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Sequential Ideal-Observer Analysis of Visual Discriminations
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Visual stimuli contain a limited amount of information that could potentially be used to perform a
given visual task. At successive stages of visual processing, some of this information is lost and some

is transmitted to higher stages. This article describes a new analysis, based on the concept of the
ideal observer in signal detection theory, that allows one to trace the (low of discrimination informa-

tion through the initial physiological stages of visual processing, for arbitrary spatio-chromatic stim-

uli. This ideal-observer analysis provides a rigorous means of measuring the information content of
visual stimuli and of assessing the contribution of specific physiological mechanisms to discrimina-

tion performance. Here, the analysis is developed for the physiological mechanisms up to the level
of the photoreceptor. It is shown that many psychophysical phenomena previously attributed to
neural mechanisms may be explained by variations in the information content of the stimuli and by

preneural mechanisms.

The purpose of vision is to extract and represent information

about the physical environment from the light that is emitted,

transmitted, or reflected by objects and surfaces. In order to

extract useful information, a visual system must be able to en-

code and classify changes that occur in the visual image. This

article presents a new theoretical approach to analyzing the role

of specific physical and physiological mechanisms in the sim-

plest form of classification task—the discrimination or binary

classification task, of which the detection task is an important

special case. Although the emphasis here is on detection and

discrimination in the human visual system, the general ap-

proach should be widely applicable to other classification tasks'

and to other visual systems.

The physical and physiological machinery underlying human

vision is extremely complex. This complexity is hinted at in

Table 1, which lists some of the important physiological mecha-

nisms, or factors, governing the initial stages of visual pro-

cessing.

The processing begins with an optical system that forms, in

perspective projection, a two-dimensional image on an array of

cone and rod photoreceptors, whose size, collection area, and

spatial arrangement varies with eccentricity (as do the optics).

Each cone contains one of three photopigments; the rods all

contain the same photopigment. These photopigments set lim-
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its on the receptors' absolute sensitivities and determine their

relative sensitivities as a function of wavelength. Complex phys-

iological processes within the receptors determine their re-

sponse profiles (over time) as a function of the input intensity

profile and previous adaptation conditions. Then, within the

retina, the outputs of the photoreceptors are processed at a se-

ries of neural stages. Each neuron in each retinal stage com-

bines the output of the previous (and/or current) stage over

some region of space and time. Several more stages of parallel

neural processing then occur along the primary visual pathway,

first in the lateral geniculate nucleus (LGN) and then in area 17

of the visual cortex. At each stage, there are generally a number

of different classes of neuron (neural channels), each presum-

ably combining the output of the previous stages in a different

fashion.

The information-processing operations carried out by the

neurons at each stage are often described by receptive-field

properties. However, it is important to recognize that the spa-

tial, temporal, and chromatic receptive-field properties of a

neuron at any stage are determined by the cumulative effect of

all the earlier stages beginning with the optical system. In other

words, multiple mechanisms at various levels of the visual sys-

tem contribute to the physiological response of later stages and

to overall visual performance.

It is not surprising that the complexity of the visual system

1 The prominence of classification tasks (particularly discrimination

tasks) in the study of vision stems from several factors. First, they pro-

vide objective, repeatable measures of visual performance. Second, be-
havioral classification tasks can be used to rigorously test physiological
hypotheses. As Brindley (1970) pointed out, if a physiological hypothe-
sis predicts that the neural responses to two (or more) stimuli become

identical at some stage along the visual pathway, then the stimuli must
be indistinguishable to the organism. Therefore, if a classification exper-
iment shows that they are distinguishable, then there is no recourse but
to reject the physiological hypothesis. Third, it is clear, on a priori
grounds, that a primary (if not the primary) goal of visual processing is
to quickly and accurately classify (i.e., recognize) regions or parts of
visual images.
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has hindered development of rigorous, general theories of visual

processing and, at the same time, encouraged specialization in

subareas of vision science such as color vision, visual adapta-

tion, temporal and flicker sensitivity, and spatial vision. The

major goal of this article is to present a theoretical framework

and analysis that may provide a rigorous method for analyzing

complex visual systems in a straightforward and unified fashion

(Geisler, 1984; Geisler, 1987a; Oeisler & Davila, 1985). This

method, which is based on the theory of ideal observers (de

Vries, 1943; Green & Swets, 1974; Peterson, Birdsall, & Fox,

1954; Rose, 1942), allows one to determine the precise roles of

specific physical and physiological mechanisms in limiting the

discrimination performance of later physiological stages and of

the system as a whole. Because this ideal-observer analysis can

be applied to almost arbitrary discrimination tasks, it provides

a unifying perspective that cuts across the many specialized ar-

eas of visual science.

The plan of the article is as follows. First, the logic and ratio-

nale of the ideal-observer analysis is presented. Second, a review

of what is currently known about the mechanisms involved in

image formation by the optics of the eye and in image sampling

by the photoreceptors is given. These include approximately the

first half of the mechanisms listed under optics and receptors in

Table 1. The emphasis is on these mechanisms because they are

the best understood at the quantitative level. Third, an ideal-

observer analysis of these initial mechanisms is developed and

applied to a wide range of spatial and chromatic discrimination

tasks. Fourth and finally, the general implications and further

uses of ideal-observer analysis are discussed.

Sequential Ideal-Observer Analysis

In the proposed analysis, the early visual system is regarded

as a sequence of information-transmission or processing stages.

Table 1

Some Mechanisms of Initial Visual Processing

Optics and receptors
Quanta! fluctuations
Optics of the eye
Eye movements
Receptor size, shape, and waveguide properties
Receptor sampling lattice
Receptor spectral sensitivities
Photopigments and photochemistry
Internal transduction process
Temporal response properties
Receptor nonlinearities
Receptor adaptation/gain

Retina and lateral geniculate nucleus
Spatial, temporal, and chromatic receptive-field shapes
Receptive-field sampling lattice
Response dynamic-range nonlinearities
Spatial, temporal, and chromatic nonlinearities
Neural noise
Neural adaptation

Visual cortex
Everything at the retinal and geniculate level
Binocular interactions
Multiple representations
Cortical interactions

IDEAL-OBSERVER ANALYSIS

Figure I. Sequential ideal-observer models consist of three parts: a com-
plete representation of the stimuli, a model of the physiological mecha-
nisms, and an ideal observer designed to process optimally the output
of a given physiological mechanism.

Before entering the eye, a visual stimulus contains some total

amount of information that potentially may be used to perform

a classification task. This information is then processed by a

long series of visual mechanisms (each of which operate spa-

tially in parallel). The goal of the proposed analysis is to mea-

sure quantitatively, with ideal observers, the total amount of

information relevant to the classification task that is lost or de-

layed in transmission at each step along the visual pathway.

Thus, one can, in principle, determine exactly how much and

in what way each visual mechanism contributes to visual per-

formance.

The logic of this sequential ideal-observer analysis is not en-
tirely new. Indeed, it is widely recognized that many of the im-

portant discoveries about human visual processing have in-

volved determination of the information lost at some physiolog-

ical stage or stages of processing. A classic example was the

discovery that the psychophysical laws of color mixture (accord-

ing to which physically different stimuli can match exactly) are

the result of having only three types of photopigments within

three classes of photoreceptor that each obey the univariance

principle.2 What is new about the present approach is the use

of the theory of ideal observers, in conjunction with physiologi-

cal data and models, to compute rigorously the information

transmitted through various levels in the visual system for arbi-
trary spatial and chromatic stimuli.

The structure of a sequential ideal-observer analysis is illus-

trated in Figure 1. There are three major steps in carrying out

2 The univariance principle states that once a photon is effectively
absorbed, it has the same physiological effect on the receptor regardless
of the photon's wavelength. The principle appeals to hold.
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an analysis. The first is to obtain precise representations of the

stimuli that are to be classified. These representations must in-

clude a description of their spatial, temporal, and chromatic

properties, as well as any sources of noise or random variation.

Even under the most controlled conditions, visual stimuli ran-

domly change from moment to moment because of the inherent

Poisson randomness of light. Thus, as shown in Figure 1, the

two nominal stimuli in a discrimination experiment must be

represented as sets.

The second step is to specify a quantitative model of the phys-

iological mechanisms under consideration. The solid boxes in

Figure 1 show the initial sequence of mechanisms in the human

visual system up to the absorption of light in the receptor photo-

pigments. These are the only mechanisms considered in this

article.

The third step is to compute both the total information rele-

vant to the classification task and how much of that information

is transmitted by the mechanism or sequence of mechanisms

under consideration. This can be done by designing a machine

that uses all of the transmitted information to achieve optimal

classification performance. By definition, the performance of

this machine would be a measure of the total transmitted infor-

mation. Fortunately, the design of such optimal machines is a

common problem in statistical decision theory and is exactly

the sort of problem that was solved in developing many ideal-

observer models in both vision (Barlow, 1957; de Vries, 1943;

Rose, 1942; Tanner & Clark-Jones, 1960) and audition (Green

& Swets, 1974; Peterson, Birdsall, & Fox, 1954; Tanner &

Clark-Jones, 1960). Thus, the well-understood methods of sta-

tistical decision theory can, in principle, provide us with a pre-

cise metric of the classification information available at any

stage in the physiological model.

There are four important ways in which carrying out such an

ideal-observer analysis can help one understand human visual

discrimination.

1. By switching the location of the ideal observer (see Figure

1), one can determine how much information is lost or trans-

mitted by a specific stage or sequence of stages. This is done

by comparing the performance of the ideal observer when it is

applied before and after the stage(s). Note that in general, the

design of the ideal observer will have to be different at each

stage.

2. By comparing the performance of the ideal observer with

human performance for identical stimuli, one can determine

how much information was lost in the physiological stages fol-

lowing the one tapped by the ideal observer.

If the ideal discriminator is placed behind a perfect optical

system (i.e., if all physiological mechanisms are excluded), com-

parison of ideal and real performance reveals the absolute effi-

ciency of the real visual system for the discrimination. This spe-

cial case is the classical form of ideal-observer theory used in

vision and audition.

3. The proposed analysis permits rigorous comparison of

human performance across different tasks. Thus, it becomes

possible to ask and to answer meaningfully questions of the fol-

lowing sort: Is intensity discrimination better or worse than

color discrimination? Is vernier acuity better than Snellen (eye-

chart) acuity? What spatial patterns does the eye see best?

4. Perhaps most important, ideal-observer analysis provides

us with a better understanding of the stimuli used in discrimina-

tion tasks. An appropriate ideal discriminator placed at an early

level of the visual system provides a precise metric of all of the

information available to the later stages (assuming that the

model of the included physiological mechanisms is sound). If

altering the stimuli in some discrimination task results in little

or no change in the information available, then we are not sur-

prised if human performance changes little. Similarly, if the in-

formation content changes a great deal, then we are not sur-

prised if human performance is greatly affected. On the other

hand, if human and ideal performance are not affected similarly

by changes in the stimuli, we learn that the human visual system

is failing to use some aspect(s) of the information contained in

the stimuli. In other words, ideal-observer analysis tells us when

we should attribute changes in performance to higher level

mechanisms and when we should attribute them to differences

in the information content of the stimuli at the lower level being

analyzed. Ideal-observer analysis tends to be more informative

when real and ideal performance are close in absolute level.

When they are relatively close, strong contraints are placed nec-

essarily on the nature of the higher level mechanisms.

It is important to keep in mind that the present ideal-observer

analysis only measures the information in the stimuli that is

relevant for the particular discrimination task under consider-

ation. The measurement of stimulus information in most real-

world tasks is enormously more complicated (and may be im-

possible) because it depends not only on the set of possible stim-

uli but on the prior probabilities of their occurances. In simple

laboratory discrimination tasks, the prior probabilities are pre-

cisely controlled and hence known.

De Vries (1943) and Rose (1942,1948) were the first to apply

the concept of the ideal observer to visual psychophysics. They

found that the optimal intensity threshold for detecting a spot

of light against a background of light is proportional to the

square root of the background intensity (the so-called square-

root or de Vries-Rose law). De Vries (1943) also suggested devel-

oping ideal observers for acuity tasks but did not pursue this

idea (it is developed more fully here). Barlow (1958b) and Tan-

ner and Clark-Jones (1960) derived the intensity threshold for

the ideal observer as a function of target area and duration.

They found that threshold energy was proportional to the

square root of target area (Piper's law) and to the square root of

target duration (Pieron's law). During this same period, there

was an even more sophisticated development of ideal-observer

theory in auditory psychophysics (see Green & Swets, 1974, for

a review; Peterson, Birdsall, & Fox, 1954; Van Meter & Middle-

ton, 1954).

Despite these important developments, ideal-observer theory

subsequently received less attention in visual psychophysics

than one might have expected given the theory's rigorous physi-

cal basis. There are two probable reasons for this. The first is

that ideal-observer theory generally does not predict human

performance very well. For example, Barlow (1958b) and others

showed that the aforementioned predicted relations between

threshold energy and background intensity, target area, and tar-

get duration hold only over limited ranges of these variables. It

is, of course, quite natural to ignore theories that do not fit the

data. However, as the developers of ideal-observer theory recog-

nized, this is not a valid reason for dismissing an ideal-observer
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theory, because it is not a model of human performance but is

a model of the physical factors that limit human performance.

Thus, the theory can only be rejected if the physics or the calcu-

lations are proven wrong. If the physics and calculations are

correct, then the theory necessarily stands as one correct piece

of a complete theory. Furthermore, a correctly computed ideal-

observer analysis can be just as useful when it provides a bad fit

to data as when it provides a good one. In the former case, one

learns that subsequent mechanisms contribute significantly to

performance by creating more information loss. In the latter

case, one learns that the mechanisms included in the analysis

are the major source of information loss and, hence, that the

subsequent mechanisms are of high uniform efficiency.

The second major reason for the relatively small impact of

ideal-observer theory in visual psychophysics is that most early

applications of the theory dealt with just one (albeit important)

task—the detection of test spots against uniform backgrounds.

In recent years, however, the range of applications and interest

in ideal-observer theory has expanded so that it now represents

an important tool for vision research. Vos and Walraven (1972)

developed an ideal-observer theory for chromatic discrimina-

tion that will be described in more detail later. Cohn and his

colleagues (Cohn, 1976; Cohn & Lasley, 1974, 1986; Cohn &

Wardlaw, 1985) have compared human and ideal observers on

increment and decrement detection tasks and on increment de-

tection tasks with spatial uncertainty. Watson, Barlow, and Rob-

son (1983), Pelli (1985), Kersten (1984), and Banks, Geisler,

and Bennett (1987) compared human and ideal performance

for detecting sine-wave grating targets. Geisler (1984), Geisler

and Davila (1985), and Geisler (1987a) developed and applied

ideal-observer theory to various acuity tasks. A related early

effort at developing an ideal observer for position acuity was

carried out by Andrews, Butcher, and Buckley (1973). However,

because their model does not consider photon noise and in-

cludes other hypothesized sources of internal noise, it does not

qualify as an ideal-observer theory in the present sense. None-

theless, as we shall see later, some of the physiological factors

considered in their model (optical blur and receptor collection

area) can be sensibly incorporated into a sequential ideal-ob-

server analysis.

Barlow (1978), van Meeteren and Barlow (1981), Burgess,

Wagner, Jennings, and Barlow (1981), Kersten (1984), and oth-

ers have also applied ideal-observer theory to tasks involving

the detection of targets in high levels of computer-generated

pixel noise. One goal of using pixel noise in psychophysical

tasks is to overwhelm the effects of photon noise and other pe-

ripheral sources of information loss. Under such conditions,

differences between real and ideal performance may measure

information loss in cortical processing. This interesting work

will not be considered further here because my primary con-

cern is with the limitations on performance imposed by photon

noise and peripheral physiological mechanisms.

