Frequency selectivity, masking
and the critical band

1 INTRODUCTION

This chapter is concerned with the frequency selectivity of the .audit_ory
system. Frequency selectivity refers to our ability to res.olve the sinusoidal
components in a complex sound, and it plays a.role in many aspects of
auditory perception. However, it is often demonstrated and measured by
studying masking. It is a matter of everyday experience that one sound may b_e
obscured, or rendered inaudible, in the presence of other sounds. Thus music
from a car radio may mask the sound of the car’s engine, provided the musicis
somewhat more intense. Masking has been defined as:

(1) The process by which the threshold of audibility for one sqund is raised by the

presence of another (masking} sound. (2) The amount by which the threshold of

audibility of a sound is raised by the presence of another (masking) sgund. The
unit customarily used is the decibel. ~ (American Standards Association, 1960)

It has been known for many years that a signal will most easily be masked
by a sound having frequency components close to, or the same as, those of the
signal (Mayer, 1894; Wegel and Lane, 1924). This led to the idea that our
ability to scparate the components of a complex sound depends, at 11.:a§t in
patt, on the frequency-resolving power of the basilar membrane. This u.iea
will be elaborated later in this chapter. It also led to the idea that masking
reflects the limits of frequency selectivity: if the selectivity of the ear is
insufficient to separate the signal and the masker, then masking will occur.
Thus, masking can be used to quantify frequency selectivity. Hence, much of
this chapter will be devoted to studies of masking.

As well as having theoretical significance, a knowledge of the rqles
governing the masking of one sound by anothet can be very usefulin Practu;al
situations. Fot example, one might want to know the extent to which noise
from new machinery in a factory will interfere with the ability of workers to
hold conversations or to detect warning signals. Masking is also used in the
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. dinical assessment of hearing, For example, in a patient with one impaired

and one normal ear, earphones may be used to present noise to the normal ear
when testing the impaired ear, so as to prevent sound that ‘leaks’ across the
head being heard in the normal ear.

An important physical parameter which affects masking is time. Most of
this chapter will be devoted to simultaneous masking, in which the signal is
presented at the same time as the masker. Later. on we will discuss forward
masking, in which the signal is masked by a preceding masker, and backward
masking, in which the masker follows the signal.

€

2 THE CRITICAL BAND CONCEPT

A Fletcher’s band-widening experiment and the power
spectrum model

Fletcher (1940) carried out an experiment which has now become famous
and which laid ‘the’ foundation for the concept of the critical Band. He
measured the threshold of a sinusoidal signal as a function of the baridwidth
of a bandpass noise masker. The noisc was always centred at the signal
frequency, and the noise power density was held constant. Thus, the total
noise power increased as the bandwidth increased. This experiment has been
repeated several times since then (Hamilton, 1957; Greenwood, 1961a;
Spiegel, 1981; Schooneveldt and Moore, 1989). An example of the results,
taken from Schooneveldr and Moote, is given in Fig, 3.1. The threshold of the
signal increases at first as the noise bandwidth increases, but then flattens off,
so_that. further increases in, noise bandwidth do not change the signal
threshold significantly. : ) o
To account for these results, Fletcher (1940) suggested that the peripheral
auditory system behaves as if it contained a bank of bandpass filters, with
continuously overlapping centre frequencies. These filters are now called the
‘auditory filters’. Fletcher thought that the basilar membrane provided the
basis for the auditory filters. Each location on the basilar membrane responds
to a limited range of frequencies, so that each different point corresponds tg a
filter with a different centre frequency. Recent data are consistent with this
point of view (Moore, 1986). . ‘ o
When trying to detect a signal in a noise background, the listener is
assumed to make use of a filter with a centre frequency close to that of the
signal. This filter will pass the signal but remove a great deal of the noise. Only
the components in the noise which pass through the filter will have any effect
in masking the signal. It is usually assumed that the threshold for the signal is
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FIG. 3.1 The threshold of a 2000 Hz sinusoidal signal plotted as a function of
the bandwidth of a noise masker centred at 2000 Hz, Notice that the threshold
of the signal at first increases with mcreasmg masker bandW|dth and then
remains constant. From Schooneveldt and Moore {1 989)

l

determined by the amount of noise passing through the auditory filter;
spec1ﬁcally, threshold is assuthed to correspond to a certain signal-to-noise
ratio at the output of the filter. This set of assiithptions has come to be khown
as the ‘power spectrum model’ of masking (Patterson and Mooie, 1986),
since the stimuli are répresented by their long-term power spectra, i.e, the
relative phases of the components and the ‘short-term fluctuations in the
masker are ignored. We shall see later that the assumptions of this model do
not always hold, but the model works well in many mtuatlons, and we will
accept it for the moment.

