on
the properties of their dendritic fields, their interconnections, and their cell bodies.
The cell drawn here was called a parasol cell by Stephen Polyak (1941, 1957). (Source:
Dacey, 1992).
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dendrites of the ganglion cells within the inner plexiform layer. Since only the bipolar
cells link the signals in the outer and inner plexiform layers, all visual signals must
pass through the bipolar cells.

The amacrine cell bodies are also located in the inner nuclear layer. Santiago Ramon y
Cajal gave these cells their name to indicate that they have no identifiable axons, but
only dendrites. The dendritic fields of the amacrine cells make connections with the
dendritic fields of the ganglion cells in the inner plexiform layer. The retinal ganglion
cell bodies are located in the ganglion cell layer, and their dendritic fields connect
with the axon terminals of the bipolars and the dendritic fields of the amacrine cells.

The axons of the retinal ganglion cells provide the only retinal output signal. The
ganglion cell axons comprise the optic nerve and they exit from the retina at a single
location in the retina called the optic disk. There are no photoreceptors at the optic
disk, so we do not encode or perceive the light that falls there. Consequently, the
optic disk is also called the blindspot. We are not aware of the blindspot in our eyes
ordinarily since the portion of the visual field falling in the blindspot of one eye falls
on functional a retina in the other eye. You can perceive your blindspot by closing
one eye and then carefully fixating with the other eye on the “x” in Figure 1.3. Move
the book to a viewing distance where the white square disappears, roughly 25 cm
from your nose. Notice that the white square and dot within the texture pattern fill
in, while the dots at a comparable visual eccentricity are still visible. Thus, the dot
disappears because of the blindspot and not because of a loss of visual acuity in the
periphery.

Retinal function: specialization

The retina segregates visual information into parallel neural pathways specialized
for different visual tasks. In earlier chapters, we reviewed one example of neural
specialization in the retina: there are two different types of photoreceptors, the rods
and the cones, that both sample the image. These two photoreceptors types are
responsible for encoding the visual image in different intensity ranges.

The segregation of rod and cone signals continues through several synaptic
connections within the retina. Kolb and her collaborators have shown that the
signals initiated within the rods follow a separate rod pathway within the retina until
the signals arrive at the retinal ganglion cells (see Figure 1.4). The rods make
connections with a class of bipolars, the rod bipolars, that integrate the responses of
many different rod photoreceptors. Presumably, pooling the signals from many rods
enhances the sensitivity of this rod pathway. The rod bipolars synapse directly onto
type AII amacrine cells, but unlike other bipolars the rod bipolars do not synapse
directly onto ganglion cells. The rod bipolars synapse on the AII amacrine cells
within a narrow level of the inner plexiform layer. Finally, the AII amacrines
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X

Figure 1.3: A demonstration of the blindspot. Place the page about 25 cm from your eye.
Then close your left eye and fixate the X: the white spot in the texture will disappear.
If it does not, then slowly move the book back and forth, carefully maintaining fixa-
tion, until the spot does disappear. The two squares above and below become hard
to see in the periphery, but they do not disappear. This demonstrates that the disap-
pearance of the central square is not merely due to a general loss of visibility at this
eccentricity.

synapse onto retinal ganglion cells both within the same level of the inner plexiform
layer and also at a a second level of the inner plexiform layer. The ganglion cells that
connect with the AII amacrine cells also receive signals via a cone-initiated pathway.
Hence, the rod pathway merges with a cone-initiated pathway and disappears as a
unique entity at this point.

By examining the properties of the rod pathway, we can see certain general features
that might also be true of the organization of other visual pathways. First, the rod
pathway only exists over a few synapses, serving its function and then merging with
the main visual signal. By converging onto the main processing stream, central
processing elements that define shape, form, and so forth can analyze both the rod
and cone signals and need not be duplicated. Thus, a visual pathway may serve its
purpose within a few synapses and then disappear.

Second, we see that visual streams may be created to serve fairly rudimentary
functions, such as enhancing some aspect of the information in the image. The
strong convergence of signals within the rod pathway — a single rod bipolar may
integrate the signal from 1500 rods — makes the rod pathway well-suited to
capturing information at low light levels while paying a penalty in terms of visual
acuity. Hence, visual pathways may be created to achieve a special computational
goal.
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Figure 1.4: A rod-initiated pathway in the vertebrate retina. Axons from more than
1000 rods converge upon a single rod bipolar cell. The rod bipolar send their outputs
to a specialized amacrine cell, the AII, located in the inner plexiform layer. The AII
amacrine cell communicates the rod-initiated signal to two types of ganglion cells,
one whose dendritic field is in the upper layers of the inner plexiform layer and an-
other whose dendritic field is in the lower layers. The responses of ganglion cells
whose dendritic fields are in the upper layer are decreased by light, while responses
of ganglion cells whose dendritic fields are in the lower layer are increased by light
(Source: Boycott and Wässle, 1991).
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There are probably many types of information, in addition to the illumination level,
that are formed for special computational purposes. For example, some types of
behaviors may require precise visual information of one sort; say, to track a moving
object. To improve this type of performance, one may require a pathway with
excellent temporal resolution. Other behaviors may require precise visual
information of another sort; say, to identify a texture pattern may require high spatial
acuity. This might require a pathway with very high spatial sampling resolution.
Rodieck et al. (1993) estimate that there may be as many as twenty pathways
originating within the retina, and that each of these pathways communicates its
signal to a different location in the central nervous system. Like the rods and cones,
each subcategory of retinal ganglion cell obtains a fairly complete copy of the retinal
image. We may presume that each subcategory of ganglion cell type specializes in
communicating about certain types of visual information.

We will refer to the connected series of neurons carrying information in parallel as
visual streams or visual pathways. The precise site where information is segregated
into different visual streams within the retina is not certain, but it seems likely that
the segregation begins immediately at the output of the rods and cones. In fact, there
appear to be about 15 to 20 different bipolars that make contact with each cone. The
information encoded by each of the bipolars may serve as the starting point for the
visual streams that have been identified at points further along the visual pathway
(Rodieck, et al. 1993; Boycott and Wässle, 1991).

Evidently, one of the important functions of the retina is to organize the information
encoded by the photoreceptors into a collection of visual streams. Presumably, the
purpose of these separate visual streams is to communicate relevant image
information efficiently to brain areas engaged in specialized types of visual
processing. This observation reinforces the view that the existence of these visual
streams can be an important clue about the functional organization of the visual
pathways. We presume that each visual stream carries an efficient representation of
the spatio-temporal component of the image that is most relevant for task carried
out in visual area where the ganglion cell output is sent. Hence, by studying the
response sensitivity to different kinds of stimuli of the neurons within a visual
stream, we learn something about the functional role of that stream.

Retinal function: image contrast and adaptation

There are some visual challenges that are common to the information carried on all
of the specialized visual streams. It makes sense to try to solve these types of
problems when the signals are close together, as in the retina, rather than after the
visual signals have reached widely separated destinations within the brain.

A fundamental challenge that is common to the signals carried by all retinal neurons
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is this: they must remain sensitive as the ambient light intensity varies over many
orders of magnitude. This is a challenge for the nervous system because neurons
have a very limited response range.

Neurons in the peripheral visual system solve this problem, in part, by signaling the
local contrast in the image rather than the absolute stimulus level. The local contrast
is the percent change in the image intensity relative to the local average. The range
of contrasts in a typical image is constant as ambient illumination level changes and
typically spans no more than two orders of magnitude. By coding contrast, rather
than absolute level, neurons with small dynamic range can convey essential
information about the retinal image despite enormous variations in the absolute
level. In later chapters we will review computational issues and we will find that in
contrast is an important signal in its own right. The contrast signal is closely coupled
to the properties of surfaces, and surfaces are often the visual entity we want to
identify or recognize2.

1.2 Visual Streams

We will begin by reviewing the kinds of methods we can use to classify retinal
neurons. Then, we will review the principal features of the information carried
within two specific visual streams, the parvocellular pathway and the magnocellular
pathway. We focus on these two streams because we know most about them and
because their output represents a very large fraction of the total output of the retina.

Methods of classifying neurons

The form and structure of a neuron, including its dendritic field, cell body, and
axonal projections, are called the neuron’s morphology, The most fundamental
method of distinguishing categories of neurons is simply to study their morphology.
A second type of data we can use is the neuron’s electrical responsiveness to
different signals, that is its electrophysiology. A third type of data we can use is to
study the chemical substances used to build the neuron, that is the neuron’s
biochemistry. A fourth type of data is the anatomical pattern of interconnections a
neuron makes with other neurons. The most satisfying classification of neurons
occurs when the evidence from these different sources converge.

2In some books the dynamic range problem is treated by explaining that the photoreceptors re-
spond to light intensity using a compressive function of intensity, such as a logarithmic or power
function. A compressive function maps a light stimulus ranging over six orders of magnitude into
neural responses of one to two orders of magnitude above their intrinsic variability. In the modern
literature, this view has been substantially replaced by a formulation based on stimulus and response
contrast.
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We used all of these methods to distinguish the photoreceptors into rods and cones.
The rods and cones can be classified based on their morphology of the cell (rod-like
shape versus cone-like shape), the type of photopigment they contain, their electrical
response to light, and their interconnections (rods make no connections in the
fovea). Taken together, the classification of rods and cones also suggests a difference
in function, namely that cones carry visual information used for high acuity tasks
and rods are specialized for low illumination conditions.