The present work extends the previous work with ideal ob-

servers in two ways. First, it expands the application of the ideal

observer to a much wider range of tasks. The basic mathemati-

cal results allowing this expansion are summarized here. They

provided the basis for a computer package that allows the per-

formance of the ideal observer to be computed in almost arbi-

trary discrimination tasks. Second, the present work extends

the rigorous use of ideal observers to include physiological fac-

tors. These extensions may increase the usefulness of ideal ob-

servers in analyzing the visual system. A similar development

might be of value in analyzing other sensory systems.

Image Formation and Image Sampling Mechanisms

In the sections that follow I will attempt to summarize what

is currently known about the image-formation and receptor-

sampling properties of the human eye that affect visual discrim-

ination. The emphasis is on quantitative measurements and

analyses that support development of the sequential ideal-ob-

server analyses presented later. Although this literature review

will focus on studies of the human eye, some physiological or

anatomical measurements are difficult or impossible to obtain

on humans. In these cases, our best information comes from

studies of the visual system of macaque monkey. Anatomical

and psychophysical studies suggest that the macaque visual sys-

tem is remarkably similar to that of the human visual system in

both structure and function (DeValois, Morgan, & Snodderly,

1974; Harwerth, Boltz, & Smith, 1980).

Before proceeding, it is important to mention that in recent

years, the mathematical and engineering techniques associated

with linear systems have been used extensively in the empirical

investigation of optical and neural mechanisms and in model-

ing their effects on visual performance. A fair portion of the

studies reviewed later were based on linear-systems techniques.

We have also used linear-systems techniques in applying our

ideal-observer theories. Because some readers may be unfamil-

iar with these techniques, a brief description of the major con-

cepts is provided in Appendix A. For a more detailed treatment,

the reader should consult one of the many excellent texts (e.g.,

Bracewell, 1978;Gaskill, 1978).

Photon Noise

Visible light propagates in the form of electromagnetic waves,

but it is emitted and absorbed in finite quanta of energy called

photons. The emission and absorption of photons is a random

process that can usually be adequately modeled as a simple

Poisson process (D. L. Snyder, 1975), although there are a few

cases in which this is not so (Teich, Prucnal, Vannucci, Breton,

&McGill, 1982).3

Because the emission and absorption of light is described by

the Poisson process, the probability that a given number of pho-

tons will be absorbed or emitted in a fixed time interval over a

fixed area is described by the Poisson density:

p(z) = of exp(-a)/z! z = 0, 1, 2 (1)

3 Cathode-ray tubes (CRTs) are examples of non-Poisson light
sources. The electrons released from the cathode are Poisson. How-
ever, each electron hitting the CRT phosphor has a high probability of

releasing more than one photon. Because the photons are emitted in
"bunches," they do not satisfy the independence property of the Poisson
process. Fortunately, at reasonable viewing distances the probability is
extremely small of receiving, through the pupil, more than one quan-
tum from a bunch. Under these conditions, the photons absorbed in the
retinal photopigments are still described by a Poisson process.
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where z is the number of photons absorbed, and a. is the mean

number of photons absorbed (or emitted) in a fixed time inter-

val over a fixed area. The variance of the Poisson density is also

equal to -«. Thus, as light level goes up, the variance of the

absorbed and emitted photons increases. Photon noise places a

physical limit on human visual discrimination performance.

The Poisson density is useful for computing this limit for the

stimulus conditions that will be of interest here.

Image Formation

Electromagnetic waves emitted from a direct source (e.g., the

filament of a lamp) or an indirect source (e.g., the surface of an

object) usually propagate in all directions. The purpose of the

optical system in the eye is to unscramble the light waves so that

light emitted at a given distance along each line of sight is im-

aged as well as possible at a unique point on the receptor array.

For example, consider a very small patch of surface (small

enough to be considered a point source) producing diverging

spherical wavefronts. A perfect eye would convert these wave-

fronts into converging spherical wavefronts that collapse to a

single point at the inner segment layer of the photoreceptors. Of

course, this image-formation process is not perfect in real eyes

and thus adds further limits to visual sensitivity. Imperfections

in the optics of the eye generally work to blur the image—light

that should be focused at a single point is spread out to some

extent. (Some imperfections produce distortions instead of

blur.)

The major structures affecting image formation in the mam-

malian eye are the cornea, the iris, and the crystalline lens. The

front surface of the cornea is the main refracting surface of the

eye. The iris forms a circular aperture or pupil of adjustable

size. The lens is a secondary refracting structure with adjustable

power that is used to reduce focusing errors for objects at

different distances.

Image formation in the human eye is complex and is under-

stood best for stimuli falling in or near the fovea, when accom-

modation is accurate and fixation is steady. 1 will consider

mainly these conditions because they are understood best and

because they are the most common in psychophysical experi-

ments. Recall that the goal is to obtain a reasonably precise

model of image formation in the human eye so that it can be

included in a quantitative ideal-observer analysis. In the subsec-

tions that follow, various sources of information loss in the im-

age-formation process are reviewed. The combined effect of all

of these image-forming factors can be represented in a single

point-spread function that describes how a point of light is

spread out across the retina.

Monochromatic and chromatic aberrations. One class of er-

rors in the image-formation process is the monochromatic aber-

rations (aberrations that would occur in monochromatic light).

Monochromatic aberrations are usually expressed as deviations

from an ideal spherical wavefront converging to a point in the

desired image plane (e.g., the receptor layer). Almost any form

of deviation is possible, but for most optical systems they can

be described adequately in terms of a fourth-order two-dimen-

sional Taylor polynomial (Goodman, 1968; 1 lowland & How-

land, 1977). These include prismatic aberrations (first order),

focusing and astigmatic aberrations (second order), comatic

(not chromatic) aberrations (third order), and spherical aberra-

tions (fourth order). In monochromatic light, prismatic aberra-

tions have no effect on image clarity because they only produce

a lateral shift of the image. Focusing aberrations occur when the

eye is not optimally accommodated. Astigmatism occurs when

there is a cylindrical component to the shape of the cornea or

lens, making the power of the optical system greater along one

axis of the image plane. The result is that accommodation can

only eliminate focusing errors in one axis at a time. When eye-

glasses are prescribed, the intent is to reduce astigmatism and/

or to reduce focusing errors (due to myopia or hyperopia) by

bringing the power of the eye within the accommodation range

of the lens. In the normal or corrected eye, residual focusing

errors and astigmatism and the higher order aberrations still

limit retinal image quality and, hence, produce some informa-

tion loss. Unfortunately, even in the normal eye there are sub-

stantial individual differences in residual astigmatism (Rerapt.

Hoogerheide, & Hoogenboom, 1971), coma (Walsh, Charman,

& Rowland, 1984), and spherical aberration (van Meeteren,

1974; Walsh, Charman, & Howland, 1984). This makes it

difficult to arrive at a single representative model of the mono-

chromatic aberrations. Fortunately, other factors dominate im-

age quality under normal viewing conditions, thereby reducing

the relative importance of individual differences in the mono-

chromatic aberrations (after correction for focusing and astig-

matic errors).

Naturally occurring stimuli always contain a wide range of

wavelengths, and different wavelengths of light are refracted by

different amounts in passing from one optical medium into an-

other. This introduces another source of imaging error, chro-

matic aberration. Longitudinal chromatic aberration occurs

because only one wavelength of light can be in precise focus at

a given time. The level of defocus at other wavelengths increases,

the further the wavelengths are from the one that is in focus.

Lateral chromatic aberration occurs because different wave-

lengths from objects that are off the optical axis of the eye are

imaged at different lateral positions. Lateral chromatic aberra-

tions are generally most severe for eccentric stimuli, but are

larger than one might expect in the fovea because the fovea is

slightly eccentric to the optical axis (van Meeteren, 1974).

Chromatic aberrations are well understood, easily measured,

and quite consistent in magnitude from one eye to the next

(Bedford & Wyszecki, 1957; Charman & Jennings, 1976; Wald

& Griffin, 1947). In spectrally broad-band (white) light, chro-

matic aberration is probably the dominant aberration (van

Meeteren, 1974).

Pupil diffraction. Even in an ideal, aberration-free optical

system, a pupil or aperture will diffract light waves, thereby re-

ducing image quality. The effect of diffraction is illustrated in

Figure 2 for several pupil sizes. These are for artificial pupils

placed just in front of the cornea. The dashed lines show cross-

sections of the retinal intensity distributions (diffraction pat-

terns) that would be produced by thin lines of incoherent white

light lying near the optical axis in an aberration-free eye. As can

be seen, the amount of diffraction increases as the size of the

pupil decreases. An incoherent point source produces a similar

diffraction pattern that is radially symmetric. The solid curves

show the actual retinal intensity distributions measured by

Campbell and Gubisch (1966) with white light, for four pupil
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Figure 2. Optical line-spread functions in the fovea for artificial pupil

diameters ranging from 2.0 mm to 5.8 mm. (Solid curves are objective

data obtained by measuring the light distributions formed outside the

eye from an intense line stimulus imaged on the retina; data from

Campbell & Gubisch, 1966. Dashed curves are theoretical diffraction-

limited line-spread functions for artificial pupils placed just in front of

the eye. All of the line-spread functions have been normalized to the

same arbitrary area.)

sizes. These data (which are described in more detail later) rep-
resent the combined effect of all the optical sources of blur. All
of the retinal intensity distributions in Figure 2 (including the
theoretical diffraction-limited functions) have been normalized
to the same area. It is apparent from Figure 2 that for foveal
stimuli and pupil sizes of 2 mm or less, the blurring effects of
diffraction exceed the combined effects of all the aberrations.

Scattered light. Another factor affecting image formation is
the scattering of light by various structures in the eye. It is useful
to distinguish between two types of scattered light: (a) light
diffusely scattered by preretinal structures (e.g., by the cornea
and lens) and by reflection off the back of the retina and (b) light
scattered more locally in its forward passage through the outer
layers of the retina (there may also be a localized component of
scattered light reflected from the back of the retina).

The diffuse component of scatter fills the entire eye with a
veil of light that is easily seen by viewing an intense light source
against a totally dark background. Psychophysical measure-
ments in young eyes indicate that the effective luminance of the
diffusely scattered light from a point source is inversely propor-
tional to the square of the distance (in degrees) to the source
(Stiles, 1929; also see Vos, 1984; and Wyszecki & Stiles, 1982).
This relation is meaningful only for angular separations greater
than around 0.5° because the psychophysical estimates of scat-
ter become more questionable as the likelihood oflateral neural
effects from the point source increases. The psychophysical
measurements indicate that about 10% of the light arriving at
the retina is diffusely scattered light. At first this may seem to
be a rather large percentage, but it is really rather small given
the large area over which the light is scattered.

There are few useful physiological measurements of diffuse

scatter in the human eye, largely because it is difficult to make
and interpret measurements made on excised eyes (DeMott &
Boynton, 1958). (However, for animal eyes, the fiber-optic tech-
nique of Robson & Enroth-Cugell, 1978, appears to work well.)
Using a retinal densitometer on human subjects, Rushton and
Gubisch (1966) measured the amount of photopigment
bleached inside an intense annulus of light and compared this
with the amount bleached by uniform fields. Using Equation 4
(7.8.1) in Wyszecki and Stiles (1982), one finds that Rushton
and Gubisch's estimate of the scattered light under their condi-
tions agrees quite well with calculations based on the psycho-
physical estimates.

The diffuse component of scattered light is small enough that
its effects are only significant for detection or discrimination of
relatively dim targets in the presence of intense glare sources.
These situations do arise in the environment but not in the psy-
chophysical experiments of direct interest here.

The localized component of scatter is more difficult to mea-
sure. Ohzu and Enoch (1972) attempted to measure the optical
transfer function of the human foveal region of the retina im-
mediately following removal of the eye during surgery. In prin-
ciple, this transfer function should reflect the combined effects
of forward scatter and spatial integration over the collection
area of the photoreceptors. Ohzu and Enoch found that grating
contrast is reduced by around 70% over the spatial frequency
range of 30 to 60 c/deg (cycles per degree). D. R. Williams
(1985b) argued that Ohzu and Enoch's measurement technique
is likely to have overestimated the amount of scatter. Further-
more, using an elegant psychophysical technique, MacLeod,
Williams, and Makous (1985) obtained evidence that forward
retinal scatter is in fact minimal in the fovea. They did this by
measuring threshold for beat-frequency patterns created by tilt-
ing interference-fringe components that, individually, were
above the resolution limit. They found that threshold for a fixed
beat frequency as a function of the component frequency was

predicted accurately by the receptor aperture alone. Substantial
forward retinal scatter would have produced a steeper fall off in
threshold at high frequencies than was observed.

Point-spread function. Through linear-systems analysis, the
combined effects of the various aberrations, pupil diffraction,
and scatter on image formation can be neatly and usefully de-
scribed with a point-spread function (or equivalent]}', with an
optical transfer function, which is the Fourier transform of the
point-spread function). For linear shift-invariant systems (i.e.,
ones that produce the same output shape regardless of input
position), the point-spread function can be used to compute the
output for an arbitrary input. (Point-spread functions, transfer
functions, and their use in linear systems analysis are briefly
described in the Appendix A.) However, aberrations, diffrac-
tion, and scatter each vary with eccentricity, pupil size, wave-
length composition, and the state of accommodation. Thus, im-
age formation in the human eye can only be accurately de-
scribed by a family of point-spread functions. There are two
general approaches for estimating point-spread functions. One
is direct measurement; the other is calculation from measure-
ments of the aberrations and other parameters of the human
optical system.

When an image is formed on the retina, some of the diffusely
reflected light passes back through the optics and forms an im-
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Figure 3. Optical point-spread function for a 2-mm pupil, calculated
from the appropriate line-spread function in Figure 2, assuming radi-

ally symmetric optics.

age outside the eye. Were the intensity distribution of this image

measurable, it would be possible to obtain an estimate of the

actual retinal intensity distribution by correcting for the double

passage through the optics. This is the principle behind the fun-

dus reflection technique for directly measuring the point-

spread function (Campbell & Gubisch, 1966; Flamant, 1955;

Jennings & Charman, 1981; Westheimer & Campbell, 1962).

The obvious target to use would be a point source; however, so

little light is reflected out of the eye that more extended targets

are always used. The most common is a very thin, bright line.

With this target, one obtains an estimate of the line-spread

function. For a linear shift-invariant system, the point-spread

function can be computed from line-spread functions mea-

sured at many different orientations (e.g., see Gaskill, 1978).

Furthermore, if the optical system is radially symmetric about

the line of sight (which is approximately true for foveal stimuli),

then the point-spread function can be computed from a single

line-spread function. For example, Figure 3 shows the point-

spread function derived from the line-spread data in Figure 2,

for the 2-mm pupil.

A psychophysical method of measuring the point-spread

function is based on laser interferometry (Amulf & Dupuy,

1960; Campbell & Green, 1965; Westheimer, 1960). When two

spatially separated, coherent point images are formed in the

plane of the pupil, the addition and cancelation of the resulting

wavefronts forms a sinusoidal grating pattern (like Figure A1 in

Appendix A) on the retina. The spatial frequency (the number

of stripes per degree of visual angle) of the grating is controlled

by varying the separation of the point images.

The retinal contrast of interference gratings is unaffected by

the monochromatic aberrations and pupil diffraction (e.g., see

Saleh, 1982). Therefore, the ratio of the contrast thresholds for

interference gratings and normally imaged monochromatic

gratings, measured as a function of spatial frequency, gives an

estimate of the modulation-transfer function (MTF; see Appen-

dix A) of the ocular media, excluding the components that are

due to chromatic aberration and scatter. Chromatic aberrations

are excluded because the laser light is monochromatic. Scatter

is excluded because it is much the same for normal and interfer-

ence gratings (Vos, 1963) and thus will cancel out in the ratio.