In the band-widening experxment described above, increases’in’noise
bandwidth result in more noise passing through the auditory fileér, provided
the noise banidwidth is less than the filtér baridwidth. However, once the noise
bandwidth exceeds'the filter bandwidth, further iicreases in noise bandwidth
will not increase the noise passing through the filter. Fletcher called the
bandwidth at which the signal threshold ceased to increase thc cntlcal
bandwidth’. ‘ a i

In analysing the results of his experiment, Fletcher made a simplifying
assumption. He assumed that the 'shape of the auditory’ filter could be
approximated as a simple rectangle with a flat top and vertical edges. For
such'a filter all components' within' the passband of the filter are passed
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equally, and all components outside the passband are removed, The width of
this passband is equal to the critical bandwidth described above. The term
‘critical band’ is often used to refer to this hypothetical rectangular filter.

Fletcher pointed out that the value of the critical bandwidth could be
estimated indirectly, by measuring the threshold of a tone in broadband white
noise, given the following hypotheses: !

1. Only a narrow band of frequencies surrounding the tone — those fallmg
within the critical band — contributes to the masking of the ton¢

2. When the noise just masks the tone, the power of the tone divided by the
power of the ndise inside the critical band is a constant, K.

As described in Chapter 1, noise power is usually specified in tertits of the
power in a band of frequcnc1es 1 Hz wide {say from 1000 Hz to 1001 Hz),
This is called the noise power density, and is denoted by the symbol N, For a
white noise N, is independent of frequency, so that the total noise power
falling in a critical band W-Hz wide is N, X W According to Fletcher’s
second hypothesis,

PIAW X N} =
and

W=P(KxN,). .
By measuring P and N,,, and by estimating K, we can evaluate W

The first hypothesis follows directly from Fletcher’s experimenit, although,
as we shall seg later, it is ony an approximation. To estimate the value of the
constant K, Fletcher: measured the threshold for a-tone in'a band of noise
whose width was less than the estimated critical bandwidth:: In.this case; K
equais the ratio of the power of the tone to the power of the noise, since all of
the noise passes through the auditory filter. Fletcher estimated K to equal 1,s0
that the value of W should be equal to P/N,,. The ratio PIN, is iow usual]y
known as the critical ratio, Unfortunately, Fletcher’s éstimate of K has turned
out not to be accurate, More recent experiments “show that K is typlcally
about 0.4 (Scharf, 1970). Thus, at most frequencigs the crifical ratio is about
0,4 times the value of the critical bandwidth estimated by more * direct
methods such as the.band-widening experiment. Also, K varies somewhat
with centre frequency, so the critical ratio does not give a correct indication of
how the critical bandwidth varies with centre frequency (Patterson and
Moore, 1986), The difference between the critical ratio function (critical
ratio as a function of frequency) and the generally accepted critical band
function is illustrated in Fig. 3.2.

,Since Fletcher first described the critical band concept, many different
experlments have shown that llsteners responses to complex sounds differ
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FIG. 3.2 A comparison of the width, Af, of the critical band as determnned by
direct measures (upper curve) and as determlned from the critital ratio. From
Zwicker ot al. (1957), by perrission of the authors and J. Acoust. Soc. Am...

according to whether the stimuli are wider ot narrower than the critical
bandwidth. Furthet, these different experiments give remarkably similar
estimates both of the absolute width of the critical band and of the way the
critical bandwidth varies as‘a function of frequency. Thus the critical band
phenomenon pervades and summarizes a great variety of data, and pr0v1des a
valuable guide in the planmng of experiments and the analysis of dat4. Soine
of the types of experiment in whrch critical band phenomena have been
observed are described below.

B The loudness of COmple)é sounds .