It is natural to use our successes at peripheral levels to guide our next analysis of
cellular function. So, we begin the analysis of the retinal ganglion cells by
considering how we can use the measurements to categorize the retinal ganglion
cells into groups serving various visual functions.

Morphology of Parasol and Midget Ganglion Cells

When examining the retinal ganglion cell layer using a light microscope, one sees
ganglion cells of many different sizes, shapes and patterns of dendritic fields. In an
extraordinary set of studies, Santiago Ramon y Cajal examined the retinal cell types
in many mammalian eyes, but no primates, and identified the basic anatomical
structure of the retina. To classify neurons, Cajal used several morphological
properties, relying mainly on the location of the dendritic arbor terminations. Figure
1.5 shows Cajal at work, along with one of his sketches of the mammalian retina.

The modern era of anatomical studies in the primate retina began with the work of
S. Polyak (1941; 1957) who wrote a remarkable pair of books describing his
investigations into the primate visual system. Polyak described many aspects of the
anatomical structure of the retina specifically and the primate vertebrate visual
system generally. In his work on the retinal ganglion cells, Polyak identified five
different categories of cells using the size of their cell bodies and the properties of
their dendritic fields. One of the principal classifications he made, and the one that
will concern us here, was based on the size and spread of the retinal ganglion cell
dendritic arborizations. At most locations within the retina one can identify some
neurons whose dendritic fields are relatively dense and compact compared to other
retinal ganglion cells. Near the fovea these neurons are particularly conspicuous
since they make contact with only a single bipolar which in turn makes contact with
only a single cone. Polyak was the first to identify these retinal ganglion cells which
are abundant in the primate but absent in other mammals. Polyak named these cells
midget ganglion cells. Several midget ganglion cells at different positions within the
retina are illustrated in Figure 1.6a.

The morphology of the midget ganglion cells contrasts with a second class of
ganglion cells shown in Figure 1.6b and called parasol cells by Polyak. The parasol
cells have a sparse dendritic tree and medium to large cell bodies. The drawings in
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Figure 1.5: Ramon y Cajal and one of his drawings. Cajal is shown at work at his lab
bench along with a drawing he made of the direction of visual signals in a mammalian
retina. The labeled cells in part A of Cajal’s drawings are (a) rod bipolar, (b) cone
bipolar, (c) and (d) ganglion cells. The connections with a subcortical visual center
are shown in part B (Source: Rodieck, 1973).
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Figure 1.6: A comparison of midget and parasol retinal ganglion cell morphology at various
retinal eccentricities. (a) Midget ganglion cells and (b) parasol ganglion cells from a
series of positions within the retina are shown as camera lucida drawings. At com-
parable positions within the retina, the dendritic tree of the midget ganglion cell is
smaller and denser than that of the parasol cell. For both types of cells, however, the
absolute size of the dendritic field increases with eccentricity (Source: Watanabe and
Rodieck, 1989).
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Figure 1.6 compare a sampling of the midget and parasol cells at several distances
from the fovea.

Variation with retinal eccentricity

As Polyak noted, the size of many types of retinal neurons increases with distance
from the fovea. For example, a cell body or dendritic field that is relatively large in
the fovea will be relatively small in the periphery. While Polyak says that the midget
ganglion cells are present throughout the retina, due to retinal inhomogeneity the
midget ganglion cells in the periphery are larger than the parasol cells near the
fovea. If absolute size is not a reliable indicator, what measurement can we use to
decide whether neurons at different eccentricities are of the same type? In a seminal
paper, Boycott and Wässle (1974) showed how to make such a measurement in the
retina of the domestic cat. The idea is simple and elegant: make measurements that
span a wide range of retinal eccentricities and compare the trends within the
population. Boycott and Wässle’s methods and observations have been extended
from cat to the primate and human (Perry and Cowey 1981,1984; Levinthal et al.,
1981; Rodieck et al. ,1985; Watanabe and Rodieck ,1989; Dacey, 1992).

Figure 1.7 shows that the size of dendritic fields of the midget and parasol ganglion
cells increase with eccentricity in the human retina. Although both cell types
increase in size, within each cell type the dendritic field size varies smoothly and at
each retinal eccentricity the sizes of the two populations remain distinct. The graph
in Figure 1.7 suggests that the signals from the midget cells form one unified visual
stream and the parasol cells form a second visual stream.

Further evidence that these two classes of neurons form independent visual streams
comes from their coverage of the retinal image. Both midget and parasol cells are
present at every location within the retina. Thus, each class of neuron encodes a
complete copy of the retinal image.

Although the two populations both receive a complete copy of the image, they do
not encode the image at the same spatial resolution. In the fovea, midget ganglion
cells receive input from a single cone (N.B. This does not mean that a cone sends its
output to a single bipolar or ganglion!). From the spread of their dendritic fields, we
see that the parasol cells receive convergent input from a much wider area of the
retina. The fine resolution achieved by the midget ganglion cells means that more of
them than parasol cells are needed to encode the entire retinal image. There appear
to be 7 or 9 times as many midget cells as parasol cells (Sterling, et al., 1994; Perry et
al., 1984). The midget ganglion cells encode the spatial image up to the full sampling
resolution of the photoreceptors, roughly 60 cycles per degree. The smaller number
of parasol cells are capable of encoding the signal up to a spatial resolution of 20
cycles per degree.
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Figure 1.7: Dendritic field size as a function of eccentricity in the human retina. The graph
shows the dendritic field size of midget and parasol neurons. The dendritic field size
increases with eccentricity for both types of neurons, but at each eccentricity the sizes
are easily classified. (Source: Dacey ,1992).
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Midget Parasol

Figure 1.8: Midget and parasol dendritic fields both sample the entire retinal image. The
dendritic fields of the midget ganglion cells (a) are small compared to the dendritic
fields of the parasol cells (b). Parasol cells have much larger dendritic fields at each
retinal location, so that fewer are needed to cover the entire retina (From Rodieck and
Watanabe, 1989).

Central Projections

A second method of identifying visual streams originating in the ganglion cell layers
is to consider how the retinal ganglion By injecting tracer substances that are carried
from the brain back to the retina, we can identify where each type of retinal ganglion
cell sends its outputs.

Perry, Oehler and Cowey (1984) studied how different cell types send their axons to
brain structures. They injected a tracer substance called horseradish peroxidase into the
optic nerve. When horseradish peroxidase is absorbed by a neuron, it is transported
throughout the neuron. Thus, if the horseradish peroxidase is absorbed in an axon, it
is transported back to the cell body. Conversely if the horseradish peroxidase is
absorbed in the cell body, it will be transported down to the axon terminals. The
presence of horseradish peroxidase within a neuron can be established by
appropriate histochemistry. By injecting the tracer into the optic nerve, they could
identify the appearance of all cell types when stained by horseradish peroxidase.

Perry, Oehler and Cowey (1984) also introduced horseradish peroxidase into the
lateral geniculate, a nucleus located in the thalamus, that is a major recipient of axons
from the retina. The majority of the retinal ganglion cells make a connection with
this nucleus, so that the horseradish peroxidase was transported to many retinal
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Figure 1.9: The lateral geniculate nucleus is located in a region of the brain called the
thalamus. In the primate, the majority of retinal ganglion cell axons terminate in this
nucleus. When stained with Golgi material, the nucleus appears to have six separate
layers. The four superficial layers have neurons with small cell bodies and are called
the parvocellular layers. The two deep layers have neurons with large cell bodies
and are called the magnocellular layers. There are also cell bodies that fall between
these layers in regions called the intercalated zones. These layers do not appear using
this type of anatomical marker, but they can be seen clearly using more modern and
specialized cell markers.

ganglion cells. They estimate that 90 percent of monkey retinal ganglion cells send
their axons to the lateral geniculate layers. While the preponderance of retinal
ganglion cells containing horseradish peroxidase could be classified as either parasol
or midget, there is some evidence that at least two other types of retinal ganglion
cells also send their outputs to the lateral geniculate nucleus (Rodieck, et al., 1993).

There is considerable regularity in the distribution of axons from the parasol and
midget neurons within the primate lateral geniculate nucleus. The primate lateral
geniculate nucleus contains six different layers (see Figure 1.9). The four superficial
layers contain neurons with small cell bodies and are called the parvocellular layers.
The two deeper layers contain neurons with large cell bodies and are called the
magnocellular layers. The axons of parasol and midget retinal ganglion cells make
connections in different layers of the lateral geniculate nucleus. The axons of the
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midget retinal ganglion cells terminate in the parvocellular layers, while the axons of
the parasol cells terminate in the magnocellular layers. In addition to the cell bodies
within parvocellular and magnocellular layers, there are also cell bodies that fall in
between in regions called the intercalated zones. These zones may receive signals
from yet another class of retinal ganglion cells.