Assuming radial symmetry about the line of sight, the point-

spread function (minus the effects of scatter) can be obtained

from the estimated MTF.

The point-spread functions obtained by interferometry are

somewhat narrower than those obtained by fundus reflection.

This is explained in pan because, as was mentioned earlier, in-

terferometry excludes the effects of chromatic aberration and

scatter. Campbell and Gubisch (1966) demonstrated that chro-

matic aberration could account for many of the differences be-

tween their fundus-reflection data and the interferometry mea-

surements of Campbell and Green (1965). A possible factor

contributing to the differences between the two methods is laser

speckle in the interferometer, which serves as a potent masker

of sine-wave gratings (D. R. Williams, 1985b). Laser speckle

reduces the differences between the coherent and incoherent

thresholds, thereby leading to an overestimate of the quality of

the optics. On the basis of Williams's measurements, laser

speckle probably only affected the results of Campbell and

Green (1965) and Arnulf and Dupuy (1960) in the range of 40

to 60 c/deg because both studies varied the contrast of the target

gratings by adding a background of incoherent light, and only at

the highest spatial frequencies was the target component small

relative to the background.

A number of investigators have attempted to compute foveal

point- or line-spread functions from physical measurements of

the aberrations and other optical parameters of the human eye.

The calculations of van Meeteren (1974) included estimates of

chromatic aberration, pupil diffraction, spherical aberration,

irregular aberrations, and Stiles-Crawford apodization (see the

section ahead on image sampling by receptors). Estimates of the

comatic (i.e., third order) aberrations were unavailable at that

time, and so were excluded from the calculations. Similarly, Na-

varro, Santamaria, and Bescos (1985) calculated line-spread

functions for a schematic eye constrained by essentially the

same factors that were considered by van Meeteren. The line-

spread functions derived by van Meeteren and Navarro et al.

are somewhat narrower than those measured by Campbell and

Gubisch (1966). van Meeteren suggested that the difference

might be accounted for by retinal scatter. Indeed, he showed

that Ohzu and Enoch's (1972) estimate of forward retinal scat-

ter could account for the differences. However, as mentioned

earlier, Ohzu and Enoch most likely overestimated the effects of

forward retinal scatter.

Another factor that might explain the differences are the co-

matic (third order) aberrations. An example of comatic aberra-

tion is the comet-shaped blur pattern that can be seen when one

tries to create an image (e.g., of the sun) with a lens that is not

perpendicular to the line connecting the object and the image.

Walsh, Charman, and Howland, (1984) attempted to measure

simultaneously all of the monochromatic aberrations with an

interesting new technique, and found that both spherical- and

comalike aberrations were substantial in normal young eyes. In
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calculating line-spread functions for the conditions of Camp-

bell and Gubiscb (1966), Walsh et al. included their own mea-

surements, plus the other factors considered by van Meeteren,

except, rather curiously, chromatic aberration. If the effects of

chromatic aberration are added into their calculations, one ob-

tains somewhat broader line-spread functions than those mea-

sured by Campbell and Gubisch. However, this discrepancy

might be explained because Walsh et al. also included Ohzu and

Enoch's(1972) estimate of retinal scatter.

In sum, there seems to be a consensus that for white light the

Campbell and Gubisch (1966) foveal line-spread functions are

close to correct, although there is some disagreement about

which factors contribute most significantly to defocus. van

Meeteren (1974) argued that for white light, pupil diffraction

and chromatic aberration are the main factors contributing to

the line-spread functions, and that there are negligible individ-

ual differences in these two factors. Other factors of some im-

portance are the spherical and comalike aberrations, diffuse

scatter, and perhaps the Stiles-Crawford apodization (although

probably not as much in the fovea, see later). Forward retinal

scatter is probably not a major factor.

It appears that for a well-accommodated eye, one can use

with reasonable confidence the line-spread functions of Camp-

bell and Gubisch (1966) to compute foveal intensity distribu-

tions for broad-band, achromatic stimuli. Because of individual

differences in the monochromatic aberrations, calculations are

less certain (in relative terms) for narrow-band or monochro-

matic stimuli. Nonetheless, representative line-spread func-

tions for narrow-bandwidth light can be obtained by correcting

the Campbell and Gubisch line-spread functions for chromatic

aberration. For stimulus conditions with glare sources, one

must add a term representing the diffuse scatter.

The only substantial study measuring image quality in the

peripheral retina was carried out by Jennings and Charman

(1981). Using the fundus-reflection technique, they found that

image quality was uniformly high for the region within 12° of

the optical axis and deteriorated at greater eccentricities. The

usefulness of their data for computing retinal intensity distribu-

tions was greatly reduced because apparatus limitations re-

quired that all measurements be obtained with a fully dilated

(7.5-mm) pupil. It is possible that the increased aberrations that

occurred with the large pupil size may have masked substantial

changes in the line-spread function that occur over the central

12° with more natural pupil sizes. Nonetheless, Jennings and

Charman's data do provide a lower bound on image quality in

the periphery for the well-accommodated eye.

Ocular transmittance. Not all light striking the cornea

reaches the retina. Some of it is reflected off the refracting sur-

faces of the eye, and some is absorbed in the ocular media. Near

the visual axis, the most important factors are absorption in

the lens and macular pigment (a yellow pigment that is most

concentrated over the fovea). In the periphery, macular pigmen-

tation decreases, leaving lens absorption as the primary factor.

There are individual differences in macular-pigment density,

and the density of the lens increases with age; nonetheless, the

shapes of the absorption curves are fairly similar across individ-

uals and ages. The combined effect of all optical transmittance

factors in the average young eye is shown in Figure 4. This figure

gives the fraction of photons transmitted to the foveal receptors
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Figure 4. Average optical transmittance function in the fovea for

young eyes. (Data from Wyszecki & Stiles, 1982.)

as a function of wavelength. Note that the short wavelengths are

the ones most severely attenuated. A summary and evaluation

of the data concerning preretinal absorption is given in Wys-

zecki and Stiles (1982).

Pupil response. The size of the pupil is strongly affected by

the luminance of the visual field and to a lesser extent by a vari-

ety of other factors, including the size and position of the visual

stimuli, the state of accommodation, and the convergence of

the eyes. Changes in pupil size affect both the intensity and the

optical quality of the retinal image. The retinal intensity pro-

duced by a point source is proportional to the apparent area of

the pupil when the pupil is viewed from the direction of the

source. The pupil also affects depth of focus, the range of dis-

tances around the point of accommodation over which an ob-

ject remains in good focus. Also, recall from Figure 2 that the

size of the pupil affects the point-spread function even when the

eye is in optimal focus.

In addition to all of the factors affecting pupil size, there are

large individual differences in the size of the pupil response.

However, it is not difficult to measure or control pupil size, and

some normative data are available for estimating pupil size for

those studies in which pupil size was neither controlled nor

measured. Figure 5, which was derived from Wyszecki and

Stiles (1982), gives average pupil size as a function of luminance

for large stimulus fields. In sum, pupil size is an important fac-

tor limiting visual discrimination; its effects are well under-

stood and easily included in a sequential-mechanisms analysis.

Accommodation. Another important factor affecting image

formation is the accommodation response. Objects that are not

in the plane of accommodation produce blurred images. Even

under well-controlled psychophysical conditions, subjects gen-

erally will not achieve optimal focusing. The subject's accuracy

varies with the form of the target stimuli (Charman & Tucker,

1977; Heath, 1956), the size of the pupil, and the distance of

the target from the end points of the subject's accommodation

range (Charman & Tuckei; 1977; M. W. Morgan, 1944). In addi-

tion, the accommodation response undergoes continuous mi-
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Figure 5. Average pupil diameter as a function of background lumi-

nance for large field stimuli. (Solid curve is the average of several studies

computed by deGroot & Gebhard, 1952. Circles are the average of 12

observers from Spring & Stiles, 1948. Error bars indicate ±1 SD com-

puted across subjects.)

crofluctuations at a rate of 2 to 4 Hz. These fluctuations are

quite small (approximately 0.1 diopters) and hence should re-

sult in a small amount of image degradation. It has been sug-

gested that the purpose of the fluctuations may be to provide

information to the accommodation system about when and in

what direction to respond (Campbell, Robson, & Westheimer,

1959).

The effects of the accommodation errors on image quality

(i.e., on the point-spread function) are complicated—they de-

pend on pupil size and on the magnitudes of the optical aberra-

tions (Campbell & Green, 1965). Focusing errors due to accom-

modation can be essentially eliminated by paralyzing the ac-

commodation mechanism with cycloplegic eye drops and

placing appropriate lenses in front of the eye. However, only a

small fraction of psychophysical experiments use this proce-

dure. When considering other experiments, one must consider

the probable effects of focusing errors on image formation on a

study-by-study basis.

Eye movements. When the eyes move, the retina slides

around underneath the retinal image. As mentioned earlier, the

stimulus conditions of primary interest here are those with well-

controlled fixation. However, even under steady fixation, the

eyes are constantly making slow drifts and small correcting sac-

cades (Ditchburn, 1973; Rattle, 1969; Steinman, 1965). Nach-

mias (1959), Krauskopf, Cornsweet, and Riggs (1960), Stein-

man and others showed that the standard deviation of eye posi-

tion under steady fixation is around 3' to 5' (3-5 min of arc) in

the typical subject for fixation trials of 30 s. This is quite accu-

rate considering that a foveal cone is about 0.5' in diameter. This

level of accuracy holds for many different fixation targets. Stein-

man had subjects fixate the centers of circular targets and found

that fixation was equally accurate for diameters ranging from 2'

to 87'. Rattle (1969) found that subjects were nearly as accurate

in fixating the midpoint of two dots as in fixating the center

of a circle and, also, that there was little variation in fixation

accuracy for circle diameters or interdot distances ranging from

19'to 230'.

The design of the visual system beyond the level of the recep-

tors is such that residual eye movements are essential to the

transmission and processing of visual information—without

eye movements, a human soon becomes effectively blind

(Ditchbum & Ginsborg, 1952; Riggs, Ratliff, Cornsweet, &

Cornsweet, 1953). However, at the level of the receptors, eye

movements result in two potential forms of information loss.

First, the temporal integration of the photoreceptors results in

an effective spatial smearing of the visual image. This factor is

not relevant here because (a) the present ideal-observer analysis

only includes mechanisms up to the level of photon absorption,

and (b) most of the experiments to be analyzed used brief stimu-

lus presentations. Second, if the visual system does not keep

precise information about the positions of the eyes, then some

information loss will result from position uncertainty. The ex-

perimental conditions of most interest here are those providing

good fixation targets. It is not known whether the visual system

monitors variations in eye position within the 3' to 5' range of

eye position occurring during steady fixation. Thus, the only

sensible strategy is to carry out ideal-observer analyses with and

without the uncertainty factor included. As it turns out, ideal-

observer calculations show that a position uncertainty of 3' to

5' produces only modest losses of information in detection tasks

and essentially no information loss in most discrimination tasks

(Geisler & Davila, 1985; also see ahead).

Image Sampling by Receptors

The retinal image is sampled spatially and spectrally by a lat-

tice of discrete photoreceptors. There are four major classes of

photoreceptor (the rods and three classes of cone) that differ in

spectral sensitivity and distribution within the lattice. The im-

age sampling properties of the receptor lattice result in further

losses of information useful for discrimination.

Receptor aperture. Light passes through all of the layers of

the retina and most parts of the receptor—the synaptic termi-

nation, cell nucleus, and inner segment—before reaching the

light-sensitive photopigment in the outer segment. Because the

receptors collect light over a finite spatial region (the receptor

aperture), they perform some spatial integration. This phenom-

enon, known as the aperture effect, produces an effective blur-

ring of the retinal image.

The rods are essentially cylindrical in shape with a diameter

of around 1 micron, which translates to an aperture of about

12" (12 s of arc). On the other hand, the cones are tapered from

the inner segment through the outer segment, reaching their

smallest diameter at the end of the outer segment. Anatomical

evidence (Sidman, 1957) indicates that the refractive index of

the inner segment (in rods and cones) differs sufficiently from

that of the interstitial medium that the receptors should behave

like optical wave guides. If so, much of the light entering the

inner segment would be funneled into the outer segment, and

the diameter of the cone aperture would equal the diameter of

the inner segment at its maximum.



276 WILSON S. GEISLER

This conclusion must be qualified, especially in the fovea

where the cone inner segments are tightly packed together. The

change in the refractive index at the inner segment is probably

not sufficient for wave-guide behavior until the inner segment

has begun to taper (Miller & Bernard, 1983; Yamada, 1969).

On the basis of Miller's (1979) phase-contrast microscopy, Mil-

ler and Bernard found that the change in refractive index of

foveal cones becomes substantial enough to identify individual

inner segments when they have tapered to about 2.3 microns

(80% of maximum) or 28*. They also cited Byram's (1944) psy-

chophysical measurements of resolution for interference fringes

as support for a foveal cone aperture of 2.3 microns. Miller and

Bernard noted that because interference fringes are unaffected

by the optics of the eye, the only optical limit for resolution is

that set by the receptor aperture. The MTF for such an aperture

is given by a first-order Bessel function of the first kind. For an

aperture of 2.3 microns, this MTF first reaches a value of zero

at 150 c/deg, which is near the upper limit of resolution re-

ported by Byram. An aperture larger than 2.3 microns would

produce a zero in the MTF at a lower frequency. D. R. Williams

(1985b) reached a similar conclusion on the basis of his mea-

surements of interference-fringe resolution. However, these cal-

culations must be viewed with some reservation because they

assume a single fixed aperture diameter for all the receptors un-

der the grating. A zero in the MTF would not, in general, occur

if there are variations in receptor diameter.

The inner segment diameters of the cones increase substan-

tially with eccentricity, whereas the rod diameters remain essen-

tially the same. Thus, the cone aperture effect increases with

eccentricity, whereas the rod aperture effect remains approxi-

mately constant. One can reasonably estimate the size of the

cone aperture effect at any eccentricity by assuming an aperture

diameter of 60% to 80% of the inner segment diameter. (The

aperture may be a somewhat larger percentage of inner segment

diameter in the periphery because the inner segments are not

packed as tightly as in the fovea.)

The previous discussion gives the impression that having a

finite receptor aperture is primarily detrimental. However, the

aperture also determines how much light a receptor can absorb.

All other things being equal, the more light absorbed, the more

discrimination information transmitted. This is because pho-

ton noise is described by the Poisson process; thus, as we shall

see later, the signal-to-noise ratio for a discrimination increases

as quantum catch goes up. It should also be added that recep-

tor-aperture blur is small compared with that produced by the

optics.

The Stiles-Crawford effect. Photopic (cone) sensitivity is

greatest for light that enters the eye near the center of the pupil

and decreases monotonically as the entry point moves toward

the edge of the pupil (Stiles & Crawford, 1933). For example,

parafoveal cone thresholds for light entering the eye 3 mm from

the center of the pupil are 4 times higher than in the center. This

phenomenon, known as the Stiles-Crawford effect of the first

kind (SCE1), probably results from the wave-guide properties

of the cones—their shape and index of refraction gives them

directional selectivity (Stiles & Crawford, 1933; Snyder & Pask,

1973; Westheimer, 1967a). Wave-guide theory also correctly

predicts that cones in the central fovea and rods should display

less SCE1 than do peripheral cones because they are more cylin-

drical in shape (Snyder & Pask, 1973; Westheimer, 1967a).