Consider a complex sound of fixed energy (or mtensnty) havmg a bandwidth
of W. If Wis less than the critical bandwidth, then the loudness of the soundis
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FIG. 3.3 The loudness level in phons of a band of noise centred at. 1 kHz,
measured as a function of the width of the band. For each of the curves, the
overall sound level was constant, and its value, in dB SPL, is indicated in the
figure, The dashed line shows that the bandwidth at which loudness begins to
increase is roughly the'same at all levels tested (except that no increase oceurs
at the lowest level}. From Feldtkeller and Zwicker {1956) by permission of the
authors and publisher.
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more or less independent of W; the sound is judged to be about as loud as a
pure tone of. equal. intensity lying at the centre frequency of the band.
However, if Wis increased beyond the critical bandwidth, the loudness of the
complex begins to increase. This has been found to be the case for bands of
noise (Zwicker ef al., 1957) and for complexes consisting of pute tones whose
fréquency scparatlon is varied (Scharf, 1961, 1970) (see Fig. 3.3). The critical
bandwidth for the data in Fig, 3.3 is about 160 Hz for a centre frequency of
1000 Hz. Thus, for a given amount of energy, a complex sound will be loudet
if the energy is spread over.a number of critical bands, than if itiis all
contained within one critical band. This finding has been incorporated in the
models described in Chapter 2, which allow the calculation of the loudness of
almost any complex sound (see, for example, Zwicker and Scharf, 1965},
The increase in loudness with increasing bandwidth can be understood if
we assume that when the bandwidth of a sound is sufficient to occupy more
than one critical band, the loudness in adjacent, but nonoverlapping, bands is
summed to give the total loudness. Consider the effect of taking two tones
very close together in frequency, so as to occupy one critical band, and
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increasing their frequency separation so that two critical bands are occupied.
The intensity in each band will now be half of what it Was, since only one tone
is present in each band. According to Steven’s Power Law, L = = kI%3 (see
Chapter 2, section 4). Thus halving intensity is equivalent to a reduction in
loudness to 0,81 of its original value. The total loudness in the two bands will
be 2 X 0.81 = 1.62 times the original value. Thus increasing bandwidth
beyond the critical band results in an increase in loudness. The argument can
easily be extended to cover multicomponent complex tones and bands of
noise (see Moore and Glasberg, 1986).

A corresponding explanation can be offered in terms of the neurophysiolo-
gical data. When the two tones are very close in frequency they excite
essentially the same set of neurones. If the two tones are separated in
frequency, théy excite essentially independent sets of neurones; Now at
moderate and high intensities, the firing rates of individual neurones change
relatively slowly as a function of intensity. Thus the decrease in neural firings
as a result of halving the effective intensity exciting each set, is more than
offset by the doubling of the number of neurones involved. If, then, loudness
is related in some way to the toral number of néural impulses evoked by the
stimulus, it is clear that the louidiess of the complex should be greater wheti
the components are widely separated..

At low sensation levels. (around 10-20 dB SL) the loudness of a comple;c
sound is roughly indepéndent of bandwidth. This-also is casy to explaini At
these low levels, neural firing rates change relatively rapidly with intensity,
and so does loudness. The loudness of a single critical band changes almost in
direct propottion to intensity, so that incteasing the spread of energy from
one to two critical bands, for example, produces two component bands each
half as loud as the orrgmaI sound (Scharf,' 1970): The total loudness is equal
to that of 'thé original single' band, so that loudness is independent  of
bandwidth. At very low sensation levéls (below 10 dB), if we distribute the

© eneigy of 4 complex sound over a wide range of frequencies, then the energy
in each critical band is insufficient fo make the sound audible. Accordingly,
near threshold, loudness must'decréase as the bandwidth of a complex séund
is increased from-a-subcritical valtie, As a consequence, if the intensity of a
complex sound is incicased slowly from a subthreshold value, the rate of
growth of loudness is’ grcatcr for a wrdeband sound than fora narrowband
sound T R R R o) ol
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C The threshold of complex sounds

i
1 i . '

When two tones wnth a small frequency separation-are presented together a
sound may be heard even ‘when either tone by itself is below thréshold:
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Gissler (1954) measured the threshold of multitone complexes consisting of
evenly spaced 'sinusoids. The tones were presented-both in quietiand in.a
special background noise, chosen to give the same masked threshold for each
component in the signal. As the number of tones in a complex was increased,
the threshold, specified in terms of total energy, remained constant until the
overall spacing of the tones reached the critical bandwidth. Thereafter the
threshold” increased. The critical bandwidth for.a centre frequency..of
1000 Hz was estimated to be about 180 Hz. These results suggest that the
energies of the individual components in a complex sound will sum, in the
detection of that sound, provided the components lie within a critical band.
When the components are distributed over more than one critical band
detection is less good.