The consistency in the shape of the cells and their central projections suggests that
the midget and parasol cells form separate visual streams. The pathway that begins
with the midget ganglion cells and terminate within the parvocellular layers of the
lateral geniculate nucleus is called the parvocellular pathway, while the pathway that
begins within the parasol cells and terminate within the magnocellular layers of the
lateral geniculate is called the magnocellular pathway. The significance of these
pathways for visual perception is the source of much current experiment and
speculation. How far within the visual pathways are these signals segregated? Do
the signals on these pathways carry information with different and specialized
perceptual significance? In the next sections I will review some of the differences in
how these neurons respond to light. I will discuss experiments that address the
broader topic of the perceptual significance of these pathways at several points
throughout the book.

Although the majority of retinal ganglion cells send their outputs to the lateral
geniculate, there are many other destinations for the optic tract fibers. For example,
Perry and Cowey (1980) introduced horseradish peroxidase into the monkey
superior colliculus a nucleus in the mid-brain that is known to receive input from
retinal ganglion cells. They found that about ten percent of the retinal ganglion cells
send axons that terminate in the superior colliculus. None of the labeled cells were
midget or parasol ganglion cells. Rodieck et al. (1993) review a broad range of
measurements concerning visual streams of retinal origin. They conclude that each
subcategory of ganglion cell sends its output to a single destination in the brain,
making the morphology of retinal ganglion cells a very important clue in
determining the organization of the visual streams that originate in the retina.

The majority of the retinal output is sent to the lateral geniculate nucleus. But, the
retinal connections in the lateral geniculate nucleus account for only about 10
percent of the synapses. Nearly 60 percent of the synapses in the lateral geniculate
are signals from the cortex and the remaining synapses are connections with other
parts of the brain (Sherman and Koch, 1990).

Conduction Time and Contrast Gain

There are several differences in the way neurons in the parvo- and magnocellular
pathways code information. These differences are clues about the kind of visual
information represented by these visual streams and the function these streams
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Figure 1.10: The conduction time for an electrical stimulus to travel from the optic
chiasm to the magnocellular and parvocellular layers of the lateral geniculate. The
responses of neurons in the parvocellular layers (a) are delayed compared to the re-
sponses of neurons in the magnocellular layers (Source: Schiller and Malpeli, 1978).

serve in vision.

First, the conduction time for electrical signals traveling from the optic chiasm to the
parvocellular layers of the lateral geniculate nucleus is longer than the conduction
time to the magnocellular neurons. Schiller and Malpeli (1979) measured the
conduction time for an electrical stimulus originating in the optic chiasm to travel to
different layers in the lateral geniculate nucleus. The signal arrives later in the
parvocellular layers than it does in the magnocellular layers, as illustrated by the
histograms in Figure 1.10

Second, the response of neurons in these two pathways to contrast patterns differs
reliably. Kaplan and Shapley (1982, 1986) observed that as the stimulus contrast of a
sinusoidal grating pattern increases, the response of neurons in the magnocellular
pathway changes more rapidly than neurons in the parvocellular pathway.
Figure 1.11 compares the contrast-response curves of a neuron in the parvocellular
pathway and a neuron in the magnocellular pathway. The horizontal axis measures
the stimulus contrast and the vertical axis measures the neuron’s response as a
percent change from the spontaneous response level. The contrast-response curve of
the neuron in the magnocellular pathway increases more rapidly with stimulus
contrast and also saturates at a lower contrast. The slope of the contrast-response
curve is called the neuron’s contrast-gain. We can summarize the results in
Figure 1.11 by saying that magnocellular neurons have higher contrast-gain than
parvocellular neurons; the contrast-gain ratio is approximately eight.

While they original observed the difference in contrast-gain in the lateral geniculate
nucleus, Kaplan and Shapley went on to show that this difference can be traced to
differences in the response gains of the midget and parasol neurons within the
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Figure 1.11: Contrast-response functions of neurons in the lateral geniculate nu-
cleus. The contrast-responses of magnocellular neurons (filled squares) increase more
rapidly than the contrast-responses of parvocellular neurons. (Source: Shapley, 1990)
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primate retina. Quite possibly, the differences in these signals may begin at the
bipolar connection to the cones themselves.

Visual Information Encoded by the Parvocellular and
Magnocellular Pathways

Anatomical and physiological measurements suggest that the parvocellular and
magnocellular pathways carry different types of information to the brain. We can try
to evaluate this hypothesis by removing one of the pathways by introducing a lesion
in to the pathway and studying the changes in an animal’s performance due to the
lesion.

When we perform a lesion, we must be careful not to damage fibers that are merely
passing by, or else we will have lesioned remote sites that are the source or
destination of the fibers. The substance ibotenic acid is particularly useful for lesion
studies because it destroys cell bodies of neurons but spares axons. Ibotenic acid has
been applied to lesion neurons in the magnocellular or parvocellular layers. By
studying changes in performance after ibotenic lesions of the parvocellular and
magnocellular pathways, we learn something about the information present on
these two visual streams (Schiller and Logothetis, 1990; Merigan et al. 1991ab; Lynch
et al.).

When cells in the parvocellular layers of a monkey’s lateral geniculate nucleus are
destroyed, performance deteriorates on a variety of tasks, such as color
discrimination and pattern detection. Since the parvocellular pathway includes
more than seventy percent of the retinal ganglion cells, perhaps this result is not
terribly surprising. When cell bodies in the magnocellular layers are destroyed many
visual performances are unaffected. The results of several behavioral measurements
before and after these lesions are summarized in Figure 1.12 (Merigan et al., 1991a).

The most informative result is this: when neurons in the magnocellular layers are
destroyed, the animal is less sensitive to rapidly flickering low spatial frequency
targets. This loss of sensitivity shows that the magnocellular pathway contains the
best information about this aspect of the image. This suggests that the magnocellular
pathway is a specialization that improves our ability to perform tasks requiring high
temporal frequency information.

What type behaviors depend on the low spatial frequency and high temporal
frequency information represented by the magnocellular pathway? Two examples of
visual tasks that require precise and rapid information about rapidly varying image
signals are motion detection and motion-tracking. The central projections of the
magnocellular pathway we will review later, coupled with the significance of the
perceptual signals, suggest that the magnocellular pathway plays an important role
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Figure 1.12: The effect of lesions in the parvocellular and magnocellular layers of the mon-
key lateral geniculate nucleus. (a) The smooth curve defines the control monkey’s
performance when detecting a stationary grating. Filled circles show performance
following lesion of the magnocellular pathway. Open squares show performance
following lesion of the parvocellular pathway. (b) The smooth curve defines the con-
trol monkey’s performance when detecting a low spatial frequency target at various
flicker rates. Filled circles show performance following lesion of the magnocellular
pathway and open squares show performance following lesion of the parvocellular
pathway. (c) Comparison of sensitivity in detecting color contrast in the control and
lesion conditions. (Source: Merigan and Maunsell, 1993)

in providing high quality information used in motion perception.

What conclusion can we draw from these lesion studies? The information carried by
the neurons in the magnocellular pathway provide the best information in the low
temporal and high spatial frequency components of the image. Performance on
motion tasks and other tasks that require this information is better when the
magnocellular pathway signal is available. The signals are not absolutely necessary
to perform the task. This was shown by Merigan, Bryne and Maunsell (1991a), who
studied motion perception in monkeys with magnocellular pathway lesions. They
found that performance deficits on motion tasks could be compensated for simply
by increasing the stimulus contrast; that is, one can compensate for the loss of
information on the magnocellular pathway by improving the quality of the
information on the parvocellular pathway. Hence, the magnocellular pathway
contains information that is particularly useful for certain kinds visual tasks, such as
motion perception. Discovering where these signals are sent in the central brain
should provide us with some useful ideas about where we compute and perceive
motion, as well as other visual tasks requiring this type of information.
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1.3 Retinal Ganglion Cell Response To Light

The output of the retinal ganglion cells consists of a series of discrete electrical
impulses called action potentials or spikes. We measure ganglion cell responses by
recording the temporal pattern of action potentials caused by light stimulation.
Retinal ganglion cells form part of a pathway that transforms the light into a
temporal series of electrical pulses. The properties of the neural transformation from
a light signal to a pattern of action potentials is one of the main types of evidence we
have about a neuron’s functional significance, and hence the pathway’s role in
vision.

Within the field of electrophysiology, the field that studies the electrical response of
neurons, the transformation associated with a neuron is called the neuron’s receptive
field. The receptive field concept, first used in vision by H.K. Hartline (1939), is a
cornerstone of the electrophysiolgist’s description of the action of visual neurons.
The receptive field concept, like the notion of a transformation is quite general.
Hence, the receptive field notion is used also to describe neural properties in other
sensory and motor areas as well (Mountcastle, 1957).

Classically, the visual receptive field of a neuron was defined as the retinal area in
which light influences the neuron’s response. This region can be defined by
positioning small flashes of light and simple moving bars and evaluating when the
neuron responds and fails to respond. The responses of many neurons in the visual
pathway are influenced only by light falling within narrow regions of the retina, and
hence small regions of the visual field. The region of the visual field in which these
flashes of light and bars influence the neuron’s response is called the neuron’s
classically-defined receptive field. This description is relatively easy to obtain and
provides a useful preliminary description of the neuron’s transformation.