The SCE1 has two important effects on the transmission of

discrimination information through the eye. First, there is a re-

duction in the number of photons reaching the cone photopig-

ments. The following equation (LeGrand, 1957; Wysecki &

Stiles, 1982) gives the fraction of photons reaching the photo-

pigments (due to the SCE 1) as a function of pupil radius:

= (1- 10-°os'Vo.ll5p2. (2)

This equation is appropriate for foveal stimulation where the

cones are more cylindrical. For small pupils (1-3 mm in diame-

ter), a is greater than 0.9, so the Stiles-Crawford effect can be

ignored.

The second consequence of the SCE1 is an effective improve-

ment in image quality for large pupil sizes. Because light near

the edge of the pupil is attenuated, the SCE1 is essentially equiv-

alent to reducing the pupil diameter. This is called Stiles-Craw-

ford apodization. Campbell and Gubisch (1966; see Figure 3)

showed that image quality is optimal for pupil diameters around

2 to 3 mm. Thus, for larger pupils, a reduction in effective pupil

size will improve image quality. Most of the stimulus conditions

considered here were for pupil diameters in the range of 2 to 3

mm, so the SCE1 plays a relatively minor role in determining

image quality. Furthermore, the diffuse, polarized component

of light reflected off the back of the retina displays the Stiles-

Crawford effect (Rohler, Miller, & Aberl, 1969). Thus, the

Campbell and Gubisch line-spread functions may already in-

clude the effects of Stiles-Crawford apodization. No adjust-

ments of the Campbell and Gubisch functions for Stiles-Craw-

ford apodization were included in the present analysis.

In addition to the directional effect on sensitivity, there is also

a directional effect on color appearance, the Stiles-Crawford

effect of the second kind (e.g., see Enoch & Stiles, 1961). How-

ever, it is a minor effect that was not included in the present

ideal-observer analysis.

Photopigment absorptance spectra. Not all light entering a

photoreceptor is effectively absorbed by the photopigment. The

fraction of photons absorbed is dependent on the concentra-

tion (c) of the photopigment, the length (1) of the outer segment,

and the photopigment's extinction coefficient d\). In particu-

lar, the proportion of incident photons absorbed as a function

of wavelength (the absorptance spectrum) is given by the Beer-

Lambert law,

a(A) = 1 - e--<x)c' (3)

(e.g., see Hsia, 1965).

The most direct measurements of the absorptance spectra of

the cone and rod photopigments have been made with micro-

spectrophotometry (Bowmaker, Dartnall, Lythgoe, & Mollon,

1978; Brown & Wald, 1964; Dartnall, Bowmaker, & Mollon,

1983; Marks, Dobelle, & MacNichol, 1964). This technique in-

volves passing light of different wavelengths through the outer

segments of single excised photoreceptors. As a consequence,

the measurements are relatively noisy.

If the univariance principle (see Footnote 2) were to hold,

then more precise determinations of the absorptance spectra

could be made. In particular, the absorptance spectrum of a
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Figure 6. Absorptance spectra of the cone pigments after correction for
ocular transmittance. (Data from Estevez, 1979, as reported in Wys-
zecki & Stiles, 1982.)

photopigrnent can be deduced by measuring an action spec-
trum—the intensity at each wavelength necessary to produce a
criterion response from the photoreceptor. The relative absorp-
tance spectrum is obtained by normalizing the reciprocal of the
action spectrum. Using an elegant suction-electrode technique,
Baylor, Nunn, and Schnapf (1984) and Nunn, Schnapf, and
Baylor (1984) have verified the univariance principle and mea-
sured the action spectra of macaque rods and cones. The mea-
sured spectra agree reasonably well with the results of micro-
spectrophotometry but are more precise and cover a wider

range of wavelengths.
Long before the development of microspectrophotometry

and suction electrodes, there were several attempts to estimate
the cone absorption spectra from psychophysical color-match-
ing data of normal and color-blind observers. In the color-
matching experiment, the observer adjusts the intensities of
three fixed-wavelength lights (primaries) so that their mixture
appears identical to the test light. Observers can obtain such
identity matches for arbitrary test lights and can do so with
great precision and reliability (see Boynton, 1979, for a reada-
ble discussion of color-matching experiments and data). The
relative absorptance spectra deduced by Estevez (1979; but see
Wyszecki & Stiles, 1982) from color-matching data agree quite
well with the spectra measured with the suction electrode tech-
nique by Nunn et al. (1984). Figure 6 shows the absorptance
spectra of Estevez, adjusted to a reasonable peak absorptance of
0.5. It is highly likely that these are close to the true absorptance
spectra of cones in the normal human retina.

The fact that there are only three cone photopigments, with
broad overlapping spectra, implies that under some circum-
stances considerable information relevant for chromatic dis-
criminations will be lost at the photoreceptors. Thus, the photo-
pigment absorptance spectra represent an important mecha-
nism limiting visual discrimination. The Estevez (1979) spectra
in Figure 6 were used in the present ideal-observer analysis be-
cause they provide a good fit to the measurements of Nunn et

al. (1984), although there is one exception, described later, in
which the Smith and Pokorny (1975) spectra were used. For
most of the discrimination tasks considered here, the Estevez
and the Smith and Pokorny spectra give very similar results.

Dark noise. It has long been suggested that intrinsic noise in
the visual system may be an important factor limiting visual
sensitivity (Barlow, 1956, 1977). Barlow (1977) listed several
potential sources of intrinsic noise: (a) thermal isomerization
(spontaneous bleaching of photopigrnent molecules that pro-
duces receptor responses that are just like those produced by
absorbed photons), (b) other receptor noise, (c) neural and syn-
aptic noise, (d) impulse-quantitization error due to the spike-
generation process of ganglion cells and central neurons, and
(e) criterion fluctuations and other sources of central ineffi-
ciency. The only intrinsic noise source that might be appropri-
ate to include in the present development is thermal isomeriza-
tion (or an equivalent photonlike noise).

Using the suction-electrode technique mentioned earlier,
Baylor et al. (1984) have measured the intrinsic-noise properties
of macaque rods. They distinguish two types of receptor dark
noise: a continuous low-amplitude noise and a discrete impulse
noise that appears similar to the responses produced by single
absorbed photons (photonlike noise). Baylor et al. argued that
the continuous noise might be filtered out at the receptor syn-
apse. If so, only the photonlike noise would limit visual perfor-
mance. Their measurements indicate that the rate of these pho-
tonlike events is around 6 X 10"3 events/s/receptor. This noise
level equals approximately the psychophysical estimates of the
intrinsic noise of the whole rod system (Barlow, 1977), suggest-
ing that it may be the main source of intrinsic noise. These pho-
tonlike events are most likely due to thermal isomerizations of
the rod photopigrnent molecules; however, from an informa-
tion-processing viewpoint their source is irrelevant, as long as
the noise events are indistinguishable from true photon ab-
sorptions.

The Baylor et al. (1984) study provides a firm estimate of the
photonlike dark-noise level in macaque rods, but there are no
comparable estimates for macaque cones. Thus, at least for the
cone system (which is the focus of the present article), it is pre-
mature to try to include dark noise in a rigorous ideal-observer
analysis. However, some level of photonlike noise is certain to
exist in cones if for no other reason than an occasional thermal
isomerization. Thus, a small level of dark noise was included in
generating some of the ideal-observer predictions in order to
illustrate its qualitative effect. These instances will be noted in
the text or in the figure captions.

Lattice geometry. Figure 7 shows cross-sections of the recep-
tor layer in macaque monkey at eccentricities of 0°, 5°, and 10°
(from Perry & Cowey, 1985). In the fovea, the cones form a
tightly packed lattice that, over small regions, is nearly a perfect
triangular array (Borwein, Borwein, Medeiros, & McGowan,
1980; Hirsch & Hylton, 1984; Miller, 1979; Perry & Cowey,
1985; Williams, 1988). As eccentricity is increased, the cones
become larger and fewer in number, the regularity of the lattice
declines, and rods begin to fill in spaces between the cones.

Figure 8 shows the number of cones per degree of visual angle
as a function of eccentricity in humans (Osterberg, 1935) and
in the macaque monkey (Perry & Cowey, 1985). The apparent
differences between macaque and human receptor densities are
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•
Figure 7. Microphotographs of the cone lattice in the macaque retina
in the fovea (top), at 5° eccentricity (middle), and at 10° eccentricity
(bottom). (Horizontal bar represents approximately 5 min of arc; from
Perry & Cowey, 1985.)

due in part to the differences in eye size—they are more similar
when expressed in receptors/mm2. There is, however, some
inherent uncertainty in the anatomical results because of
unavoidable tissue shrinkage and other potential forms of his-
tological artifact. Fortunately, Williams (1988) has recently de-
veloped an elegant (psychophysical) laser-interferometry tech-
nique for measuring the topography of the retinal cone mosaic

in the living human eye, and has obtained results that are in
good agreement with the anatomical studies.

Receptor sampling rate is a significant factor limiting the in-
formation available for visual discriminations. Classical sam-
pling theory provides some insight into these limitations. The
basic result is the Whittaker-Shannon sampling theorem (e.g.,
see Bracewell, 1978). The theorem implies that a retinal inten-
sity distribution, whose Fourier transform does not contain
spatial frequencies above a cutoff frequency of W c/deg, can be
completely represented and (if desired) reconstructed by taking
2W or more regularly spaced samples per degree of visual angle
(that is, 4W2 samples per square degree). This critical sampling
rate is known as the Nyquist rate. Sampling below the Nyquist
rate results in information loss because more than one intensity
distribution could then give rise to the same sample values. This
source of confusion is called aliasing. Sampling above the Ny-
quist rate is unnecessary, in the strict sense of the sampling the-
orem, because no additional information is gained.

It has been widely noted that the human foveal lattice is well
matched to the optics of the eye (Miller & Bernard, 1983; Sny-
der & Miller, 1977; Yellott, 1984). Recall that the point-spread
function in the fovea, for the optimal pupil size of 2 to 3 mm,
has a cutoff frequency (W) of around 60 c/deg. In other words,
retinal intensity distributions can never contain spatial fre-
quencies above 60 c/deg. Therefore, a sampling rate of 120 sam-
ples/deg would be optimal for foveal images. Figure 8 shows
that this is almost exactly the rate reached in the central fovea.

The close match between the optics and receptor density has
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Figure 8. Density of cones in the human (solid curve) and macaque
(dashed curve) retina as a function of eccentricity. (Left axis is the
square root of the number of cells per square degree. Right axis shows
the highest spatial frequency that could be reliahly transmitted by the
lattice according to the Whittaker-Shannon sampling theorem. Human
data are from Osterberg, 1935; macaque data are from Perry & Cowey,
1985.)
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been confirmed in the living human retina by Byram (1944)
and D. R. Williams (198Sa). They created interference fringes
on the retina at frequencies above 60 c/deg. Their observers re-
ported the appropriate perceptual side effects of aliasing and
moire patterns at frequencies just above 60 c/deg.

In the periphery, the cone sampling rate appears to be below
the Nyquist rate implied by the optics. For example, the point-
spread functions measured by Jennings and Charman (1981)
suggest that the optical quality of the eye is fairly uniform out
to eccentricities of 12°, but as shown in Figure 8, the sampling
rate drops precipitously over this range.

Deductions about information transmission through the reti-
nal lattice that are based solely on the sampling theorem are
incomplete because they do not consider the effects of image
noise (Bossomaier, Snyder, & Hughes, 1985; Geisler & Hamil-
ton, 1986). In addition, sampling theorems have so far been
proved only for regular sampling lattices. Indeed, there is cur-
rently some debate about whether the irregularity of the recep-
tor lattice is an advantage or a disadvantage from an informa-
tion-transmission viewpoint (Hirsch & Hylton, 1984; Maloney,
1988; Miller & Bernard, 1983; Snyder et al., 1986; Yellott,
1984). However, as will be shown, the ideal-observer analysis
developed here provides a complete and precise method for
evaluating the effects of lattice structure on specific visual dis-
criminations.

There is reasonably good agreement among the anatomical
studies that have measured receptor size and density and lattice
regularity. Thus, these aspects of the lattice structure can be
incorporated with some confidence into an ideal-observer anal-
ysis. Specifically, lattices such as those in Figure 7 can be di-
rectly encoded and loaded into the computer program carrying
out the analysis. For the fovea, I have found that idealized trian-
gular lattices (Figure 9) with the appropriate receptor diameter
behave equivalcntly to the real lattices in all discrimination
tasks I have examined so far.

Unfortunately, there is less solid anatomical and physiologi-
cal evidence concerning the relative numbers and distributions
of the three classes of cone within the receptor lattice. By selec-
tively staining the blue cones, De Monasterio, McCrane, New-
lander, and Schein (1985) showed, in agreement with earlier
psychophysics (D. R. Williams, MacLeod, & Hayhoe, 1981)
and anatomy (Marc & Sperling, 1977), that the blue-sensitive
(B) cones are absent in the central 101 to 20' of the fovea and
make up only a small percentage (2%-10%) of the cones else-
where in the retina. Psychophysics and cell counts from micro-
spectrophotometry indicate that there are more red-sensitive
(R) cones than green-sensitive (G) cones (Ingling & Martinez-
Uriegas, 1983). However, the ratio could conceivably be any-
where within the range of 2:1 to 1:1. Figure 9 shows an ideal-
ized, but not unreasonable, lattice that was proposed by Walra-
ven (1974). In this lattice, the ratio of R to G to B cones is
32:16:1. An appropriate lattice for the central fovea would be
similar but would only contain R and G cones.

For many stimulus conditions of interest, the stimuli are
chromatically broad band (e.g., white); hence, they stimulate
the R and G cones about equally well (and the sparse B cones
don't contribute significant information for the discrimina-
tion). Under these circumstances, the receptor lattice can be re-
garded as a homogeneous array and the relative numbers of the

Figure 9. Idealized receptor lattice used in the ideal-observer analysis.
(The brightest circles are the middle-wavelength [green] receptors, the
medium-bright circles are the long-wavelength Jred] receptors, and the
dark circles are the short-wavelength {blue] receptors. The red, green
and blue receptors are in a 32:16:1 ratio; Walraven, 1974.)

cone types becomes irrelevant. For other stimulus conditions, it
is necessary to vary the ratios (and spatial arrangement) of the
cone types over the plausible ranges in order to determine con-
fidence intervals on the amount of information transmitted.

Ideal-Observer Model

The preceding sections have summarized and evaluated our
current knowledge of the factors up to the level of photon cap-
ture in the receptors that are likely to affect visual discrimina-
tions. These factors are now well-enough understood at the
quantitative level to warrant a rigorous analysis of their effects
on visual discrimination. In this section, the ideal-observer
analysis illustrated in Figure 1 is developed for the ideal ob-
server placed at the level of photon absorption in the receptors
(at the output of the last solid box in Figure 1).

Model of the Stimuli

In the two-alternative discrimination experiment, there are
two nominal stimuli, a and b, that the subject must discrimi-
nate. We presume that the stimuli are presented for a fixed du-
ration, d, in either a single-alternative or a two-alternative
forced-choice procedure. We also presume, with little loss of
generality, that the two stimuli are generated by a display device
that creates the stimuli by mixing three primaries (e.g., the red,
green, and blue "guns" of a color TV monitor). Then, the arbi-
trary stimulus can be described by a spectral distribution
(amount of light emitted as a function of wavelength) and a spa-
tial intensity distribution for each primary. Let the spectral dis-
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Figure 10. Illustration of the Poisson randomness of light. (Typical pat-
tern of photon absorptions produced in the photoreceptors by a uni-
form flash of 1 X 10* quanta/dee2 [530 nm] at the cornea. The bright-
ness of a photoreceptor represents the relative number of photons ab-
sorbed.)

tributions of the three primaries, normalized to an area of one
quantum, be n^\), «g(X), and HbW- Let the spatial intensity dis-
tributions for Stimulus a be r(x, y), g(x, y) and b(x, y), and for
Stimulus b be r"(x, y), g'(x, y) and b'(x, y). (For modeling
purposes, the most convenient units for these functions are
quanta/s/deg2 at the cornea per mm2 of pupil.) For the special
case when the visual stimuli are monochrome and broadband
(e.g., generated on a single-phosphor TV monitor), it is conve-
nient to define a single spectral distribution, «».(\), and spatial
intensity distributions, w(x, y) and w'(x, y).