- Unfortunately, more recent data-are not in complcte agreement with those
of Gissler. For example, Spiegel (1981) measured the threshold for a noise
signal of variable bandwidth centred at 1000 Hz in a broadband background
noise masker. The threshold for the signal as a function of bandwidth did not
show a ‘breakpoint corresponding to the critical bandwidth; but increased
monotonically as the bandwidth increased beyond 50 Hz. Spiegel suggested
that the ear is capable of i integration over bandwidths much greater than the
crmcal bandwidth.

D TWo-tbne masking

Zwicker (1954) measured the threshold for a narrow band of noise, of centre
frequency f, in the presence of two tones, with frequencies on either side of £
He increased the frequency separation of the two tones, starting with a srall
separation, and found that threshold for the noise signal remained constant
until the separation reached a-critical value, after which it fell sharply. He
took. this critical value to be an estimate of the critical bandwidth.
Unfortunately the -iriterpretation of this experiment is complicated. One
problem is that the lower of the two tones may interact with the noise band to,
produce combination products; these are frequency components not present
in the stimulus applied to the car, and they appear to resultfrom a nonlinear
process in the cochlea (see Chapter 1, section 5D and Chapter 5, section SA)..
Thie listener may detect these combination products even though the signal
itself is inaudible. When precautions are taken to mask the distortion
products, then:the threshold for the signal does riot show. an abtupt decrease,
butidecreases smoothly with. increasing frequency: separation. between. the
two' . tones. - (Patterson ::and Henning, - 19775 .. Glasberg ef ali, 1984).
Nevertheless, -the results-do- clearly- indicate the operation of a filtering
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mechanism in the ear. For an extensive review of results obtained using two-
tone maskers, the reader is referred to Rabmowrtz et al. (1980)

E Sensrtlwty to phase .

The sounds whlch we encounter in everyday life often change in frequency
arid amplitude from moment to momient. In the laboratory the perception of
such sounds is often studied using either frequency-modulated or amplitude-
modulated sine waves., Such waves consist of a carrier frequency (a sine wave)
upon'which some other signal is impressed. In' amplitude modulation (AM)
the carrier’s amplitude is varied so as to follow the magnitude of a modulating
sine ‘wave, while the carrier frequency remains unchanged. In frequency
modulation (FM) the carrier’s instantanedus . frequency is varied-in pro-
portion to the modulating signal’s magnitude, but the amplitude terrains
constant. The two types of waveform are illustrated in' Fig. *3.4. The
expression descrnbmg an AM sinewave wrth carrler frequency fc and modu-
lating frequency g is : : .

" (1 + m sin 2mgt) sin 2nft -
where zis time, and #2 is a constant determining the amount of modulation; m
is referred to as the modulation depth. When »z = 1, the wave is said to be
100% modulated. The corresponding expression describing an FM sinewave

sin (272f 2 + B sin 27gt)

In this case, f.is usually referred to as the modulation index.

These complex: waveforms can: be -analysed into a:series of sinusoidal
components. For an AM wave the results of the analysis are very simple: the
spectrum contains just three frequency components with frequencies f. — g, f;

and f; + g. For an FM wave the spectrum-often contains niany components,:

but if # is small, then the FM wave can-also be considered as consisting of
three’ components: f, — g, f. and f. + g. Under some conditions an AM wave
and an FM wave may have components which are identical in frequency and
amplitude, the only difference between them being in the relative phase of the
components.. If, thenj the two types of wave are perceived différently; the
difference is likely to arise from-a sensltrvrty to the: relatlve phase of the
components. - - T et
Zwicker (1952) measured one aspect of the perception of: such stimuli,
namely the just-detectable amounts of amplitude or fréquency modulation,
fot various rates of modulation. He found that for high rates of modulation,
where the frequency components are-widely spaced, the detectability' of FM

FIG 3.4 Waveform of an: ar‘nphtude -modulated wave (upper trace) 'and a
frequency-modulated wave {lower trace).....

P . .
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and AM was equal when the components in each type of wave were of equal
amplitude. However, when all three components fell within a critical band,
AM was more easily detectable than EM. Thus it appeats that we are only
sensitive to the relative phase of the components, in the detection of
modulation, when those components lic within a critical band. These results
have been confirmed by Schorer (1986).