Although we refer to a neuron’s receptive field, in fact the receptive field depends on
the properties of the entire visual pathway, beginning with the optics and including
the transformation by the neuron itself. In some cases, when there is feedback
descending upon the neuron from central brain regions, the receptive field we
measure at a neuron includes contributions from many places within the visual
pathways (though there is no feedback to the retinal ganglion cells).

Center-Surround Organization

Several important properties of ganglion cell receptive fields were discovered by
measuring the classically defined receptive field. In this section we will consider
how one important property, center-surround organization, was measured.

There are two locations in the visual pathways where one can conveniently record
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Figure 1.13: Retinal ganglion cell action potentials can be recorded with a microelectrode
at the two locations shown. One location is near the cell bodies in the ganglion cell
layer of the retina. A second position is near the optic nerve (Source: Enroth-Cugell
and Robson, 1984).
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the spiking activity of retinal ganglion cells (see Figure 1.13). One can measure the
electrical activity from the cell bodies of the retinal ganglion cells, which are on the
surface of the retina closest to the cornea, or one can insert the microelectrode in the
optic nerve which contains the axonal fibers that emerge from the cell bodies and
carry the signal to the cortex. When the electrode is positioned properly with respect
to the cell body of a neuron, or an axon in the optic nerve, we can record action
potentials.

When the stimulus is a large uniform field, most retinal ganglion cells respond with
a random stream of action potentials. A typical retinal ganglion cell response to
uniform illumination might consist of 50 spikes per second. For most retinal
ganglion cells, the temporal sequence of the spiking activity has no systematic
temporal structure, so that the chance of a spike occurring in the next brief interval
of time is approximately constant. We call the average number of action potentials
per unit time, in the presence of a constant field, the spontaneous firing rate of the
retinal ganglion cell.

S. Kuffler was the first to define the receptive field of of mammalian retinal ganglion
cells. They used small points of light flashed at different retinal positions, and they
recorded the difference between the spontaneous firing rate and the response when
the point of light was presented at different points on the retinal surface. An
example from Kuffler’s measurements is shown in Figure 1.14. A small spot of light
flashed within a central region of the receptive field causes an increase in firing
relative to the spontaneous activity. When the spot is placed on a surrounding area,
there is a measurable decrease in the cell’s activity. The intermediate region showed
some excitation at the beginning of the stimulus and some inhibition at stimulus
extinction (Kuffler, 1953; Barlow, et al., 1957).

The responses illustrated in Figure 1.14 define an on-center, off-surround receptive
field. About half of the retinal ganglion cells respond this way. The remaining
ganglion cells are inhibited by light falling on the center and excited by light falling
on the surround. These are called off-center, on-surround cells. Most mammalian
retinal ganglion cells exhibit the basic center-surround organization.

The dendritic fields of retinal ganglion cells with on-center are segregated in the
inner plexiform layer of the retina from retinal ganglion cells with off-center
receptive fields. Ganglion cells that make connections in the upper portion of the
inner plexiform layer have an off-center, while neurons that synapse in the lower
half of the inner plexiform layer have on-center receptive fields. Hence, the anatomy
and electrophysiology suggest that there are at least two types of visual pathways,
an on-center and an off-center pathway, emerging from the retina.
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Figure 1.14: The receptive field of mammalian retinal ganglion cells have a center-surround
organization. In a small central region of the retina, light stimulation may excite or
inhibit a neuron. In a surrounding annular region light stimulation will have an op-
posing effect to that of the center. The receptive field shown here has an on-center
and an off-surround cell. (Source: Kuffler, 1953).
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Measurements of Receptive Fields

The classical receptive field is only a partial description of the neuron’s response
properties. To understand a neuron’s transformation of the light signal completely,
we would like to predict the pattern of action potentials in response to any visual
stimulus. To describe the transformation from light to neural activation completely,
we need to develop a more systematic method of measuring the neuron’s response.
Since there are many possible visual stimuli, we need to develop a method so that
we can make a small set of measurements and then use these measurements to
predict the responses to all other stimuli.

Linear systems theory provides some guidance on the question of how to measure
the receptive field completely. If a neuron’s responses to light satisfies the principle
of superposition, then we can use a few measurements to predict how the neuron
will respond to many other visual stimuli. As we shall see, in the primate retina and
lateral geniculate nucleus, linearity provides a satisfactory account of a large part of
the neural response.

How do we test whether the input-output relationship of a retinal ganglion cell
satisfies the principle of superposition? A simple and direct test, for one pair of
stimuli, is shown in Figure 1.15. In this study Enroth-Cugell and Pinto (1970)
examined the center-surround antagonism of cat retinal ganglion cells. They studied
the superposition of two stimuli: a spot placed in the center of the ganglion cell
receptive field and an annulus placed in the antagonistic surround. The response to
the spot is illustrated in part (a) of the figure and the response to the annulus is
illustrated in part (b).

If the ganglion cell response obeys the principle of superposition, we should be able
to predict the temporal response when we present the spot and the annulus together.
The observed response and the predicted response are shown in panels (c) and (d) of
the figure. They are compared in panel (e) of the figure. For this pair of stimuli, and
this retinal ganglion cell, the principle of superposition predicts the neuron’s
complete response very well.

Steady-state Measurements

To build a complete description of the neural response properties, we must include
time in our characterization of the neuron’s receptive field. We will consider the full
space-time receptive field later in this chapter. But, it is simpler to begin with an
example in which we eliminate time as a variable; we will consider only the
response after the stimulus has been presented for several seconds and the neuron’s
response has stabilized. This asymptotic response is called the steady-state response
of the neuron. By measuring the steady-state response of the neuron, we remove
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Figure 1.15: A test of superposition of the response of a retinal ganglion cell. (a) The
PSTH to a disk of light flashed in the center of the receptive field. (b) The PSTH to an
annulus flashed in the surround of the receptive field. (c) The PSTH to simultaneous
presentation of the disk and the annulus. (d) The sum of the responses in (a) and (b).
(e) A comparison of the predicted and observed response to the sum of the stimuli.
(Source: Enroth-Cugell and Pinto, 1970).
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time as a factor in our analysis.

As in all cases of linear systems studies, we must specify both the input and output
signals carefully. One of the important advances in recent years has been discovering
insightful definitions for the input and output stimuli we use to measure the
neurons receptive fields. Both of these definitions are based on the notion of contrast.

The stimulus. We use a spatial image as the input stimulus. We will represent the
spatial image as the sum of two components. One part is the average light level of
the stimulus, and the second part is the variation of the intensity about the mean.
The mean level of the stimulus is always a positive number. The variation around
the average light level is the stimulus contrast pattern. The stimulus contrast contains
both positive and negative values.

Consider the simple case of a one-dimensional stimulus that varies along one spatial
dimension and is constant in the second dimension. We can specify the stimulus
contrast with respect to a single spatial variable, say �. The formula that relates the
stimulus intensity to the mean background intensity and the stimulus contrast is

� � �� � �� �� (1.1)

where � is the stimulus intensity, � is the mean background intensity, and � is the
stimulus contrast.

The response. Suppose that a neuron’s spontaneous firing rate is ��. Now, suppose
we introduce a contrast pattern, �, and the neuron’s steady-state response becomes �
spikes per second. We define the change in the retinal ganglion cell rate of response,
�� � � � ��, as the neuron’s response. Thus, just as we consider the input to be the
stimulus change from the mean background level, so too we consider the neuron’s
output to be the change from the average spontaneous response of the neuron.

Testing contrast linearity. To test superposition, we must measure the response to
two different contrast patterns and their sum. Suppose we use two contrast patterns,
�� and �� and corresponding changes in the steady-state response of ��� and ���. To
test superposition we combine the two contrast patterns to form a new stimulus,

�� � �� � ��� �� (1.2)

We expect that the steady-state response to the new test pattern will be ��� ����.
Be sure to compare Equation 1.1 and 1.2; the new stimulus pattern is formed by
adding together the contrast terms, �� and ��, not the two intensity patterns.

If the change in the neuron’s response satisfies the principle of superposition, we can
model the response to any contrast pattern by defining a system matrix that
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Figure 1.16: The steady-state contrast response of primate retinal ganglion cells are often
linear. We can predict the response to contrast patterns by measuring the system-
matrix that maps the stimulus contrast into the increased firing rate of the neuron.
Since the change in firing rate is a single number, the system matrix is a row-vector.
The entries of the system matrix define the one-dimensional, steady-state, receptive
field of the neuron.

describes the neuron’s transformation, i.e., receptive field. The relationship between
the contrast stimulus, the system matrix, and the response is shown in Figure 1.16a.
We represent the one-dimensional stimulus contrast pattern as a column vector. The
output is the retinal ganglion cell response. If the neuron is linear, there is a matrix
that maps the input contrast vector to the neural response. The system matrix is a
��� matrix R whose entries define the one-dimensional receptive field of the
neuron. We can use the system matrix to predict how the neuron will respond to any
one-dimensional contrast pattern. We say that the entries of the matrix R define the
linear, steady-state, receptive field of the neuron.

By examining the matrix tableau, you can see that to estimate the entries of the
system matrix we need to measure the response to a series of lines at different
positions on the retina. The response to each line defines the corresponding entry in
the system matrix. The curve in Figure 1.16b is a graphical representation of the
entries of the system matrix, that is, of the neuron’s one-dimensional receptive field.