Recall that even under well-controlled psychophysical condi-
tions, the inherent Poisson randomness of light implies that the
same nominal stimulus will give rise to a different physical dis-
tribution of photons on each presentation. For much of the
analysis ahead, we assume that the sole source of stimulus vari-
ability is that produced by the Poisson randomness of light. Fig-
ure 10 illustrates Poisson noise—it shows the pattern of photon
absorptions produced by a single presentation of a uniform
green field at an intensity 106 quanta/deg2 at the receptor layer.
The brightness of each receptor indicates the number of ab-
sorbed photons.

The assumption that Poisson noise is the only noise source
in the stimulus is the simplest, and it holds under most well-
controlled psychophysical and electrophysiological studies.
However, it is worthwhile to first develop the ideal-observer
analysis for more general and natural stimulus conditions. The
theory for the conditions with only Poisson noise will fall out as
a special case.

When performing binary classification tasks in the real
world, the stimuli often randomly vary along many different di-

mensions. For example, an inspector on an assembly line may
have to classify parts as defective or not defective. The parts
within the two categories may vary in size, shape, position, ori-
entation, or color. Even if the parts are all the same, and the
defect is only in one particular feature, the parts may still vary
in position and orientation. To describe these more complicated
stimulus conditions, we define a vector, v = (vt, i>2 - • • , vm),
of uncertainty parameters, and a pair of uncertainty functions,
/{v | a) and /(v | b). The uncertainty functions give, for each
nominal stimulus, the joint probability of obtaining any partic-
ular value of f i , . . . , vm on a trial. In this general case, we repre-
sent the corneal intensity distributions as r(x, y, v), g(x, y, v),
b(x, y, v), and r'(x, y, v), g(x, y, v), b'(x, y, v). To precisely specify
the stimuli in this more general case, it is necessary to know the
uncertainty functions and the corneal intensity distributions
for every possible uncertainty vector.

Model of Image Formation and Sampling

If an ideal observer is to be placed at the level of photon
capture in the photoreceptors, we need to compute the proba-
bility of absorbing any given number of photons in any given
receptor on a trial. To do this, we must compute the mean
number of photons absorbed in each receptor for each of the
two stimuli (Geisler, 1984). Let <a,(v) and bt(\) be the mean
number of photons absorbed in the ith receptor of the lattice
to Stimuli a and b, respectively, given a particular value of the
uncertainty vector v. Computation of a,(v) and £,(v) requires
inclusion of all the mechanisms and factors described in the
first part of this article.

The first thing to note is that the number of absorbed photons
will depend on whether the receptor is red-, green-, or blue-sen-
sitive. If we let (Xi, y,) represent the coordinates (in degrees of
visual angle) of the ith receptor, then

R(Xj, yit v), if ith receptor is red sensitive

G(x,, yi} v), if ith receptor is green sensitive

I, yt, v), if ith receptor is blue sensitive

!

R'(Xj, yi, v), if ;th receptor is red sensitive

Gixt, yi, v), if ith receptor is green sensitive

B'(Xi, y,, v), if ith receptor is blue sensitive (4)

where, R, G, B, R', G, and B' are the mean numbers of photons
absorbed in each of the cone classes to each of the two stimuli
given a particular uncertainty vector v.

Next, note that the number of photons absorbed in a particu-
lar receptor is the sum of the numbers absorbed from each pri-
mary:

R(x,, Vi, v) = Rfci, yit v) + Rt(xt, yt, v) + R*(Xi, y,, v) + deK

G(xt, yi, v) = Gfci, y,, v) + Gg(x,-, yh v) + GbC*,, y,, v) + de0

B(xt, y-,, v) = BAx,, yt, v) + Bt(Xi, y,, v) + B^xt, y,, v) + deB
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K(xt, y,, v)

ff(xt, y,, v) =

, y,, v yh Y it yh v) + deR

,, y,, v) + GJx,, y,, v) + GUx,, y,, v) + dea

i, y,, Y) + B'Jjct, y,, v) + B'b(x,, y,, Y) + deB

(5)

where the subscripts r, g, and b indicate the red, green, and blue

primaries, d is the duration of the stimulus, and eR, ea, and

SB are the intensities of the photonlike dark noise in events/s/

receptor. For those occasions in which dark noise was included

in generating predictions, it was assumed that the dark noise

was the same in all three cone classes: eK = ea = eB.

The problem is now reduced to computing the number of

photons absorbed in a particular receptor from a particular pri-

mary. To do this, note first that the intensity distribution for a

primary as a function of position and wavelength is obtained

by multiplying the spatial intensity distribution by the spectral

distribution (e.g., r(x, y, v)n^\)). Proceeding in the logical se-

quence, one begins by multiplying the input function by the

duration of the stimulus, d, and then by the area of the pupil, s,

and the ocular transmittance function, t(\). The resulting func-

tion is then convolved with the point-spread function for the

primary (e.g., hj(x, y)). (To ensure that no quanta are added or

lost, the point-spread function is always normalized to a vol-

ume of 1 .0.) The result of this convolution is the retinal-inten-

sity distribution. Next, the retinal intensity distribution is con-

volved with the receptor-aperture function, k(x, y). (The aper-

ture function is a cylinder with a height of 1.0 and a diameter

equal to the receptor aperture; thus, its volume equals the area

of the aperture.) The function resulting from this convolution

is then multiplied by the Stiles-Crawford correction factor, a,

and the absorptance spectrum of the receptor photopigment

(e.g., <ZR(X)). Finally, the entire result is integrated with respect

to wavelength.

For example, photon absorption in the R cones for the r pri-

mary is given by the following:

= sd<,r(x, y, v) » . h,(x, y) « « k(x, y) J n,(\)t(\)aR (X)dX, (6)

where « * represents the operation of two-dimensional convolu-

tion (see Appendix A). Note that the terms in the equation have

been rearranged to put together the quantities that depend on

wavelength. If the i th receptor is an R cone, Equation 6 can then

be evaluated at the position of the ith receptor to obtain R^XJ,

y/, Y). Similar equations are used to compute photon absorption

for all combinations of cone types and primaries. If the stimulus

is monochrome and broad band, then the point-spread function

hj.x, y) is used for all cone types.

When evaluating Equations 4 to 6 to generate predictions, I

have tried to use the best estimates of the physiological parame-

ters and functions available in the literature reviewed earlier. If

pupil size was not reported for an experiment under consider-

ation, it was estimated using the average data of Wyszecki and

Stiles ( 1 982; Figure 5 here). The point-spread functions (e.g.,

Figure 3) were derived from the line-spread functions of Camp-

bell and Gubisch (1966; Figure 2 here). Unless reported other-

wise, accommodation was assumed to be near optimal. If it was

not near optimal, the point-spread functions were appropri-

ately modified. Ocular transmittance in the fovea was taken

from Wyszecki and Stiles (1982; Figure 4 here). For peripheral

stimulation, in which the macular pigment is absent, only the

lens transmittance function was used. At any given eccentricity,

the receptor aperture was taken to be 80% of the average inner

segment diameter. The Stiles-Crawford correction factor was

calculated from Stiles's formula (Equation 3). The receptor ab-

sorptance spectra were those of Estevez (1979), assuming an

absorptance of 0.5 at the peak wavelength (see Figure 6). For

most of the predictions, the lattice at a given eccentricity was

taken to be a perfectly regular triangular array (Figure 9), with

the center-to-center distance between receptors equal to the av-

erage at that eccentricity. To check on the influence of lattice

irregularity, I also directly used the macaque lattices of Perry

and Cowey (1985; Figure 7 here). In the central fovea it was

assumed that the B cones were absent; elsewhere it was assumed

that they constituted 2% of the cones (Figure 9). For most pre-

dictions it was assumed that the R cones were twice as numer-

ous as the G cones—however, the ratio was varied for some ex-

periments in order to determine its effect.

Ideal Discriminator

The last step in developing the ideal-observer analysis is to

derive the ideal discriminator. On each trial of the experiment,

the ideal discriminator must decide which of the two alterna-

tives (a or b) was presented. It is well-known (see Green & Swets,

1974) that the optimal discriminator bases its decision on the

likelihood ratio or some monotonic transformation of it. The

intuition behind the use of the likelihood ratio is the following.

On each trial of the experiment, there is some pattern of photon

absorptions across the photoreceptors that can be represented

by the random vector (Z,, Z2 Zn), where Z, is the number

of photons absorbed in the; th receptor. The ideal discriminator

first computes the probability of getting this pattern of absorp-

tions assuming that Stimulus a was presented, and then assum-

ing that Stimulus b was presented. It then simply picks the more

likely alternative. Equivalently, the discriminator computes the

ratio of the probabilities (the likelihood ratio); if the result ex-

ceeds 1.0, one of the alternatives is picked, otherwise the other

alternative is picked. (This assumes that the alternatives are

equally likely and the discriminator is trying to maximize the

proportion of correct responses. If the alternatives are not

equally likely, a criterion other than 1.0 is used; Green & Swets,

1974.)

It can be shown (Geisler & Davila, 1985) that under the most

general conditions, an ideal discriminator (when placed at the

level of photon capture in the photoreceptors) uses the following

decision variable:

L = ̂

Z,ln[A,(Y)] - £ *,-(v)}./(v|b)dv

(7)
] - 2«/(Y)}-fl>|a)dY

where In is the natural logarithm, and the integral is over all

the possible values of the uncertainty vector. If L exceeds some

constant c, then Stimulus b is picked, otherwise Stimulus a is

picked. Note that the quantities in the exponents are approxi-
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mately the cross correlations (Gaskill, 1978) of the stimulus (the

Z,s) with the natural logarithm of the expected stimulus shape,

minus the volume under the expected shape, 2 b£y). In other

words, the likelihood of a stimulus alternative is computed by

exponentiating the cross correlation of the signal with the loga-

rithm of the stimulus shape (minus its volume), multiplying by

the uncertainty function, and summing over the uncertainty

space. The derivation of the aforementioned decision rule is

straightforward and is similar to the derivation for the case of

Gaussian noise given in standard texts on statistical decision

theory (e.g., Van Trees, 1968). The performance of the ideal

discriminator for this general case can only be calculated using

Monte Carlo simulations. Geisler and Davila (1985) have car-

ried out some of these calculations for the case of position un-

certainty (i.e., the stimulus randomly appears in different posi-

tions on each trial). As might be expected, such calculations are

difficult and time consuming.

Our primary concern here, however, is with stimulus condi-

tions in which the only source of noise or uncertainty is that

due to quanta! fluctuations (photon noise). In this case, the

maximum-likelihood decision rule is equivalent to the follow-

ing rule (Geisler, 1984; Helstrom, 1964). Compute the quantity

Z by the formula

Z = 2 Z,m(b,/a,), (8)

where b/ is the mean number of photons absorbed in the j'th

receptor to Stimulus b, and a, is the mean number of photons

absorbed in the ith receptor to Stimulus a. If Z exceeds a crite-

rion c, then respond that the stimulus was b, otherwise that it

was a.

Notice that Z is a weighted sum of the photon catch in each

photoreceptor. Thus, the ideal decision rule can be imple-

mented by creating a single weighting function (or receptive

field) for the particular pair of stimuli to be discriminated. We

will call this the ideal receptive field. Consider, for example, two-

point resolution—a classic discrimination task that was of great

interest to early astronomers and psychophysicists. Figure 11A

shows the average pattern of photon absorptions produced in

the foveal photoreceptors by two perfectly superimposed green

point sources of light. Figure 11B shows the pattern of absorp-

tions when the two point sources are separated by 60 s of arc

(approximately the two-point resolution threshold for hu-

mans). The brightness of each receptor indicates the mean

number of photons absorbed on a trial. These photon absorp-

tions were computed using Equations 4, 5, and 6 for a 2-mm

pupil size. Because the figures are in gray tone, the different

classes of cone are not distinguishable. However, because the

stimuli are green in the present case, the G receptors can be

picked out because they appear somewhat brighter than the R

receptors. (Because the stimuli are in the central fovea, there

are no B cones.) On each trial of the experiment, the human or

ideal observer must decide whether the stimulus was a sample

from the pattern in Figure 11A or a sample from the pattern in

Figure 11 B. (Recall that on each trial the same stimulus will be

randomly different due to photon noise; see Figure 10.) The

ideal receptive field for making this discrimination is shown in

Figure 11C. The receptors that are brighter than the back-

ground are weighted positively and can be thought of as excit-

atory; the receptors that are darker than the background are

weighted negatively and can be thought of as inhibitory; the re-

ceptors that are at the background gray level make no contribu-

tion to the decision. Thus, a single postreceptor unit that sums

the receptor outputs with a receptive field like that in Figure

11C will behave as an ideal discriminator for this two-point res-

olution task. Notice that it is not possible to pick out the R and

G receptors in the ideal receptive field. This is because the

weight assigned to each receptor depends only on the ratio of

the photon catches from the two stimuli (see Equation 8). The

weights vary with the cone types only when the task contains

some component of chromatic discrimination (see Figure 25).

In general, for every different discrimination there is a differ-

ent ideal receptive field (although they do not change when the

stimulus intensity distributions are scaled by a multiplicative

factor). It follows that some discriminations require ideal recep-

tive fields that are similar to those that have been found in the

visual pathway and others require ones that are very dissimilar.

An intriguing hypothesis is that human discrimination tends to

be most efficient in those discrimination tasks for which the

ideal receptive fields are similar to the actual receptive fields

found early in the visual pathway. This and other aspects of ideal

receptive fields will be discussed later in the article.

Ideal-observer models that apply to conditions where Equa-

tion 8 is appropriate will be referred to here as Stimulus-De-

fined-Exactly (SDE) models. For the more general cases, where

Equation 7 holds, they are referred to as Stimulus-Defined-Sta-

tistically (SDS) models (Geisler & Davila, 1985).

The predictions of an SDE model can be computed without

resorting to Monte Carlo simulations. Equations 4, 5, and 6 are

evaluated to compute the mean number of photons absorbed in

each receptor (the a/s and b*s) for both stimuli. Performance

accuracy can then be obtained using the following closed-form

expression for d' (Geisler, 1984):

d' =
% (b, - a,) ln(b,/a.)

(9)

Equation 9 gives d' for the two-alternative forced-choice task.

If the stimulus presentation probabilities are equal for the two

intervals, and the ideal observer is trying to maximize percent-

age correct, then each value of<f corresponds to a unique per-

centage correct (e.g., see Green & Swets, 1974). In this article,

the main interest is in predicting discrimination thresholds. In

most experiments, threshold is defined to be that difference be-

tween the stimuli that results in 75% correct discrimination per-

formance. This occurs when d' = 1.36.

The derivation of Equation 9 assumes that the sum of the

scaled Poisson random variables in Equation 8 is approxi-

mately normal. Monte Carlo simulations with Equation 8 show

that Equation 9 is very accurate even at low intensity levels.

Predictions of the more general SDS models can be com-

puted by Monte Carlo simulation. In particular, a percentage-

correct psychometric function is determined as a function of

the difference in the stimuli along the relevant dimension.

Threshold is estimated from the 75% correct point on the psy-

chometric function (which corresponds to ad'of 1.36).