It is not at present clear whether this finding can be generallzed to the
perception of suprathreshold levels of modulation, ot to other aspects of our
sensitivity to phase. Indeed there is some evidence to the contrary. For
example, it has been shown that subjects can detect phase changes between
the components in complex sounds in which the components are separated by
considerably more than a critical band (Raiford and Schubert, 1971; Lamore,
1975; Patterson, 1987a). Further work is needed to clarify the nature of these
discrepancies, and to determine the applicability of the critical band concept
to the phase sensitivity of the ear.

F The discrimination of partials in complex tones

According to Ohm’s (1843) Acoustical Law, the ear is able to hear pitches
corresponding to the individual sinusoidal components in a complex periodic
sound. In other words, we can ‘hear out’ the individual partials, Plomp
(1964a) used a complex tone with 12 sinnsoidal components to investigate
the limits of this ability. The listener was presented with two comparison
tonés, one of which was of the same frequency as a partial in the complex; the
other lay halfway between that frequency and the frequency of the adjacent
higher or lower partial. The listener had to judge which of these two tones
was a component of the complex. Plomp used two types of complex: a
harmonic complex containing harmonics 1 to 12, where the frequencies of
the components were integral multiples of that of the fundamental; and a
nonharmonic complex, where the frequencies of the components were
mistuned from simple frequency ratios. He found that for both kinds of
complex only the first five to eight components could be ‘heard out’. If it is
assumed that a partial will only be distinguished when it is separated from its
neighbour by at least one critical bandwidth, then the results can be used to
estimate the critical bandwidth. Above 1000 Hz, the estimates obtained in
this way coincide with other critical band measures. Below 1000 Hz the
estimates are about.two-thirds as large. When Plomp repeated the experiment
using a two-tone complex, he found that the partials could be distinguished at
smaller frequency separations than were found for multitone complexes.
Thus, while the results are roughly in line with other measures of critical
bandwidth, there are discrepancies, especially at low frequencies. It is

Frequency selectivity 95

possible that the analysis of partials from a complex sound depends in part on
factors other than pure frequency resolution. Some indication of this is given
by the work of Soderquist (1970). He compared musicians and nonmusicians
in-a task very similar to that of Plomp, and found that the musicians. were
markedly superior.: This result could mean that musicians have narrower
critical bands, but this is unlikely if the critical band teflects a basic
physiological process, as is generally assumed (Scharf, 1970). It seems more
plausible that some other mechanism is involved in this task and that
musicians, because of their greater experience, ate able to make more efficient
use of this mechanism. Haggard (1974) also reports comparisons of different
measures of the critical bandwidth, and suggests that discrepancies at low
frequencies may be.explained by the intervention of mechanisms other than
the critical band. This problem is discussed more fully latet.in this chapter.

G. - Interim sdmmary » .

The examples given above show that the phenomenon of the critical band can
be revealed in a great variety of different experiments. By and large, the
results of the different experiments give reasonably consistent estimates of the
value of the critical bandwidth; the critical band function shown in Fig, 3.2
was arrived at by combining the results from many different experiments,
However, it is also clear that most of the experiments do not show a distinct
breakpoint corresponding to the critical bandwidth. Rather, the pattern of
results changes smoothly and continuously as a function of bandwidth,

The idea that there should be. distinct breakpoints in the data goes back to
Fletcher’s. approximation. of the auditory filter as haying the shape of a
rectangle. Fletcher was well aware that the filter was not perfectly rectangu-
lar. He'knew that a tone or narrow band of noise can mask another tone for
frequency separations cons1derably exceeding the critical bandwidth. Weare
led to consider the critical band as resembling a filter with a rounded top and
with sloping edges; the critical bandwidth then becomes some measure of the

‘effective’ bandwidth of this filter, We will now descrlbe some attempts to
measure the characteristics of the auditory filter, in other words, to derive the
shape of the auditory filter. .

3 ESTIMATING THE SHAPE OF THE
AUDITORY FILTER

Most methods for estimating the shape of the auditory filter at a given centre
frequency are based on-the assumiptions of the power spectrum model of



98 An Introduction to the Psychology of Hearing

masking. The threshold ofa signal whose frequency is fixed is measured in the
presence of a masker whose spectral content is varied. It is assimed, as a first
approximation, that the signal is detected usitig the single auditory: filter
which is centred on the frequency of the signal, and that threshold corre-
sponds to a constant signal-to-masker ratio at the output of that filter. The
methods described below both use this same basic technique.