The Two-Dimensional Receptive Field

By measuring with points of light rather than lines, we can measure a
two-dimensional steady-state receptive field. Figure 1.17 shows two ways to
represent the two-dimensional receptive field of a retinal ganglion cell. The height of
the curve in Figure 1.17a shows change neuron’s light response as we stimulate with
a point of light at different locations in the visual field. The large positive values in
the center of the diagram indicate that this neuron is excited by stimuli in a central
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Figure 1.17: The two-dimensional steady-state receptive field of an on-center off-surround
retinal ganglion cell is represented in two different ways. (a) A surface plot shows
the spatial sensitivity by the height of the surface. The inhibitory surround covers
a large area compared to the center, but its general effect on the neuron’s response
is small compared to the center. (b) An image shows the spatial sensitivity of the
receptive field by the image intensity. A light color denotes a retinal location where
light excites the neuron, a dark color is a location where light inhibits the neuron, and
gray locations are places where light has no influence on the neuron’s response.

region. The negative values in the surrounding region show the inhibition by point
stimuli surrounding the central region. Notice that the effect at each point in the
inhibitory surround is very small, but the inhibitory surround covers large area
compared to the excitatory center. The picture captures quantitatively the
center-surround antagonism that Kuffler discovered in cat retinal ganglion cells.
Figure 1.17b represents the same measurements as an image. Light regions show
where the neuron is excited by a spot and a dark regions show where the neuron is
inhibited.

Contrast Sensitivity Functions

Often, it is useful to characterize the response of a linear system in terms of the
system’s response to harmonic functions. It is helpful to understand the information
encoded by neurons by plotting their response to harmonic functions as well.

To measure a neuron’s contrast sensitivity function, we determine the amount of
contrast necessary in the stimulus that is required to elicit a criterion level of
response from the neuron. When a contrast pattern is ineffective at influencing the
neuron, we need to present the pattern at high contrast to elicit the response. When
a pattern is well-suited to the neuron’s receptive field, a small amount of contrast
will elicit the criterion response level. We call the amount of necessary to elicit the
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Figure 1.18: The contrast sensitivity function describes a neuron’s sensitivity to har-
monic stimuli. In the example illustrated, a linear on-center neuron responds best
to an intermediate spatial frequency whose bright bars fall over the on-center and
whose dark barks fall over the opposing surround. When the spatial frequency is
low, the signals from the center and surround oppose one another thus diminishing
sensitivity. When the spatial frequency is high, the stimulus is averaged by the cen-
ter again diminishing the response. From the response to harmonic stimuli, one can
derive the spatial structure of the receptive field.
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criterion response the contrast threshold. The inverse of contrast threshold is called
contrast sensitivity.

From Figure 1.18, you can see how a center-surround ganglion cell will respond to
cosinusoidal patterns whose peak is centered over the receptive field of the neuron.
When the spatial frequency is very low, a bright bar in the stimulus covers both the
excitatory center and the inhibitory surround and the steady-state response is small.
The most effective spatial frequency has bright bars imaged on the excitatory part of
the linear receptive field, and dark bars on the opposing surround. This spatial
frequency is well-matched to the receptive field and we will observe a strong neural
response. If the frequency is higher still, parts of the cosinusoid greater and less than
the mean both fall within the excitatory and inhibitory regions. The net effect of the
stimulus averages out to a small response, so that high spatial frequencies are
ineffective stimuli.

We summarize the neuron’s response to harmonic functions at a range of spatial
frequencies using the contrast sensitivity function. Different aspects of the function
provide us with information about the neuron’s spatial receptive field. The most
effective spatial frequency provides information about the overall size of the
receptive field. The extent of the fall off in sensitivity at low spatial frequencies
provides information about the strength of the opposing surround. Finally, the
fall-off in sensitivity at high spatial frequencies describes the size of the receptive
field center since the highest spatial frequency the cell responds to is limited by the
size of the receptive field center. Neurons with small receptive field centers respond
well to high spatial frequency targets, while neurons with large centers do not.

Figure 1.19 shows a contrast sensitivity function from a linear cells in the
parvocellular layers of a monkey lateral geniculate nucleus. The receptive fields of
these neurons are indistinguishable from the receptive fields of midget ganglion
cells3.

The contrast sensitivity function of a retinal ganglion cell is an alternative way to
represent the cell’s receptive field. There are several characteristic features of retinal
ganglion cell contrast sensitivity functions. First, retinal ganglion cell contrast
sensitivity functions are single-peaked. Single-peaked contrast sensitivity functions
are called bandpass and the peak-frequency is called the center frequency. With
experience, the contrast sensitivity function becomes an intuitive way to understand
some aspects of the neuron’s receptive field.

3To describe a general linear receptive field, we must measure the neuron’s response using both
sinusoidal and cosinusoidal contrast patterns. The receptive fields of retinal ganglion cells can be
measured using only cosinusoids centered on the peak because the receptive fields are even-symmetric.
A function is said to have even symmetry if ���� � �����. A function has odd symmetry if ���� �
������. When a receptive field is even-symmetric, it will have zero response to any odd-symmetric
inputs, so we need to measure only the response to even-symmetric inputs. For retinal ganglion cells,
then, the contrast sensitivity function is a complete description of the receptive field in this case.
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Figure 1.19: Contrast sensitivity function of a neuron in the parvocellular layers of the
monkey lateral geniculate nucleus. This neuron responds best to a spatial frequency
near 5 cycles per degree. Notice that the opposing surround reduces the sensitivity
to low spatial frequency patterns. Each grating pattern drifted across the retina at a
velocity so that each point on the retina saw one 5.2 cycles of the pattern each second.
The symbol on the vertical axis is the contrast sensitivity to a uniform spatial pattern
flickering at 5.2 Hz. (Source: Derrington and Lennie, 1984).
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Why contrast patterns are important

In early studies of the neural response to light, the stimulus intensity, �, was treated
as the input variable. In this case, the linear systems methods fail severely. If we
wish to apply linear methods to characterizing the responses of retinal ganglion
cells, it is important to fix the mean level, and to treat the stimulus contrast, �, as the
input.

Formulating our experiments in terms of contrast does not make a nonlinear system
linear. The nonlinear behavior of neurons becomes quite clear when we compare
measurements at different mean levels. But, by organizing our measurements
around the contrast responses at a fixed mean level, we can use linear methods to
characterize the receptive field for perturbations around the mean level. To describe
the neuron fully, we must combine the neuron’s response across many mean
intensity levels. This forces us to acknowledge the nonlinear aspects of the neuron’s
response.

The change in the system performance as we vary the mean stimulus level is called
visual adaptation. We can measure the effects of visual adaptation in individual
neurons, beginning in the retina, as well as in the behavior of animals and people.
The way in which performance of neurons and people change as the mean
illumination varies, that is visual adaptation, is one of the most important topics in
vision. By formulating our stimulus in terms of a mean intensity level and a contrast
pattern, we segregate out the effects of visual adaptation from the local contrast
effects. Thus, formulating our experimental input this way is an important decision
that has ramifications for how we study many important aspects of vision.

Most of modern vision science relies uses contrast as the key experimental
parameter. The linearities that I will describe in this chapter and the following
chapters are usually measured in the contrast domain, at a fixed mean level. As we
change the mean level, the properties of the linear system we estimate change as
well. This is a fundamental non-linearity in the system’s behavior. A complete
theory must weave together how the locally linear responses, on a single mean
background, vary with the mean. We will review this topic, called adaptation, at the
end of this chapter and then again in later chapters.

Connections to Different Cone Types

In the primate fovea, the center response of the midget ganglion cells depends on
the light captured by a single cone. Hence, the centers will inherit the wavelength
sensitivity of the photopigment in that cone’s outer segment. Parvocellular Pathway
neurons with receptive fields near the primate fovea often have a center response
that is either an L or M cone. roughly equal to the optical blur imposed by
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diffraction (2.4 - 4.2 minutes of arc), which is consistent with the center response
being due to a single cone.

There are two views concerning the connections of cones to the opponent-surround
responses in ganglion cell receptive fields. Lennie (1980) suggested that the surround
is driven by a random collection of cones, including both the L and M types. Reid
and Shapley (1992) attempted to measure the surround and concluded that only a
single class of cones contributes to the surround response. When the center response
of a cell in the parvocellular pathway is from a L cone, the surround response is due
to M cones. Conversely, when the center is from the M the surround is from the L.
At the moment, the question of the segregation of cone signals in the surround of
parvocellular pathway neurons is unresolved (see also, Gouras and Evers, 1989).

There is some agreement that the centers and surround of neurons in the
magnocellular pathway receive a signal from both cone types. An on-center parasol
cell receives an excitatory signal from the L and M cones, while the the surround
signal is inhibitory and originates in both of these cone classes. The relative strength
of the signals from these cone classes to the surround may vary (Derrington et al.,
1984).