Calculations for the ideal-observer analysis were carried out

on a VAX computer, using VAX FORTRAN and the IMSL
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Figure 11. Two-point resolution. (A. Average pattern of photon absorptions in the receptors produced by
two superimposed green point sources. B. Average pattern of absorptions produced by two point sources
separated by 50 s of arc. C. Ideal receptive field for discriminating the patterns in A and B.)

(Houston, TX 77036) mathematical and statistical library. A
brief discussion of how the actual computations were carried
out is given in Appendix B.

Visual-Discrimination Data and Predictions

This section describes applications of the SDE ideal-observer
model developed earlier to a wide variety of visual discrimina-
tion tasks. It is important to keep in mind that the purpose of
the ideal-observer model is not to obtain quantitative fits to psy-
chophysical data by estimating parameters. Indeed, there are no
free parameters except those used to fit smooth curves through
some of the physiological data for purposes of interpolation.

Rather, the purposes are (a) to determine the contributions of
the preneural mechanisms to various visual discriminations,
(b) to determine the discrimination information available at the
level of the photoreceptors, and hence, by comparison with hu-
man observers, the relative efficiency of the postreceptor mech-
anisms across the various tasks, and (c) to evaluate current
models of visual discrimination in light of the ideal-observer
analysis.

Because of the wide range of discrimination tasks to be con-
sidered, it is impossible to do justice to the recent models,
hypotheses, and experimental research described in the vision
literature. When possible, general references to this literature
are given.
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Ultimately, all visual discrimination tasks can be rightly re-

garded as discriminations of the distribution of photons across

the retina over time. However, for historical and practical rea-

sons it is useful to categorize the discriminations as follows: in-

tensity and contrast discriminations, position and shape dis-

criminations, chromatic discriminations, and temporal dis-

criminations (or some combination of these). We use these

particular categories to partition the discrimination literature

into smaller chunks. However, such categories can be mislead-

ing by drawing attention away from common mechanisms. For

example, it is typical to distinguish between shape and position

discrimination. This is rather arbitrary because one can regard

changes in the positions of objects as a change in the shape of

the image as a whole, and conversely, one can often regard a

change in the shape of a single object as changes in the positions

of features within the object. From the standpoint of ideal-ob-

server analysis, this problem is largely irrelevant because it

treats all discriminations equivalently and because the purpose

of the analysis is, in fact, to determine how physiological mech-

anisms contribute to performance across this wide range of

tasks.

The following discussion will be confined to the variables of

intensity, contrast, position, shape, and wavelength composi-

tion. Temporal variables (such as stimulus duration, adaptation

time, and flicker frequency) and temporal measurements (such

as response latency) will not be considered because the preneu-

ral mechanisms contribute little to the temporal-processing

properties of the visual system. Unless stated otherwise, the pre-

dictions of the SDE model presented below are for foveal pre-

sentation in a well-accommodated eye, with a 2- or 3-mm pupil

diameter. v

Comparing Real and Ideal Performance

In what follows, the performance of the ideal observer will be

compared with that of real observers. It is a foregone conclusion

that the ideal observer is more sensitive than the human ob-

server and, hence, that the ideal-observer model will not provide

a good fit to the psychophysical data. In order to visualize what

aspects of human performance might be accounted for by the

factors incorporated into the ideal observer, it is useful to com-

pare the shapes of measured threshold functions with the pre-

dicted functions. The method adopted here is to reduce the sen-

sitivity of the ideal observer uniformly until the predicted and

observed threshold functions are sufficiently overlapping for

easy shape comparison. Sensitivity is reduced, in effect, by plac-

ing a neutral density filter (e.g., a pair of neutral-colored sun-

glasses) at the input to the ideal-observer model. This method

of comparing shapes will be referred to as the relative-efficiency

method because it is closely related to the concept of quantum

efficiency (Barlow, 1962, 1977)." The quantum efficiency of a

real observer for a particular stimulus is defined as the percent-

age transmittance of a neutral density filter (placed in front of

the ideal observer's eye) required to equate the real and ideal

thresholds. Thus, the difference between quantum and relative

efficiency is that one uses an ideal observer placed at the cornea

and the other uses one placed at some level in the visual system.

In the following examples, the value of the neutral density

filter used to adjust ideal performance was picked rather arbi-

trarily to bring the real and ideal curves close enough together

for easy comparison of shapes. When possible, the value of the

neutral density filter (or the ratio of real-to-ideal performance)

is reported in the figure caption. However, in some cases the

duration and/or retinal illumination of the stimuli was not

specified well enough in the original report for an accurate cal-

culation of relative efficiency.

Intensity and Contrast Discrimination

In order to see, one must be able to encode and reliably dis-

criminate local intensity changes in space (and time). Hence,

intensity and contrast discrimination have been studied vigor-

ously since the beginnings of vision science. In the intensity or

contrast-discrimination experiment, the shapes, positions, and

wavelength compositions of the two test patterns remain fixed,

whereas the intensities or contrasts are varied.5

Sine-wave grating detection. Over the past 20 years, much

effort has been directed toward measuring the detectability and

discriminability of sine-wave grating stimuli. Sine-wave grating

stimuli are of considerable interest because of their central role

in linear-systems analysis (see Appendix A). It is well-known

from Fourier's theorem that any (monochrome) image can be

decomposed into a sum of sine-wave gratings varying in ampli-

tude, frequency, phase, and orientation. Thus, if a visual system

is approximately linear, its behavior can be characterized by its

responses to the set of sine-wave gratings. Experience has shown

that even when a visual system is not behaving linearly its re-

sponse to the sine-wave gratings often provides useful insights

into its general behavior. The sine-wave grating detection task

is given a somewhat more detailed treatment here than are other

tasks, because it has proved to be of fundamental importance

in the measurement and prediction visual performance and be-

cause it provides a good initial example of the reasoning behind

sequential ideal-observer analysis.

In the grating detection task, the observer must discriminate

between a uniform field and a patch of grating. (An example

sine-wave grating is shown in Figure A1 in Appendix A.) Figure

12A shows the pattern of photon absorptions produced in the

central fovea by a uniform green background. Figure 12B shows

the pattern produced by a 20 c/deg grating patch with a contrast

of 1.0. Figure 12C shows the ideal receptive field for the dis-

crimination.

The contrast-sensitivity functions (CSFs) of the ideal-dis-

criminator are shown in Figure 13. The vertical axis is contrast

sensitivity (the reciprocal of contrast threshold) on a log scale.

4 An alternate definition of efficiency is Tanner and BirdsaU's (1958)
r|, which is the square of the ratio of rf'-ideal to rf'-real (also see Barlow,
1978). Examination of Equation 9 shows that v is exactly the transmit-
tance of the neutral density filter required to equate real and ideal per-
formance. Thus, the present definition of efficiency is identical to Tan-
nerand Birdsall's(1958).

5 The usual definition of the contrast (C) within some region is

€ = (/„,„-/„,,„)/(/„„ + /„»),

where /„„ and /min are the maximum and minimum intensities within
the region. Thus, if /„„ and /min are the same, the contrast is zero; if
/mm is zero, the contrast is one.
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Figure 12. Luminance grating detection. (A. Average pattern of photon absorptions in the receptors pro-
duced by a uniform green background. B. Average pattern of absorptions produced by a 100% contrast,
Gaussian-damped, sine-wave grating patch with a frequency of 20 c/deg {cycles per degree]. C. Ideal recep-
tive field for discriminating the patterns in A and B.)

Thus, a contrast sensitivity of 10 represents a contrast threshold
of 0.1. The horizontal axis is spatial frequency on a log scale.
These predictions are for circular grating patches with a fixed
number of cycles; thus, the patch size decreases with increasing
spatial frequency. It is sensible to consider gratings with a fixed
number of cycles because they match the cycle-summation
properties of the visual system (see ahead), (The predictions are
for patches with 7 cycles, but the predicted shapes are not very
dependent on the number of cycles.)

The solid curves in Figure 13A show the sensitivity functions
of the ideal discriminator at three mean luminances, for a per-
fect optical system and arbitrarily small and densely packed
photoreceptors. These curves thus represent the absolute physi-
cal limit of contrast sensitivity for grating patches with a fixed
number of cycles. The solid curves in Figure 13B show the CSFs
with all the preneural factors included.

The curves in Figure 13A illustrate two important properties
of ideal observers limited only by quanta! noise. First, note that
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Figure 13. Ideal-observer predictions of contrast sensitivity for white sine-wave gratings with a fixed number
of cycles (in this case, 7 cycles). (A. Predicted contrast-sensitivity functions at three background levels when
the ideal observer is placed at the cornea. B. Predictions with various physiological factors included. Upper
dashed curve is the prediction for the highest background luminance with only quantal fluctuations and
the transmittance of the ocular media; cf. top curve in A. Lower dashed curve is the prediction for the
highest background luminance with the additional effect of the receptor aperture. Solid curves are the
predictions when all factors are included.)

the spacing between the curves equals the square root of the

ratio of the mean luminances. This is an example of the classic

square-root (de Vries-Rose) relation between threshold, &N,

and mean luminance, N. Second, note that the slopes of the

curves in this log-log plot are -1. This is an example of the

inverse square-root relation between threshold and target area,

A (Barlow, 1958b). These two properties are contained in the

following relation that is due to de Vries ( 1 943):

This relation holds independently of stimulus shape, which only

affects the proportionality constant, K,. Note that the effects

shown in Figure 1 3A represent differences in the information

content of the stimuli at the cornea because no physiological

mechanisms are included.

The upper dashed line in Figure 13B shows the predictions

for the highest mean luminance of Figure 13A, when the only

factors included in the analysis are quantal fluctuations, the

transmittance of the ocular media, and the photopigment ab-

sorptance spectra. As can be seen by comparing this curve with

the upper solid curve in Figure 13A, the effect of the ocular

transmittance function and the cone absorptance spectra is sim-

ply to translate the CSF downward. The lower dashed line shows

the result of including the effect of the receptor aperture. Fi-

nally, the upper solid curve shows the combined effect of all of

the factors.

There are many published measurements of CSFs, but few

were conducted with sufficient stimulus control for rigorous

comparison with ideal-observer models. Thus, Banks et al.

(1987) carefully measured foveal CSFs for gratings with a fixed

number of cycles, in a two-alternative temporal forced-choice

procedure. The gratings were damped vertically and horizon-

tally to prevent spatial transients and were presented for 100

ms to ensure that eye movements could not be initiated during

presentation. Focusing of the eye was controlled by viewing the

display through a 2-mm artificial pupil after dilating the pupil

and paralyzing accommodation with 1% cyclopentolate. Opti-

mal focusing was then obtained by placing appropriate lenses

in front of the eye.

The open symbols in the upper panels of Figure 14 show the

measured contrast sensitivities of two subjects, from 5 to 40 c/

deg, at three mean luminance levels. The solid curves represent
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Figure 14. Comparison of contrast-sensitivity functions at high spatial
frequencies for human and ideal observers. (Symbols are the contrast-
sensitivity functions of two human observers measured at three back-

ground luminances, for damped sine-wave gratings with a fixed number
of cycles. Solid curves are predictions of the ideal-observer model
shifted by the relative-efficiency method for the purposes of comparing

shapes. Specifically, the predicted curves were translated vertically 1.4
log units; neutral density value = 2.8 log units. Lower panels show the
ratio of real to ideal threshold.)

the performance of the ideal discriminator after translating the

curves vertically by a fixed amount, without changing their rela-

tive positions. (This method of comparing shapes corresponds

to the relative-efficiency method described earlier.) As can be

seen, the shapes of the predicted and observed CSFs are almost

identical. The similarity of the shapes is illustrated further in

the bottom panels, which show the ratios of real to ideal thresh-

olds.

There are two important conclusions one can draw immedi-

ately from the Banks et al. (1987) results. First, in agreement

with earlier studies (Kelly, 1972; Van Nes & Bouman, 1967),

the square-root law holds over the whole midphotopic range for

spatial frequencies above 5 c/deg. Second, and more surprising,

the shapes of the CSFs are accurately predicted by the preneural

mechanisms, as specified in the ideal-observer model, plus the

differences in the information content of the stimuli at the cor-

nea (Figure 13 A). This result suggests that the efficiency of vi-

sual processing beyond the photoreceptors (for detection of

fixed-cycle grating patches) is roughly constant over the whole

range of mean luminances and spatial frequencies tested. In

other words, under these conditions, there is no relative attenua-

tion of high spatial frequencies by the neural mechanisms in

the visual system—the neural-transfer function (NTF) is flat.

(Note that NTF is denned here as the ratio of real-to-ideal sensi-

tivity as a function of spatial frequency.)

The NTF found by Banks et al. (1987) seems, at first thought,

to differ from earlier estimates of the NTF obtained by compar-

ing the optical transfer function (Fourier transform of the point-

spread function) with large-field CSFs, or by measuring con-

trast sensitivity for large-field gratings created directly on the

retina with laser interferometry (Campbell & Green, 1965;

Kelly, 1977; Westheimer, 1960; D. R. Williams, 1985b).6 From

these earlier estimates of the NTF, it has been concluded that

neural mechanisms strongly attenuate high spatial frequencies

(Snyder & Srinivasan, 1979).

The results of Banks et al. (1987) are, in fact, consistent with

this conclusion. The difference in outcomes is almost surely ex-

plained by the fact that the earlier studies obtained CSFs with

gratings of large, fixed spatial extent. Specifically, Banks et al.

suggested that the difference in the results can be explained by

the effects of neural spatial summation across cycles of the sine-

wave grating targets. Several studies have shown that the detect-

ability of sine-wave gratings increases with the number of cycles

up to some critical number (Howell & Hess, 1978; Koenderink,

Bouman, Bueno de Mesquita. & Slappendel, 1978; Robson &

Graham, 1981). For medium and high spatial frequencies, this

critical number of cycles is constant, regardless of spatial fre-

quency, and is of the same extent both parallel and perpendicu-

lar to the orientation of the grating (Howell & Hess, 1978). This

property of the visual system is correlated with the fact that

cortical neurons tuned to higher spatial frequencies tend to

have smaller spatial extents even over the same part of the visual

field (De Valois, Albrecht, & Thorell, 1982; Movshon, Thomp-

son, & Tolhurst, 1978).

In order to minimize the effect of neural summation across

cycles on the computed NTF, Banks et al. (1987) deliberately

measured contrast sensitivities with grating patches of a fixed

number of cycles. However, they would have reached a different

conclusion had they measured CSFs with gratings of large fixed

spatial extent. The reasoning is as follows. Because the ideal ob-

server summates perfectly across all cycles of the grating, the

ideal CSFs for gratings of large, fixed extent are much flatter

than those in Figure 13. On the other hand, because human

observers summate only over a fixed number of cycles, their

CSFs would not be flatter for gratings of large, fixed extent.

Therefore, the ratio of real to ideal threshold would have de-

creased with spatial frequency (cf. Figure 14). The conclusion

is that the cycle-summation properties of the visual system pre-

dict a flat NTF for CSFs measured with a fixed numbers of cy-

cles but a decreasing NTF for CSFs measured with fixed spatial

extents. Thus, the Banks et al. results are perfectly consistent

with the fact that the NTF is not flat for CSFs measured with

fixed spatial extents.