A Psychophysical tuning curves

One method involves a procedure which is analogous in many ways to the
determination of a neural tuning curve, and the resulting function is often
called a psychophysical tuning curve (PTC). To determine a PTC the signal is
fixed in level, usually at a very low level, say, 10 dB SL. The masker can be
cither a sinusoid or a narrow band of noise. When a sinusoid is used beats
oceur between the signal and masker, and these can provide a cue as to the
presence of the signal. The effectiveness of this cue varies with the frequency
separation of the signal and masker, since slow beats (which occur at small
frequency separations) are more easily detected than rapid beats (see Chapter
4). This varying sensitivity to beats violates onie of the assumptions-of the
power specttum model of masking. This problem can be avoided by using a
narrowband noise masker, sifice such a masker has inherent fluctuations in
amplitude which prevent beats being detected. Thus' noise is generally
preferted (Patterson and Moore, 1986). :

For each of several masker frequencies, the level of the masker needed just
to mask the signal is determined. Because the ‘signal is at a low level it is
assumed that it will produce activity primarily in“one auditory filter. It is
assumed further that at threshold the masker- produces a constant output
from that filter, in order to mask the fixed sigfial, Thus the PTC will tell us the
masker level required to produce a fixed output from the auditory filter as a
function of frequency. Normally we determine 4 filter characteristic by
plotting the output from the filter for an input varying in frequency and fixed
in level (see Chapter 1, section 4 and Fig. 1.4). However, if the filter is lincar
the two methods will give the same result. Thus, if we assume linearity, the
shape of the auditory filter can be obtained simply by inverting the PTC,
Examples of some PTCs are given in Fig. 3.5.

The PTCs in Fig. 3.5 are very similar.in general form to the nental tuning
curves in Fig. 1.13, Remember that the neural tuning curves are obtained by
detexmining the level of a tone required to produce a fixed output from a
single neurone, as a function of the tone’s frequency. The similarities in the
procedures and the results encourage us to believe that:the basic frequency
selectivity of the auditory system is established at the level of the auditory
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nerve, and that the shape of the human auditory filter (or PTC) corresponds
to the shape of the neural tuning curve. However, thexeisa need for caution in
reaching this conclusion. In the determination of the neutal tuning curve'only
one tone is presentat a time, whereas for the PTC the masker and signa}l are

presented simultancously. This turns out to be an important point, and we

will return to it later. '
A sccond problem is that the neural tuning curve

is derived from a single

neurone, whereas the PTC inevitably involves activity over a group of
neurones with slightly different CFs. Returning to the filter analogy, we Have

assumed in our analysis that only one auditory filter

is involved, but it might

be the case that the listenet does not attend t§ just one filter. When the masker
frequency is above the signal frequency the listener might do better to attend

to a filter centred just below the signal frequency. If

the filter his'a relatively

flat top, and sloping edges, this will considerably attenuate the masker at the

filter output, while only slightly attenuating the ‘i
centre filter the listener can improve performance.

gnal. By using this off-
This is:known s foff-
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frequency listening’, and there is now good evidence that humans do indeed
listen ‘off-frequency’ when it is advantageous to do so. The result of off-
frequency listening is that the PTC has a sharper tip than would be obtained if
only one auditory filter were involved {Johnson-Davies and Patterson, 1979;
O’Loughlin and Moore, 1981).

B The notched nbise method

Patterson {1976) has described an ingenious method of determining auditory
filter shape which prevents off-frequency listening. The method is illustrated
in Fig. 3.6. The signal is fixed in frequency, and the masket is a noise with a
bandstop or notch centred at the signal frequency. The deviation of each edge
of the noise from the centre frequency is denoted by Af. The width of the
notch is varied, and the threshold of the signal is determined as a function of
notch width. Since the notch is symmetrically placed around the signal
frequency, the method cannot reveal asymmetries in the auditory filter, and
the analysis assumes that the filter is symmetric on a linear frequency scale.
This assumption appeats not unreasonable, at least for the top part of the
filter and at moderate sound levels since PTCs are quite symmetric around the
tips. For a signal symmetrlcally placed in a bandstop noise, the optimum
signal- to-masker ratio 3t the « output of the auditory filter is achie¢ved with’ a
filter centred at the signal frequency, asillustrated in Fig. 3.6. Using a filter not

—Af =\ f—

Noise Noise

Power (linear s_ﬁale)

Auditory filter

Frequancy (Iineur scala)' .