Mariani (1983) and Dacey and Lee (1994) have shown that the signals from the S
cones are coded within a specialized visual stream. Neurons that receive a signal
from the S cones have large receptive fields (18 min). As I noted in Chapter ??, the
chromatic aberration of the optics is very strong in the short-wavelength region.
Since the image from a short-wavelength light source will be blurred, the large size
of these receptive fields is not necessarily a disadvantage. Mariani’s anatomical
studies described the existence of bipolar neurons that make contact with a few
widely spaced cones that appeared to be consistent with the S cone mosaic. His
observations suggest that the spatial connectivity of the S cone signals also plays a
role in creating large center receptive fields (see also, Koutama and Marschak 1992).

D. Dacey and B. Lee have confirmed the existence of a visual stream specialized for
carrying information about the S cone signal and made several important and novel
observations. First, Dacey showed that there is a morphologically distinct type of
retinal ganglion responsible for carrying the S cone signal. These bistratified ganglion
cells have dendritic trees that are stratified into two tiers near the inner and outer
borders of the inner plexiform layer where the on- and off-center receptive field
neurons stratify. Based on the anatomical connectivity of these neurons, Dacey
suggested that these neurons carry a S cone excitatory signal. Using
electrophysiological measurements, Dacey and Lee made two additional and
surprising observations. First, their sample of midget and parasol ganglion cells
contained no input from the S cones. Second, they showed that all of the bistratified
ganglion cells had a S excitatory input (Dacey, 1993; Dacey and Lee, 1994).

The bistratified neurons send their outputs to the parvocellular layers of the lateral
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geniculate nucleus (Rodieck et al., 1993). Using electrophysiological methods, one
can measure receptive fields in that nucleus whose excitatory centers are driven by
signals from the S cones. It is also possible that these neurons project to the
intercalated zones of the lateral geniculate. Because the sampling resolution of the S
cone mosaic is poor, we do not expect these neurons to make up a large fraction of
the total population. Nonetheless, they are important since at present they are the
only cell class known to carry the S cone signal (Wiesel and Hubel, 1964; Gouras,
1969; Derrington et al., 1984).

Spatio-Temporal Analysis: Lines and Spots

Up to now, we have considered only the steady-state response, thus excluding time
in order to simplify our analysis. Now we consider how to include the temporal
response of the neuron in our measurement of the receptive field.

Figure 1.15 illustrates an average temporal response of a cat retinal ganglion cell to a
flashed target. To obtain the curves shown in the figure, the experimenters presented
the test light and recorded the resulting neural activity. If we present the test flash
repeatedly, we will find that the resulting pattern of spikes differs slightly each time.
The differences will be small, however, so that we can sum together all of the
responses obtained from, say, 50 repetitions of the test flash. We can compute the
average number of action potentials at each moment in time following the flash, and
plot this as a curve. This curve is called the peri-stimulus time histogram, (PSTH).

The data in Figure 1.15 and other experimental measurements have shown that for
certain cells in the cat retina, linearity holds rather well (Enroth-Cugell and Robson,
1984). Linearity has not been extensively tested in primate retina. To a fair
approximation, linearity has been confirmed in measurements in the parvocellular
pathway within the primate lateral geniculate nucleus (Derrington and Lennie,
1984). Hence, based on linear methods we can measure the responses to a collection
of basic stimuli and use these responses to predict the responses to many other
stimuli.

Figure 1.20a shows two simulated PSTHs for an on-center cell response to a briefly
flashed line. One PSTH shows the simulated response to a line flashed over the
center of the receptive field, and the second PSTH is for a line flashed over the
opposing surround. By measuring the responses to briefly flashed lines at many
receptive field positions, we can specify the space-time receptive field of the neuron
(Stevens and Gerstein, 1976). I have collected a series of these simulated responses in
a surface plot shown in Figure 1.20b. One axis of the figure measures time and the
second axis describes spatial position of the test line. Each curve along the time axis
shows a simulated PSTH for the for a single spatial position of the line. When the
position of the line is in the receptive field center, the simulated response is large and
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Figure 1.20: The space-time receptive field of a linear neuron can be estimated by mea-
suring the temporal responses to briefly flashed lines. (a) A simulation of the tem-
poral response to briefly flashed lines positioned either in the center or the surround
portion of the receptive field. (b) A surface plot showing simulated temporal re-
sponses to individual lines at different positions within the receptive field. Such a
collection of measurements can be used to predict a linear neuron’s response to any
one-dimensional time-varying stimulus. Hence, these measurements are one way to
define the space-time receptive field of the neuron.

begins soon after the stimulus. When the line is positioned over the receptive field
surround, the simulated response is weaker, delayed, and of opposite sign.

Since any one-dimensional time-varying stimulus is the sum of a set of briefly
flashed lines, a collection of measurements like the simulations in Figure 1.20b
permit us to predict the response to any such stimulus. Such measurements define
the space-time receptive field of this simulated neuron for one spatial dimension.
This method of defining space-time receptive fields has been applied mainly to
study the cat visual pathway (Stevens and Gerstein, 1976; Palmer and Davis, 1981;
Emerson et al, 1992).

Spatio-Temporal Measurements: Harmonic Functions

It is also possible to measure receptive field properties using harmonic functions,
though in this case, we need to use harmonic functions in space and time. We can
create space-time harmonic functions by multiplying cosinusoidal contrast patterns
in space and time, creating a stimulus called a contrast-reversing grating . Such a
pattern is the product of a spatial harmonic with frequency �� cycles per degree and
a temporal harmonic with frequency �� Hz. The formula for a contrast-reversing
grating made from cosinusoids is

�� � ���� � �	
��	��
� �	
��	������� (1.3)
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Figure 1.21: Space-time representations of a contrast-reversing grating. At each moment in
time this image is a cosinusoidal spatial pattern; the amplitude of the spatial pattern
varies cosinusoidally over time. The contrast-reversing space-time pattern is repre-
sented as a two-dimensional surface plot in (a) and as an intensity image in (b).

where � is the mean background intensity.

Figure 1.21 shows the contrast-reversing in two different forms. At each moment in
time the grating is a one-dimensional spatial frequency grating, with spatial
frequency ��. At each point in space the time-varying contrast is a cosinusoidal
function of time, with temporal frequency ��. In part (a) of the figure the function is
shown as a surface plot. One axis of the plot represents time and the other space.
Individual lines in both of these dimensions are sinusoidal. In part (b) of the figure
the function is shown as an intensity image. Again, one dimension of the image
represents time and the other space. The image intensity is bright at those points
where the function has positive contrast and dark where the function has negative
contrast.

Neurons in the lateral geniculate nucleus respond linearly for stimuli as high as 30
percent contrast. Hence, it is appropriate to use linear methods to measure the
spatial-receptive fields of these neurons. Moreover, since the receptive field of
neurons in the retinal and lateral geniculate nucleus in the parvocellular pathway
are even-symmetric, we can measure the space-time contrast sensitivity function
using only cosinusoidal functions centered on the receptive field. Because the
neurons are linear and temporally shift-invariant, the PSTH is a harmonic function
at the same temporal frequency of the input stimulus, ��. The amplitude and phase
of the PSTH modulation depends on the temporal and spatial frequency of the
contrast-reversing pattern used as an input.

The response to contrast-reversing patterns of a parvocellular neuron in the monkey
lateral geniculate nucleus is shown in Figure 1.22. This surface plot was derived by
interpolating measurements reported by Derrington and Lennie (1984). This cell
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Figure 1.22: The response to contrast-reversing harmonic patterns of a neuron in the par-
vocellular layers of the lateral geniculate nucleus. The two horizontal axes measure
the spatial and temporal frequency of the contrast-reversing pattern. The height of
the surface measures the response amplitude of the neuron’s PSTH. Notice that the
loss of temporal frequency sensitivity depends on the spatial frequency: the temporal
sensitivity falls off more rapidly at higher spatial frequencies. The surface plot was
created by interpolating measurements reported by Derrington and Lennie (1984)
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responded to temporal and spatial modulations up to 15 Hz and 15 cycles per
degree. From the shape of the neuron we can make several observations about the
neuron’s responsivity. First, the reduced sensitivity at low spatial frequencies shows
that the neuron had a significant opponent surround. Second, the neuron responds
well to all tested temporal frequencies when we measured with a low spatial
frequency stimulus, but the neuron responds poorly at high temporal frequencies
when measured using a high spatial frequency stimulus. Since the response to the
high spatial frequency stimulus is mediated through the on-center, the data show
that the temporal sensitivity from the on-center and opposing surround may be
different. It is time to consider the general question of the interdependence of spatial
and temporal sensitivity.

Space-time separability.

We have defined the neuron’s receptive using two complementary representations.
In one case, the we have defined the receptive field using briefly flashed lines, and in
the second case we have defined the receptive field using harmonic functions of
space-time. We can use either method to measure and describe a linear neuron’s
receptive field.

No matter which description we use, the neuron’s sensitivity depends jointly on
space and time. When our description of the receptive field includes both space and
time, how can we define a neuron’s spatial receptive field? Or, how can we define its
temporal receptive field?