What the Banks et al. (1987) results suggest is that the form

of the neural summation is summation over cycles, not over

adjacent receptors. A flat NTF for gratings matched to the

cycle-summation properties of the visual system, suggests that

center mechanisms (and perhaps other subregions) of many

postretinal receptive fields centered on the fovea consist of a

single cone or column of cones. This conclusion is consistent

6 For experiments with a fixed patch size, the definition of the neural-
transfer function (NTF) used by Banks et al. (1987; i.e., the ratio of real
to ideal sensitivity) is equivalent to the classic definition of the NTF.
That is, it will yield the same shape as the contrast-sensitivity function
measured when bypassing the eye's optics (except for the relatively mi-
nor effect of the receptor aperture). The definitions are not equivalent
for the experiments with a fixed number of cycles.
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with the anatomical evidence (Boycott & Dowling, 1969; Pol-

yak, 1941) that the center mechanisms of bipolar and ganglion

cells in the fovea are driven by a single cone.

A possible counterargument might be that the widths of cen-

ter mechanisms measured by electrophysiology are always

larger than a single cone (e.g., Derrington & Lennie, 1984; De

Valois et al., 1982). However, this is expected because the mea-

sured receptive fields include the contributions of the preneural

factors. Measurements of Ricco's area in the fovea (Davila &

Geisler, 1987) have confirmed the conclusion that foveal center

mechanisms are as small as a single cone (see ahead). Another

possible counterargument might be that constant relative effi-

ciency doesn't really imply anything about the sizes of center

mechanisms because the later visual system could simply undo

the effects of summation over adjacent receptors (without infor-

mation loss) by some operation such as deconvolution. How-

ever, this argument would only be valid if the visual system were

noise free. For example, if the ganglion cells summed over many

receptors and if spikes were lost in transmission from the retina

to the LGN at random, much like photons are lost in passing

through a neutral density filter, then there would be no way to

recover the information lost because of summation.

The preceding conclusions from the ideal-observer analysis

must be tempered by two other considerations. First, the Banks

et al. (1987) study focused deliberately on the spatial frequen-

cies above 5 c/deg. This was because preneural mechanisms

have little interesting effect on contrast sensitivities at lower spa-

tial frequencies. Furthermore, neural mechanisms do have a

large effect at low spatial frequencies. Figure 15 shows contrast-

sensitivity functions measured for the low to medium frequen-

cies by Kelly (1972). Below 3 c/deg, the CSFs flatten and then

turn downward—a clear violation of the trends predicted by

the ideal observer. Furthermore, the spacing between the CSFs

below 3 c/deg is consistent with Weber's law (A7V oc N) not the

square-root (de Vries-Rose) law. As has been recognized for a

long time, such effects must be produced by neural mecha-

nisms. For example, the common interpretation of the falloffin

contrast sensitivity at low frequencies is the spatially antagonis-

tic receptive fields of retinal and cortical neurons (e.g:, see Kelly,

1977). Weber's law is most likely due to gain adjustment (multi-

plicative adaptation), response compression, and noise mecha-

nisms of the receptors and other neurons along the visual path-

way (e.g., see Geisler, 1983; Shapley & Enroth-Cugell, 1984). It

is also worth noting that the smooth transitions from square

root to Weber behavior as a function of mean luminance could
1 easily be a natural consequence of these mechanisms (e.g., see

Geisler, 1984).

The second consideration is that even at high spatial fre-

quencies, the preneural mechanisms are only responsible for

some aspects of the contrast-sensitivity function. One obvious

unexplained aspect of the data in Figure 14 is the factor of 20-

30 reduction in sensitivity that must be produced by neural

mechanisms. There are several factors that singly or in combi-

nation may contribute to this disparity. A highly likely factor is

that the visual system is integrating over fewer than the 7 cycles

that were used in the Banks et al. (1987) study. The visual sys-

tem may integrate with efficiency only over a few cycles. An-

other simple possibility is multiplicative attenuation, which is

equivalent to placing a pair of neutral-colored sunglasses over
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Figure 15. Contrast threshold for low- and midfrequency sine-wave
gratings measured at several background levels. (Background lumi-
nance: O = 720 td, A = 72 td, V = 7.2 td, D = 0.72 td; from Kelly,
1972.)

the eyes. This would occur, for example, if only some fraction

of the photons absorbed in the photopigment were effective in

eliciting a receptor response. Another possible explanation is

observer uncertainty. If the human observer is uncertain about

the position or spatial frequency of the target grating, there will

be a fairly uniform loss of sensitivity. (Monte Carlo simulations

show that position uncertainty produces slightly more effect at

the highest spatial frequencies.) This could explain some of the

differences between real and ideal performance because the

SDE model does not include position or frequency noise. How-

ever, as will be seen in the discussion of contrast discrimination

later, the effect of uncertainty is too small to explain much of

the disparity between real and ideal performance. Another pos-

sibility is that there are sources of spatially and temporally un-

correlated noise within the visual system that approximately

mimic the effects of photon noise (e.g., grow in proportion to

the square root of background or signal level). A slightly more

complex possibility is that there is an appropriate combination

of internal noise and nonlinear transduction to produce a uni-

form sensitivity loss across spatial frequency.

The difference between ideal and real performance above 5

c/deg could be explained by any of these mechanisms or by

some combination of them. In fact, Crowell, Banks, Anderson,
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and Geisler (1988) found recently that the ratio of real to idea)

contrast sensitivity was reduced to a factor of approximately 4,

over the 5-40 c/deg range, by using fewer than 7 cycles and by

adding a pedestal contrast. However, the important point here

is that these neural mechanisms must have (or sum to have) a

uniform effect because the shapes of the functions are already

predicted by losses of information occurring prior to neural

processing and, in the case of fixed-size gratings, by spatial sum-

mation across cycles.

Increment detection. The classic intensity-discrimination ex-

periment requires the observer to discriminate the intensity

differences between two regions. This fundamental experiment

has been extensively used in the study of light and dark adapta-

tion. It is particularly well suited for measuring visual sensitiv-

ity in local regions of the visual field. This is important because

of the severe spatial inhomogeneity of the visual system (e.g.,

see the receptor distributions in Figure 8).

A common stimulus arrangement consists of a circular re-

gion and a surrounding region. In the simple increment- or dec-

rement-threshold version of this experiment, the center and sur-

round luminances are the same for Stimulus a (background

alone), and the center is incremented (or decremented) for

Stimulus b (background plus increment). For green (530-nm)

light and a small center region, the mean absorptions in the pho-

toreceptors for the two patterns is shown in Figures 16A and

16B. Again, the G receptors appear brighter because they ab-

sorb a greater fraction of the photons. The ideal receptive field

for making the discrimination consists of a single excitatory re-

gion that covers the area of the increment (Figure 16C).

Aside from wavelength composition, there are several impor-

tant stimulus dimensions in the increment-threshold experi-

ment: the intensity, size, shape, and duration of the back-

ground, and the size, shape, and duration of the increment. Fig-

ure 17 shows ideal- and real-observer performance as a function

of several of these dimensions. In each case, the predictions of

the ideal observer have been shifted by the relative-efficiency

method for the purposes of comparing shapes. The thresholds

for the ideal discriminator depend on stimulus duration and

wavelength composition. However, the only effects of duration

and wavelength are to translate the predicted curves vertically

(in Figure 17B and 17C) or vertically and horizontally by equal

amounts (in Figure 17 A).

The solid curves in Figure 17A show ideal-observer perfor-

mance as a function of background intensity for a foveally pre-

sented increment of 3.5' and 50" diameter. These threshold-ver-

sus-intensity (t.v.i.) curves represent the effect of all the preneu-

ral factors, plus a small arbitrary amount of receptor dark noise

(see Equation 5). As previously mentioned, the dark-noise level

in cones is somewhat uncertain at this time. The dotted line

shows the ideal observer's performance if there is no dark noise.

Notice that once the background intensity sufficiently exceeds

the dark-noise level, the curves follow the familiar square-root

relation.

The symbols in Figure 17A are the foveal t.v.i. functions re-

ported in Geisler (1978) for white light and a 2-mm pupil. They

are similar to those reported by Barlow (1958b). As Barlow

pointed out, when the increment diameter is very small, there

is a modest (1 -2 log unit) intensity range over which the square-

root law holds, but at higher intensities, Weber's law holds. For

increment fields with larger diameters, there is a much smaller

square-root region. (The rod system displays a greater square-

root region for small spots.) Fourier transforms show that

small-diameter increments have a greater high-frequency con-

tent than large-diameter increments. Therefore, the increment

detection results are qualitatively consistent with the grating de-

tection results that show a smaller square-root range for low

spatial frequencies.

Figure 17B shows foveal increment threshold as a function

of background diameter for the ideal discriminator along with

Westheimer's (1967b) measurements with white light for hu-

man observers. Ideal and human observers both show an initial

increase in threshold as background diameter is increased, but

only the human observer shows a subsequent decrease in

threshold (the sensitization effect). Thus, Figure 17B confirms

Westheimer's conclusion that the sensitization effect must be of

neural origin. Ever since Westheimer's work, the background-

summation experiment has been used extensively to map local

spatial interactions in the visual system (MacLeod, 1978). Like

the low-frequency roll-off of the CSF, the sensitization effect has

been attributed to the spatially antagonistic receptive fields of

retinal and cortical neurons (Buss, Hayhoe, & Stromeyer, 1982;

MacLeod, 1978; Westheimer, 1967b). Figure 17B suggests that

the initial rise in foveal threshold with background diameter

may be partly attributable to preneural factors.

The foveal increment threshold (in energy units) of the ideal

discriminator as a function of increment area is given by the

solid curve and solid circles in Figure 17C. The model predicts

that for small areas, threshold is independent of area (Ricco's

law) and for larger areas, threshold is proportional to the square

root of area (Piper's law). The prediction of Ricco's law is the

result of the optical point-spread function and the receptor ap-

erture. When the area of the increment shrinks below a certain

point, the distribution of absorbed photons across the receptors

becomes fixed—further decreases in area only reduce the total

number of absorbed photons. Piper's law is predicted by quan-

ta! fluctuations (Barlow, 1958a).

The open circles in Figure 17C are measurements by Davila

and Geisler (1987) for green background and increment fields

(peak spectral emission of 550 nm) and a 3-mm pupil. The

close agreement between real and ideal performance implies

that in the fovea, Ricco's area is almost completely attributable

to the optical point-spread function and the receptor aperture.

This apparent agreement was verified by the following analysis.

A minimization program (STEPIT; Chandler, 1969) was used to

obtain (simultaneously) least squares fits of straight lines to the

horizontal and rising portions of the real data and the ideal pre-

dictions. The intersection of the lines was then taken to be the

size of Ricco's area. The average Ricco's area for 3 subjects was

5.0 min2 and that of the ideal observer was 5.4 min2. These

areas are within experimental error of being equal. (This psy-

chophysical estimate of Ricco's area confirms the much earlier

study of Lamar, Hecht, Shlaer, & Hendley, 1947.)

Like the grating detection experiments, these results suggest

that the center mechanisms of many neurons in the retina and

cortex are driven by a single cone or row of cones. If the neural

summation produced by center mechanisms were as large as

that produced by the optics, then the combined effect of the

preneural and neural summation would produce necessarily a
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Figure 16. Increment detection. (A. Average pattern of photon absorptions in the receptors produced by a
green circular background. B, Average pattern of absorptions produced by the background plus a green
increment field of 3' diameter. C. Idea] receptive field for discriminating the patterns in A and B.)

Ricco's area of at least 10 min2 (assuming that neural noise
would prevent any undoing of the summation effects). Thus,
any neural summation must be a small fraction of that pro-
duced by the optics (cf. Figure 3).

It may seem puzzling at first that there is reasonable agree-
ment between real and ideal performance in the Ricco and con-
trast-sensitivity experiments, but not in the background-sum-
mation experiment. However, this may be explained by the fact
that performance in the background-summation experiment
should be strongly influenced by the nonlinear response proper-
ties of visual neurons. The powerful nonlinearities involved in
the background-summation experiment have been most clearly
demonstrated by Hayhoe and her colleagues (e.g., Buss et al.,

1982). Their results suggest that the center/surround receptive
fields in the early visual system require a substantial amount of
light on the surround areas in order to prevent severe response
saturation and hence infinite thresholds. On the other hand,
these severe nonlinearites should not come into play in the
Ricco and contrast-sensitivity experiments because the experi-
ments are run against a large uniform background and because
the test stimuli (at threshold) consist of relatively small devia-
tions from the background intensity level. (For a discussion of
why small perturbation experiments can be unaffected by cer-
tain types of simple nonlinearities, see Cornsweet, 1970, pp.
324-328.)

Contrast and increment discrimination. So far, we have con-
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sidered only the detection of target patterns against a uniform

field of light. Although simple detection is essential in even the

most basic visual systems, useful visual pattern recognition also

requires that the organism be able to discriminate between the

various intensity differences existing in the visual scene. The

contrast- and increment-detection paradigms described pre-

viously can be modified to study this kind of discrimination.

An important version of the contrast-discrimination experi-

ment requires the observer to discriminate changes in the con-

trast of a sine-wave grating (Bradley & Ohzawa, 1986; Legge,

1981; Pelli, 1985; Nachmias & Sansbury, 1974). The two obvi-

ous variables to manipulate are spatial frequency and the base

contrast of the two gratings to be discriminated. The data in

Figure ISA are the contrast-discrimination thresholds for

Gaussian-damped gratings of 4, 8, 16, and 24 c/deg as a func-

tion of base contrast (Geisler & Davila, 1987). The Gaussian

damping was such that only about 2.5 cycles of the grating

patch were visible (i.e., the bandwidth of the stimuli was 1.0

octave). The Gaussian damping covered twice this extent in the

direction parallel to the gratings. The stimuli were presented for

300 ms on a Joyce CRT (cathode-ray tube) with a white (P4)

phosphor at 150 cd/m!, in a two-alternative forced-choice pro-

cedure. The stimuli were viewed through a 3-mm artificial

pupil.

Note that at all spatial frequencies, threshold initially de-

clines as base contrast is increased and then begins to increase.

The minimum of the curves occurs at about the point at which

the base contrast is at detection threshold.

The solid curves show the performance of the ideal discrimi-

nator for the same stimuli. As usual, the relative-efficiency

method was used to translate the predicted curves; however, the

relative positions of the curves were not altered. As can be seen,

the ideal discriminator's contrast threshold is unaffected by the

grating contrast. In other words, the information available at

the photoreceptors for contrast discrimination is independent

of the base contrast. There are two obvious conclusions one can

draw from this. First, the effects of base contrast on threshold

are neither the result of preneural factors (excluding uncer-

Figure 17. Comparison of increment detection for real and ideal observ-
ers. (In all cases, the predictions of the ideal observer have been scaled

by the relative-efficiency method for the purpose of comparing shapes.

A. Increment threshold as a function of steady background intensity
for two i ncremenl diameters. Ideal-observer predictions include an arbi-
trary level of receptor dark noise; approximately 80 events/s/receptor.

Dotted line shows one of the predicted curves without dark noise. Ideal
predictions were translated vertically by 1.1 log units; neutral density
value = 2.2 log units. B. Increment threshold as a function of back-
ground diameter for a 1' test spot. Upper solid line shows the ideal per-

formance when the entire stimulus pattern is set against a dim back-
ground; lower solid line shows the ideal performance when it is set
against a dark background. Data are from Westheimer, 1967b. Ideal
predictions have been translated vertically by 1.8 log units; neutral den-
sity value = 3.2 log units. C. Threshold energy as a function of incre-
ment field area for square increment fields. Ricco's area, the horizontal
portion of the curves, is estimated to be nearly the same for both real
and ideal observers. Ideal predictions were translated vertically by 1.0
log units; neutral density value = 2.0 log units.)