FIG. 3 6 Schematlc illustration of the technique used by Patterson (1976} to
determine the” shape of the auditory filter. The threshold of the sinusoidal
signal is-measured-és a function of the width of a spectral notch in ‘the noise
masker. The amount of noise passing through the auditory filter centred at the
signal frequency is proportional to the shaded areas. -
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centred at the signal frequency reduces the amount of noise passing through
the filter from one of the noise bands, but this is more than offsct by the
increase in noise from the other band.

As the width of the spectral notch is increased, less and less noise passes
through the auditory filter. Thus the threshold of the signal drops. The
amount of noise passing through the auditory filter is proportional to the area
under the filter in the frequency range covered by the noise, This is shown as
the shaded areas in Fig. 3.6, If we assume that threshold corresponds to a’
constant signal-to-masker ratio at the output of the filter, then the change in
signal threshold with notch width tells us how the area under the filter varies
with Af. The area under a function between certain limits is obtained by
integrating the value of the function over those limits. Hehce by differen-
tiating the function relating threshold to Af, the height of the filter is obtained,
In other words, the height of the filter for a given deviation, Af, from the
centre frequency is equal to the slope of the function relatmg signal threshold
to notch width, at that value of Af. = |

A typical auditory filter derived using this method is shown in Fig. 3.7. It
hasa rounded top and quite steep skirts. Unlike the simple rectangular filter, a
filter with this'shape cannot be completely specified with a single numiber, the
ctitical bandwidth, However, some sort of summary 'statistic is useful, and
otie common measure is the bandwidth of the filter at which the response has
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FIG.37 A typlcal audjtory- filter' shape . determined usmg Patterson's
method. The filter is centred at 1'kHz. The relative response of the fllter (|n dB)

. is plotted as.a function of frequency.. « = s
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Auditory filter bandwidth, -kHz
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FIG. 3.8 The dotted curve shows the traditional value of the critical band—
width as a function of frequency (Scharf,-1970). The solid curve shows the
value of the ERB of the auditory filter as a function of frequency The solld
curve was obtained by comblnlng the results of several experlments using
Patterson’s hotched noise method of estimating the auditory filter shape.
Adapted from Moore and Glasberg (1983a).

fallen by a factor of two in power, i.e. by 3 dB (see Chapter 1, section 4). The

3 dB bandwidths of the auditory filters derived using Patterson’s method are
typically between 10% and 15% of the centre frequency. An alternative
measure is the equivalent rectangular bandwidth (ERB) (see Chapter 1,
section 4). The ERBs of the auditory filters derived using Patterson’s method
are typically between 11% and 17% of the cettre frequency, These values are
quite close to the estimates of the critical bandwidth obtained in other ways,
as described earlier. However, the values at low frequencies tend to be smaller
than the traditional critical bandwidth estimates shown in Fig, 3.2 (Moore
and Glasberg, 1983a). Figure 3.8 compares the ERB of the auditory filter
estimated using Patterson’s method with the traditional critical bandwidth
function. ‘ ‘

Patterson’s method has been extended to include conditions where the
spectral notch in the noise is placed asymmetrically about the signal fre-
quency. This allows the measurement of any asymmetry in the auditory filter,
but the analysls of the. results is more difficult, and has to take off-frequency
listening into account (Patterson and Nimmo-Smith, 1980):t is.beyond the
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FIG. 39 The shape of the auditory filter centred at 1'kHz, plotted for- input
sound lévels ranging from 20 to 90 dB SPL. The attenuation applied by the
filter is plotted as a function of frequency. On the low frequency side, the filter.
becomes progressively less sharply tuned with i increasing sound level. On the
high frequency side, the sharpness of tuning increases sllghtly with i mcreasmg
sound level.’At moderate sound'levels the filter is approximately symmetrlc
onthe linear frequency scale used; Adapted frorn Moore and Glasberg{1987).

s

scope of, thls book to glve detalls of the method of analy31s, the mterested '
reader is ;eferred to Patterson and Moore (1986) and Maore. and Glasberg
(1987), The, sesults show that the auditory fler is reasonably, symmetric at
moderatc sound levels, but becomes increasingly asymmetric at high levels,
the low frequcncy<51de becommgsha]lower than the high- frequency side, Thc
shape of the auditory filter centred at 1 kHz is shown in Fig. 3.9 for azange of.
sound levels from 20 to 90 dB SPL.