Suppose that we refer to the neuron’s space-time receptive field, illustrated in
Figure 1.20b, using the function R��� 
�. This function defines the response of the
neuron to a line briefly flashed at position � at time 
 following the flash. We can ask
whether a neuron has a unique spatial receptive field by examining this function at
several different moments in time. That is, we might fix time at a value of 
� and
consider the function of position, R��� 
��, that defines the spatial receptive field at
time 
�. We can compare this spatial receptive field with the measurements at a
second time, say, R��� 
��. We would say that the neuron has a unique spatial
receptive field when the two functions are essentially the same, say,

R��� 
�� � � R��� 
��

where � is a scalar constant. If the spatial receptive field at each moment in time is
the same except for a constant scale factor, then we say the neuron has a
well-defined spatial receptive field.

A neuron will only have a well-defined spatial receptive field when the space-time
receptive field is a separable function of space and time. Separability means that the
receptive field function can be written as the product of two functions, one that
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depends only on space and the other that depends only on time, namely

R��� 
� � ����� �
� (1.4)

If the space-time receptive field is separable, then, it follows from the definition that
the spatial receptive fields at two times will always be related by the scale factor
� �
��� �
��. In this case the function ���� is a meaningful definition of the neuron’s
spatial receptive field. The function � �
� is a meaningful definition of the neuron’s
temporal impulse response function. If the space-time receptive field is separable,
then it is possible to show that the space-time contrast sensitivity function will also
be separable.

As the plots in Figure 1.20b and Figure 1.22 show, the space-time receptive fields of
neurons in the parvocellular pathway are not space-time separable. Hence, these
neurons do not have unique spatial or temporal response properties4 In part because
of this complexity, it is important to go beyond the descriptions of the neuron’s
response we obtain from linear measurements, and to build a model to predict the
neuron’s response to space-time patterns.

The Difference of Gaussian Model

In the mid 1960s, R. W. Rodieck and Enroth-Cugell and Robson introduced a linear
receptive field model that has served as the basis for most subsequent models of
linear retinal ganglion cells. The basic model is important in vision science broadly
since the ideas in the model have been used in many different areas including work
in the visual psychophysics of spatial perception and in computer vision vision
work addressed to edge-detection and image segmentation. The receptive field
model is now called the Difference of Gaussian model (Rodieck, 1965; Enroth-Cugell
and Robson, 1966, Enroth-Cugell, Robson, Schweitzer-Tong and Watson, 1983).

The difference of Gaussian model supposes that the neural response results from the
combined signal of two separate mechanisms called the center and the surround. The
center mechanism receives all of its input from a small central region and the
surround mechanism receives its input from a region that includes the center and
the surrounding region.

Both the center and surround are assumed to respond to contrast stimuli as
space-time separable linear systems. Because each mechanism is separable, we can
describe them as having meaningful spatial and temporal sensitivities. The curves
describing the spatial sensitivity of the center and surround mechanisms are shown

4Although I will not go into the details here, by considering the connections to specific cone types
you can convince yourself that the receptive fields will not be separable with respect to space and
wavelength.
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Figure 1.23: A linear model of the space-time receptive field. The neural response depends
on the linear sum of two independent mechanisms, a center and an opposing sur-
round. (a) The spatial sensitivity of the center and surround mechanism both follow
a Gaussian curve. The linespreads of the two mechanism are shown here. (b) The
signals are summed separately within the center mechanism and the surround mech-
anism. The signal from the surround mechanism is temporally delayed and added to
the signal from the center mechanism.

in Figure 1.23a. Both curves follow the shape of a Gaussian distribution, also known
as the normal curve.

According to the difference of Gaussian model, the output of the neuron can be
predicted by summing together the temporal response from the center mechanism
with a temporal signal from the surround mechanism. The model further assumes
that the temporal response from the surround is different from the temporal
response of the center, generally being slower to develop over time. Because of this
delay between the center and surround responses, the behavior of the cell as a whole
is not space-time separable even though the responses of the component
mechanisms are space-time separable. Hence, the model neuron does not have a
unique spatial receptive field, nor does it have a unique temporal response function.

The difference of Gaussian model has been useful to vision scientists in several
different ways. First, the model simplifies our calculations and thinking about
receptive fields. The difference of Gaussian model predicts the response of neurons
from a calculation that requires us to specify only a few unknown parameters, such
as the width of the center and surround mechanisms receptive fields. The model
provides a very efficient method of describing neural space-time receptive fields,
and thus a convenient way of comparing the receptive fields of neurons.

Just as important, the model provides a framework for posing new and interesting
questions. You should notice that the idea of a center and surround mechanism are
entirely theoretical. I have not offered any direct proof of their existence. By building
a model to efficiently describe the results, we have generated a new hypothesis
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about how the responses of neurons are created. In probing to identify whether
these are merely useful theoretical tools, or whether there are true anatomical center
and surround pathways, we will be led to explore new and interesting aspects of the
visual encoding of light in the retina.

Finally, the model is specified in enough detail that it can be used in a variety of
branches of vision science. As we shall see in later chapters, the difference of
Gaussian model has been used as a key element to describe some of the limitations
in human visual sensitivity to patterns. The model has also been used to describe
certain aspects of how computational models of how images are represented in the
visual pathways.

1.4 Retinal Light Adaptation

We have divided the study of receptive fields into two parts. We began by studying
the neuron’s response to contrast patterns presented on a fixed mean background.
Contrast patterns are perturbations about the mean background field; by studying
the responses to these stimuli we have been able to apply linear methods
successfully to specify the transformation from light signal to neural impulses.

When we measure with respect to contrast instead of absolute intensity tests of
linearity have a better chance of succeeding. To a significant degree, this is because
contrast stimuli limit the range of intensities in the the image. For example, the peak
intensity in a 100 percent contrast sinusoidal pattern is only a factor of 2 greater than
the mean background intensity. The range of contrasts that we encode in a typical
image, from the least contrast we can detect to 100 percent contrast, is no more than
2 orders of magnitude.

Through the course of a day, however, the range of image absolute intensities we
experience typically exceeds 6 orders of magnitude. The visual pathways do not
remain linear over this enormous range. When we study the response to contrast
stimuli, we are attending to the local response of a globally nonlinear system. To
fully understand the properties of neurons, we must also analyze how their
responses change as we vary the mean background level. The changing neural and
behavioral responses as a function of mean background intensity varies is called
visual adaptation. In this section we will consider how to the locally linear measures
we have developed using contrast must be extended when we consider the visual
pathways over a wider range of mean signal levels.



1.4. RETINAL LIGHT ADAPTATION 47

Contrast Sensitivity: Dependence on Mean Intensity

Figure 1.24a shows several contrast sensitivity functions from a cat retinal ganglion
cell. These functions were measured on a wide range of mean intensities. When the
mean intensity is relatively low, the neuron responds poorly to relatively high
spatial frequencies5 At low background intensities the contrast sensitivity function
shows little bandpass behavior, suggesting that there is little effect of the inhibitory
surround. As the background intensity increases, the contrast sensitivity function
changes shape. The reduced sensitivity to low frequency sensitivity stimuli becomes
apparent, indicating that the opponent surround is more significant.

The change in the contrast sensitivity function with mean background intensity is a
clue about how visual adaptation compensates for the change in mean background
intensity. At low mean levels the neuron simply sums all of the quanta incident
within the receptive field. At these low levels there is little surround inhibition, and
thus there is little fall-off in the low frequency portion of the contrast sensitivity
function. At higher mean levels, when quanta are more abundant, and the spatial
receptive field of the neuron becomes relatively more sensitive to stimuli whose
intensity varies within the receptive field. The opposing surround means that the
neuron no longer sums the response to every quantum. Instead, the neuron
responds better when there is variation in the intensity level within the spatial
receptive field.

At the high mean background intensities, the contrast sensitivity functions are rather
similar. For example, the three highest mean intensities used in the measurements in
Figure 1.24 differ by a factor of 100. Yet, in the low spatial frequency range the
contrast sensitivity curves measured at these levels differ only by about a factor of
three. Panel (b) in the Figure shows the relatively small change in contrast sensitivity
with mean background by comparing the cell’s contrast sensitivity to a 0.2 cpd
pattern measured on different background intensities. As mean intensity changes
over five orders of magnitude, the contrast sensitivity to this pattern varies one
order of magnitude.

The relative constancy in contrast sensitivity reinforces the view that the response of
the neuron is more closely coupled to the stimulus contrast than the absolute
intensity level. This suggests that the contrast variable may be the key stimulus
variable represented by the neuron’s activity.

Image contrast and image intensity are inter-related quantities. The relatively
constant sensitivity to contrast implies that the neuron’s sensitivity to absolute light
level varies with changes in mean intensity level; Figure 1.25 shows this variation in
sensitivity to light. The vertical axis of the graph measures the logarithm of the light

5In general, cats have very poor spatial resolution compared to primates. The spatial frequency
range of this neuron, and cats performance as measured behaviorally, is far below the normal range
for primate visual acuity.
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Figure 1.24: Contrast sensitivity function of a cat retinal ganglion cell measured at differ-
ent mean intensity levels. (a) The curves correspond to contrast sensitivity measure-
ments made on backgrounds at 16, 5.1, 0.016, and 0.0005 candelas per meter squared.
The shape of the contrast sensitivity function becomes increasingly lowpass, and less
bandpass, as the background illumination decreases. (b) The contrast sensitivity to a
0.2 cpd spatial pattern varies by less than a factor of ten as the mean level varies over
near five orders of magnitude. (Source: Enroth-Cugell and Robson, 1966).

intensity of an incremental flash needed to cause a fixed increase in firing rate from
the spontaneous rate. This is a measurement of the threshold sensitivity to the
incremental test flash. The horizontal axis of the graph measures logarithm of the
mean background intensity. Since the slope of the increasing portion of the graph is
close to one, we can conclude that the threshold increases roughly in proportion to
mean background intensity. This relationship between threshold and background
level was first discovered from measurements of human behavior. The relationship
is called Weber’s law, to honor the scientist who first discovered the principle.

As the mean intensity of the background varies, we can find other aspects to the
change in the neural response as well. Plotted as insets to the figure are the PSTHs of
the measurements to these incremental threshold flashes. The timecourse of the
response to the incremental flash varies with mean intensity level, becoming
somewhat brisker with sharper signals at the onset and offset of the test flash. Thus,
we see that the temporal response of the neuron, like the spatial contrast sensitivity,
varies with mean intensity level. These adaptations probably occur to take
advantage of the improved quality of the signal available at higher light levels.

Comparison with Behavioral Contrast Sensitivity

Sensitivity to contrast and sensitivity to absolute light level are complementary
measures. When the threshold to the absolute light level is proportional to the
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Figure 1.25: Threshold sensitivity as a function of background intensity measured on a cat
retinal ganglion cell. The threshold intensity of an incremental test flash required to
elicit a criterion peak firing rate in a retinal ganglion cell was measured. The test flash
was presented on a large steady background, The logarithm of the threshold intensity
of the test flash grows linearly with the logarithm of the mean background intensity,
and the slope is close to one. Hence, the threshold is intensity is proportional to the
background intensity. The insets within the figure show the PSTH and demonstrate
that the timecourse of the ganglion cell changes with intensity level. On higher back-
grounds, transient overshoots and undershoots are evident. (Source: Enroth-Cugell
et al. 1977).
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background, as Weber’s law predicts, sensitivity to contrast will be precisely
constant. In most cases, however, Weber’s Law is only a rough approximation. For
example, consider the contrast sensitivity functions plotted in Figure 1.24. Were
Weber’s law exact, all of the contrast sensitivity functions would overlap. Plainly,
this is not so. Moreover, the quality of the Weber’s law approximation depends on
the spatial pattern of the stimulus. The approximation is better for low spatial
frequency patterns than for high spatial frequency patterns.

Reasoning based on these types of approximations is part of the challenge
confronting the student of biological systems. The laws we discover don’t have the
same precision as physical laws. It is often a question of judgment as to whether the
approximation to a law we see in a biological measurement is adequate to support a
principled view about the function of a neuron or a visual pathway. In this case,
there is some consensus that contrast is a key variable reported out by the retinal
ganglion cells. In part, the consensus has developed from the neural response data
we have reviewed in this chapter. And, in part, the consensus depends on the
analysis that we will undertake later in this volume, in which we consider the
important signals for visual function.

There is a third type of evidence that we should consider as well: this is the question
of whether the properties of the contrast sensitivity function we measure at the level
of individual neurons can be detected in the properties of the animal’s behavior. In
Chapters ??,??, and ?? we have seen several successful comparisons between human
behavior and physiological measurements.

The retinal ganglion cell contrast sensitivity functions have a counterpart in the
behavioral contrast sensitivity functions. Pasternak and Merigan (1981) measured
behavioral contrast sensitivity functions in the cat on a variety of mean background
intensities (see Figure 1.26). The behavioral contrast sensitivity functions parallel the
neural contrast sensitivity functions. For example, as the mean background intensity
increases the behaviorally measured contrast sensitivity functions become more
bandpass. Also, as the mean background intensity varies over six orders of
magnitude, the contrast sensitivity changes by only one order of magnitude. Hence,
there is good qualitative agreement between the response sensitivities of individual
retinal ganglion cells and the animal as a whole.

The agreement between neural measurements and behavioral measurements
demonstrates that the information present in the responses of individual neurons is
similar to the information available to the cat making its behavioral judgments
concerning the presence of the contrast pattern. This does not mean, however, that
the responses of individual retinal ganglion cells govern the animal’s behavior. We
have already seen, for example, that the information encoded about wavelength by
the cone photoreceptors is equivalent to the information available to the human
when making a color-match. Yet, it is certain that when we formulate our conscious
decisions about a color-match we do not have access to the information at the cones
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Figure 1.26: Behavioral contrast sensitivity functions of the cat measured on a variety
of mean background intensities. Individual behavioral contrast sensitivity functions
show the same qualitative properties as the contrast sensitivity functions of individ-
ual retinal ganglion cells. As the mean background intensity increases the contrast
sensitivity function becomes increasingly bandpass (panel a). As the mean back-
ground intensity varies over six orders of magnitude, the contrast sensitivity of a
0.3 cpd target changes by only one order of magnitude (panel b). (Source: Pasternak
and Merigan, 1981).

themselves. The agreement between neural and behavioral responses is an abstract
one, an agreement at a theoretical level. We shall see this type of comparison again
as we move on to study visual cortex and human behavior. As we do, remember
that a good method of comparing neural and behavioral responses is to analyze the
information available at a point in the visual pathway with the information available
to the human making a behavioral decision.
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Exercises

1. Suppose that a monkey retinal ganglion cell of the X type has a center that is
fed by L cones and an inhibitory surround that is fed by M cones.

(a) Suppose we measure the the retinal ganglion cell’s receptive field using a
670nm light. Draw the one-dimensional you will measure.

(b) Draw the one-dimensional receptive field you will measure using a
560nm light.

(c) Draw the contrast sensitivity function you will measure using contrast
patterns at each of these two different wavelengths presented on a neutral
background.

2. Robson (1980) writes about physiological measurements of neural response:

if a cell’s responses to a stimulus are so unreliable that we have to
average responses to dozens or even hundreds of stimulus
presentations in order to see that the cell is responding to the
stimulus, then what do our measurements have to do with vision?

Write an answer to his question.

3. In the central foveal representation, the ratio of photoreceptors to ganglion
cells and ganglion cells to cortical cells has preoccupied anatomists. What are
the current best estimates? What features of the fovea make these numbers
hard to estimate?

4. Answer these questons about the parvocellular and magnocellular pathways.

(a) Based on the properties of the neurons described in this chapter, what
hypothesis do you have about the functions of these two pathways?

(b) Design an experimental test of your hypothesis.

(c) Do you think that the signals from the parvo- and magno-cellular
pathways will remain segregated further along in the visual pathways? If
so, to what end?

(d) Livingstone et al. (1991) have argued that developmental dyslexia is due
to a dysfunction in the magnocellular pathway. Read their paper and read
about dyslexia. What more do you need to learn to decide whether they
are right? If they are, what types of cures do you think might be possible?

5. Answer the following questions about receptive fields.
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(a) The outputs of individual retinal ganglion cells synapse on neurons in the
lateral geniculate pathway. The receptive fields of neurons in the lateral
geniculate, however, are quite similar to the receptive fields of neurons
retinal ganglion cells. What implication does this have for the connectivity
pattern between retinal ganglion cells and lateral geniculate neurons?

(b) The receptive fields of neurons in the superficial layers of the visual cortex
do not have the same center-surround organization as lateral geniculate
neurons. Suppose that the response of a cortical neuron is the weighted
sum of the responses of two nearby retinal ganglion cells. What will the
cortical receptive field shape be?

(c) What advantage is there to having a center-surround organization?

(d) In a classic study of the frog retina, Lettvin, Maturana, McCulloch and
Pitts describe how they analyze the receptive fields of retinal ganglion
cells in the frog.

We decided then how we ought to work. First, we should find a
way of recording from single myelinated and unmyelinated fibers
in the intact optic nerve. Second, we should present the frog with
as wide a range of visible stimuli as we could, not only spots of
light but things he would be disposed to eat, other things from
which he would flee, sundry geometrical figures, stationary and
moving about, etc. From the variety of stimuli we should then try
to discover what common features were abstracted by whatever
groups of fibers we could find in the optic nerve. Third, we
should seek an anatomical basis for the grouping. [page 1942,
Lettvin et al., 1959]

In the primate retina, their approach is not particularly useful since
linearity holds so well. Beyond the retina, however, there are many
neurons whose responses are nonlinear and we do not undersand.
Explain whether you think Lettvin et al.’s approach is attractive for the
study of those areas.

(e) Later in their discussion section Lettvin et al. write

One might attempt to measure numerically how the response of
each kind of fiber varies with various properties of the
successions of patterns of light which evoke them. But to
characterize a succesion of patterns in space requires knowledge
of so many independent variables that this is hardly possible by
experimental enumeration of cases. ... We would prefer to state
the operations of ganglion cells as simply as possible in terms of
whatever quality they seem to detect ...

Comment on how they might have obtained added efficiencies in their
measurement procedures.
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6. Answer these questions about visual adaptation.

(a) Weber’s Law does not hold equally well when we measure using contrast
patterns with different spatial frequencies. What type of neural
adaptation mechanism could achieve this effect?

(b) Explain whether the spatial and wavelength sensitivities of visual
adaptation have to be the same as the spatial and wavelength properties
of a system that communicates information about the pattern on the
retina.