C Some general observatlons on audftory fl/ters N
One question we may ask is whether the listener can only attend to one

auditory filter at a time. The answer to this is obviously no, since many of the

complex signals which we can perceive and recognize occupy-more than.one’
critical band; speech is a prime example of this. Indeed we shall see later that-
the perception of timbre seetns to depend, at least in part, on the distribution.
of activity across different auditory filters. Furthermore, we shall see that the.
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detection of a signal in a masker can sometimes depend on a comtparison of
the outputs of different auditory filters.

In spite of this, it is often possible to predict whether a complex sound will
be detected in a given background noisé by calculating the thresholds of the
most ptominent frequency components. If we know the shape of the auditory
filter centred on each component, then we can calculate the amount of noise
passing through the filter, and the signal-to-noise ratio at the output of the
filter. If this ratio exceeds some criterion amount in any filter, then the signal
will be detected. The criterion amount corresponds to a signal-to-noise ratio
of about 1:2.5 or —4 dB; the signal will be detected if its level is not more than
4 dB below that of the noise ar the output of the filter.

This model has practical applications, since. it allows the prediction of
appropriate levels for warning signals in factories and aircraft. In the past,
when no theorétical model was available, the signals were often set at
excessively high levels, to err on the side of ‘safety’. The result was that whena
signal ‘went off’ it was extremely aversive, and disrupted speech communi-
cation, The application of the auditory filter model has shown that sometimes
signal levels can be reduced by 20 dB (a factor of 100-in power) and remain
clearly audible (Patterson and Milroy, 1980). =~ b

Another question which arises is whether thete is only a discrete number of
critical bands, each one adjacent to its neighbours, or whether there is a
continuous series of overlapping critical bands. For convenience, data relat-
ing to critical bands have often been presented as though the former were the
case. For example, Scharf (1970) presented a table showing critical band-
widths for 24 successive ctitical bands, the upper cutoff frequency for each
band being the same as the lower cutoff for the next highest band. While this
method of preséntation is convenient, it séems'cléar that ¢ritical bands are
contiriuous rather than discrete; there has been no experimefital evidence for
any discontinuity or break between differeiit critical bands. Thus we may talk
about the ¢ritical band'around any frequency in the audible range which we
care to choose. o a . R

4 MASKING PATTERNS AND EXCITATION
PATTERNS =~ « . o« o

So far we have discussed masking experiments in which the frequency of the
sigial is held constant, while the masker is varied. These experiments are
most appropriate for estimating the shape of the auditory filter at a given
centre frequency. However, many of the early experiments on masking did
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the opposite; the signal frequency was varied while the masker was held
constant. ' . | [
Wegel and Lane (1924) published the first systematic investigation of the
masking of one pure tone by another, They determined the threshold of a
signal with adjustable frequency in the presence of a masker: with fixed
frequency and intensity. The graph plotting masked threshold as a function of
the frequency of the signal is known asa masking patterri, or sometimes as a,
masked audiogram. The results of Wegel and Lane were complicated by the
occurrence of beats when the signal and masker were. close together in,
frequency. To avoid this problem later experimenters {e.g. Eganiand Hake,
1950; Greenwood, 1961a) have used a narrow band of noise.as either. the
signal or the masker. Such a noise has ‘built in’ amplitude.and frequency
variations and does not produce regular beats when added toa tone. : ;
- The masking patterns obtained in these experiments show steep slopes on
the low-frequency side, of between 80 and 240 dBloctave for:pure-tone
masking .and 55—190 dB/octave for narrowband noise masking. The slopes
on the high-frequency-side are less steep and depend to.some extent on,the
level of the masket. A. typical set of resuits is shown in Fig. 3.10. Notice that
on the high-frequency side the slopes of the cutves tend to become shallower,
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FIG. 3.10 Masking patterns ([masked alidiograms) for a harrow band of noise
centred at 410 Hz. Each curve shows the elevation in threshold of a pure tone
signal as a function of signal frequency: The overall noise level foreach curve
is indicated in the figure. Adapted from'Egan and Hake {1950}, by permission
of the authors and J. Acoust, Soc. Am. .. . o