292 WILSON S. GEISLER

O.I

.01

.001

C/DEG

o—
22

JB

-a .01 O.I

CONTRAST

B

WG

2.0 2.5 3.0 3.5 4.0 4.5

LOG INTENSITY (QUANTA/FLASH/POINT)

5.0

Figure IS. Contrast and increment discrimination for real and ideal
observers. (Predictions of the ideal observer have been scaled by the
relative efficiency method for the purpose of comparing shapes. A. Con-
trast discrimination threshold as a function of base contrast for 1.0-
octave Gabor patches at 5 spatial frequencies. Ideal predictions were
translated vertically by 1.5 log units; neutral density value = 3.0 log
units. B. Increment discrimination threshold for point-source stimuli
as a function of point-source base intensity measured against a 21-td
steady background. Dotted line is the prediction of the ideal observer
with an no position uncertainty. Solid line is the ideal-observer predic-

tion with—in addition—an uncertainty region of 20 min2. Ideal predic-
tions were translated vertically by 0.8 log units; neutral density value =
1.6 log units.)

tainty due to eye movements) nor of changes in the discrimina-

tion information available in the stimuli. Second, the relative

efficiency of the human observer to the ideal discriminator is

best when the base contrast is equal to detection threshold. The

ideal-observer analysis shows that all of the effects of base con-

trast on threshold must be explained by neural mechanisms.

The increment-discrimination paradigm yields results sim-

ilar to those for contrast discrimination. The data points in Fig-

ure 18B show increment discrimination for point sources on

a uniform background as a function of pedestal point-source

intensity. These data, from Geisler and Davila (1985), confirm

the well-known result (Leshowitz, Taub, & Raab, 1968; Nach-

mias & Kocher, 1970; Whittle & Swanston, 1974) that incre-

ment-discrimination threshold decreases until the pedestal is

near its detection threshold and then rises according to Weber's

law at higher pedestal intensities. The dotted curve shows the

performance of the ideal observer, translated appropriately for

the purposes of comparing shapes. Again, it is seen that most

of the effects of pedestal intensity cannot be explained by pre-

neural factors. Notice that the ideal observer does predict an

increase in threshold with pedestal level; however, the predic-

tion is that threshold should follow the de Vries-Rose law, not

Weber's law.

We now briefly consider some of the neural hypotheses that

have been proposed for the contrast- and increment-discrimi-

nation functions. It is quite possible that the initial decrease

in threshold, the so-called dipper or pedestal effect, may be of

different origin from the subsequent increases in threshold;

thus, we will consider explanations for the two parts of the curve

separately.

There have been several proposed explanations for the pedes-

tal effect. One is the uncertainty hypothesis (Cohn & Lasley,

1974; Foley & Legge, 1981; Nachmias & Kocher, 1970; Pelli,

1985; Tanner, 1961). The hypothesis is that the observer might

have some uncertainty about one or more aspects of the signal

(e.g., position, spatial frequency, or size). Because of this uncer-

tainty, the observer must look for the signal throughout the un-

certainty regions. When the base contrast is zero, there is a sub-

stantial probability that some part of the noise existing within

the uncertainty regions will be similar enough to the signal to

be misinterpreted. But when the base contrast is itself high

enough to be detectable, then the observer can base his or her

judgment on the maximum response within the uncertainty re-

gions, which will always occur at the correct place. Pelli (1985)

has shown in detail how quantitative models incorporating un-

certainty effects can predict appropriate pedestal effects. The

predictions of the uncertainty hypothesis can also be derived

within the framework of the present ideal-observer analysis by

considering the ideal discriminator for situations in which there

is real stimulus uncertainty. In this case, Equation 7 gives the

maximum likelihood decision rule. Monte Carlo simulations

with Equation 7 show that the ideal observer predicts a substan-

tial pedestal effect even for small uncertainty regions. For exam-

ple, the solid curve in Figure 18B shows ideal-observer perfor-

mance for an uncertainty region of 20 min2. This is the amount

of uncertainty that would be introduced into the retinal image

if the random eye movements that occur under steady fixation

are not accurately registered by the visual system (Geisler &

Davila, 1985). Thus, it appears that uncertainty could account

for the pedestal effect.

Also, it is apparent that uncertainty may account for some of

the differences between real and ideal performance in the sim-

ple contrast-detection experiment, as described earlier. How-

ever, the size of the observed pedestal effect implies that uncer-

tainty cannot account for more than a small part of the differ-
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ence (about 0.5 log units) between real and ideal contrast

sensitivity. The predicted pedestal effect (like the observed

effect) is about the same size at all spatial frequencies. Thus,

as mentioned earlier, position uncertainty uniformly scales the

predicted contrast-sensitivity function.

The pedestal effect could also be explained by the existence

of appropriate combinations of nonlinear transduction and in-

ternal noise, or by an internal-threshold mechanism. The non-

linear-transduction hypothesis requires that the contrast signals

first pass through a positively accelerating nonlinearity and then

undergo degradation by postnonlinearity noise (Legge & Fbley,

1980; Nachmias & Sansbury, 1974; Wilson, 1980). Because of

the nonlinearity, increasing the pedestal contrast increases the

size of the response given to the contrast increment. Because

some of the noise occurs after the nonlinearity, there is an im-

provement in the signal-to-noise ratio and hence a decrease in

threshold. The pedestal effect could also be explained if the con-

trast signals had to exceed some internal threshold in order to

be transmitted further along the visual pathway (Blackwell,

1963; Foley & Legge, 1981). Obviously, any base contrast that

pushes the contrast signals toward or above this internal thresh-

old will cause a decrease in contrast threshold.

Two types of mechanism have been proposed to explain the

monotonic increase in contrast threshold that occurs when the

pedestal exceeds detection threshold. One is a compressive non-

linearity followed by the addition of internal noise. This expla-

nation is not necessarily inconsistent with the accelerating non-

linearity suggested to explain the pedestal effect. Indeed, visual

neurons often display an accelerating nonlinear response at low

contrasts and a highly compressive nonlinearity at high con-

trasts (Albrecht & Hamilton, 1982; Werblin & Copenhagen,

1974). Another, possible mechanism is a monotonic increase in

the internal noise with stimulus contrast. Cortical neurons of-

ten display increases in response variability with increasing re-

sponse (Tolhurst, Movshon, & Dean, 1983). It is possible, of

course, that both mechanisms contribute to the psychophysical

results.

Subthreshold summation and contrast masking. The sub-

threshold-summation paradigm (Graham, Robson, & Nach-

mias, 1978; Sachs, Nachmias, & Robson, 1971; Watson, 1982)

and the contrast-masking paradigm (Legge & Foley, 1980; Stro-

meyer & Julesz, 1972; Wilson, McFarlane, & Phillips, 1983)

have been used extensively to study the frequency selectivity of

spatial mechanisms within the visual system. In recent years,

they have provided the major source of data used in the develop-

ment of multiple spatial-frequency channel models of spatial

vision (Graham etal., 1978; Watson, 1983; Wilson etal., 1983).

In these models, each retinal location is processed in parallel by

multiple channels (e.g., classes of receptive field), each tuned to

a different range of spatial frequencies and orientations. Usu-

ally, the channel outputs are assumed to be statistically indepen-

dent.

In the typical subthreshold-summation experiment (e.g.,

Watson, 1982), thresholds for compound gratings consisting of

a pair of spatial frequencies are compared with the thresholds

for the component gratings presented alone. When the compo-

nent gratings are close in spatial frequency, their signals add

perfectly in the compound grating. Thus, the compound grating

reaches threshold when each component grating is set to one

half its individual threshold. Experiments show that when the

gratings differ sufficiently in frequency (e.g., by a factor of 2),

each component must then be set well above one half (up to

around 80%) its individual threshold value in order for the com-

pound grating to reach threshold. This effect has been taken to

imply that stimuli containing sufficiently different spatial fre-

quencies are processed by separate channels (e.g., classes of re-

ceptive field) tuned to different spatial-frequency ranges.

However, the ideal-observer model also predicts much (but

not all) of this latter effect without including neural mecha-

nisms. In particular, it predicts that when the gratings in the

compound are of sufficiently different frequency (e.g., differ by

a factor of 2), the components must be set to around 70% of

their individual threshold contrasts, as opposed to 50% when

they are close in frequency.

The reason that the ideal-observer model makes this predic-

tion is similar to the reason that it is predicted by probability

summation across space within a single spatial-frequency chan-

nel (Graham etal., 1978; Quick, Hammerly, & Reichert, 1976).

When the sine waves are sufficiently different in spatial fre-

quency, the bands of frequency components in the Poisson

noise that mask the sine waves' detectability are statistically in-

dependent; whereas, when the sine waves are similar in fre-

quency, the masking frequency components are not statistically

independent. However, the important point here is that the pre-

dicted effect is attributable to the information content of the

stimuli at the cornea. In other words, the information available

to perform the detection is physically lower at the cornea when

the frequencies are dissimilar. Obviously, this information

difference in the stimuli needs to be considered when trying to

draw inferences about the spatial-frequency tuning of neural

mechanisms from subthreshold-summation data.

The contrast-masking experiment does not suffer from the

same problem. In the typical version of this paradigm (e.g., Wil-

son et al., 1983), the observer must detect a target sine-wave

grating patch added to a high-contrast masking grating of some

other spatial frequency. In this case, the predictions derived

from the ideal observer show no effect of masker spatial fre-

quency or orientation for much the same reason that no effect

of base contrast is predicted in the contrast-discrimination ex-

periment. On the other hand, the data show that target thresh-

old decreases monotonically as the masker frequency is moved

away from the target frequency in either direction. These effects

must be due to neural mechanisms and may reflect the fair de-

gree of frequency selectivity and the wide range of center fre-

quencies displayed by neurons in striate cortex.

Location and Shape Discrimination

In the location-discrimination task, the observer must dis-

criminate changes in the relative positions of two or more ob-

jects whose shapes, intensities, and wavelength compositions re-

main fixed. For present purposes, these objects are regarded as

two dimensional (i.e., as intensity functions in retinal coordi-

nates); thus, the location changes can consist only of vertical or

horizontal translation or rotation.

Location-discrimination performance displays a number of

interesting properties. Perhaps the most spectacular is that un-

der the right conditions, humans can discriminate changes in
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relative location that are only a fraction of the diameter of a

single cone. For example, in the vernier-discrimination task, ob-

servers can detect a change of only a few seconds of arc in the

relative location of two nearly abutting lines (Wulnng, 1892).

This appears remarkable both because the diameter of a foveal

cone is much larger than this value (around 30" of arc) and be-

cause the optics of the eye spread out the light over many recep-

tors. Furthermore, this high degree of sensitivity holds even

when the lines are reduced to points (Ludvigh, 1953; Sulli-

van, Oatley, & Sutherland, 1972; Westheimer & McKee,

1977b). Westheimer (1975) has coined the term hyperacuity to

describe location-discrimination thresholds that are sig-

nificantly smaller than the diameter of a single cone.

Hyperacuity performance is not unique to the vernier task.

Westheimer and McKee (1977b) and others (e.g., see West-

heimer, 1981) have shown that hyperacuity performance can be

observed for a wide range of stimulus shapes (e.g., lines, dots,

chevrons, small blobs, and sine-wave gratings) and tasks (e.g.,

bisection discrimination, separation discrimination, displace-

ment discrimination, and stereo discrimination). The bisection

task, in which the observer must decide whether one object is

centered between two others, can yield thresholds near 1" of arc

(Klein &Levi, 1985).

The achievement of hyperacuity performance in location-

discrimination tasks has been a long-standing puzzle in vision

science. The fact that such performance levels can be achieved

with a rather wide range of stimulus configurations has led a

number of investigators to suggest that special cortical mecha-

nisms (e.g., interpolation networks) exist for extracting relative

location information (Barlow, 1979, 1981; Crick, Marr, & Pog-

gio, 1981;Hirsch&Hylton, 1982; Westheimer, 1981). However,

ideal-observer analysis removes much of the mystery by show-

ing that many of the location-discrimination phenomena coin-

cide nicely with variations in the information content of the

stimuli at the photoreceptors (Geisler, 1984; Geisler & Davila,

1985, and below). Thus, it is quite possible that most location-

discrimination phenomena are attributable to the same mecha-

nisms thought to underly other basic visual discrimination phe-

nomena.

To illustrate the basic properties of location discrimination,

I will concentrate as much as possible on the separation-dis-

crimination task (especially on the two-line and two-point sepa-

ration tasks). In the separation task, the observer must discrimi-

nate changes in the distance between two identical objects.

Stimulus a is a pair of objects at some base separation; Stimulus

b is a pair with some incremental change in the separation. Not

all of the basic variables affecting location discrimination have

been examined in a separation task, so other localization tasks

will be considered as needed.

Base separation. The effect of base separation in the two-line

separation-discrimination task for lines under 1 min in width is

shown in Figure 19A. These data from Westheimer and McKee

(1977b) illustrate a typical result for simultaneously presented

objects; namely, hyperacuity is observed only when the objects

are separated neither too much nor too little. The base separa-

tion apparently must be within the range of approximately 1-

10 min of arc, with maximum sensitivity being reached for base

separations of 2-5 min. Note that when the base separation is

zero (a case not shown in Figure 19), the separation task re-

duces to the classical task of deciding whether there is one or

two line segments (Helmholtz, 1866/1925; Wilcox & Purdy,

1933). It is well-known that threshold in the two-line (or two-

point) resolution task is typically 45-60 s, a value that appears

to be consistent with the data in Figure 19A.

It is important to note that the separation thresholds reported

by Westheimer and McKee (1977b) were doubled before plot-

ting them in Figure 19. This was done (a) to facilitate compari-

son of data obtained with their procedure and that obtained

with standard two-alternative forced-choice procedures and (b)

to allow proper comparison of performance in hyperacuity and

resolution tasks.7

It is intuitively reasonable that location discrimination

should deteriorate at large base separations; however, it is not

obvious why location discrimination at separations of 1-10

min should be better than two-line resolution (0-min separa-

tion). Indeed, the observed values of two-line resolution thresh-

old are often viewed as intuitively reasonable. Because the re-

ceptor diameter is 30 s, a 60-s separation of the lines should

center them on two rows of receptors that are separated by ex-

actly one row of receptors. It would appear then that two-line

resolution matches nicely the sampling grain of the receptor

lattice. Therefore, the puzzle has been the much smaller thresh-

olds observed at base separations of 1-10 min. It is this puzzle

that has led to the hypothesis of special mechanisms for hyper-

acuity.

Consider how the ideal observer performs in the separation-

discrimination task. Figure 20A and 20B show the pattern of

photon absorptions produced by two short, green line segments

30 s in width that are separated by 3 and 3.2 min, respectively.

The ideal receptive field for making the discrimination is shown

7 Westheimer and McKee (1977b) used a somewhat nonstandard psy-
chophysical procedure in which one of seven separations of the stimuli
were presented on each trial. The subject had to judge whether the sepa-
ration was greater or less than the middle of the range (the fourth separa-
tion). Westheimer and McKee took threshold to be the change in separa-
tion from the midrange separation required for 75% correct. This defi-
nition of threshold might lead one to believe that the subject could

reliably discriminate the midrange stimulus from the threshold stimu-
lus in a simple forced-choice situation. However, this is highly unlikely

on theoretical grounds. Signal detection analysis and simulations with
the ideal observer show that the optimal strategy for the subject is to
regard the Westheimer and McKee task as a standard single-interval,
two-alternative task that has only two of the stimuli that bracket the

midrange. With this strategy, the ideal-observer's threshold is the same
in the simple two-stimulus task and in the Westheimer and McKee task.
Yet, the ideal-observer cannot discriminate, at 75% correct, the mid-
range stimulus from the threshold separation. Therefore, it is likely that
the better definition of threshold in the Westheimer and McKee task is
the difference in separation between the lower and upper 75%-correct
points.

Dennis McFadden and I have confirmed this argument psychophysi-
cally. We measured vernier threshold in the Westheimer and McKee
(1977b)taskand in a single-interval yes/no task. We found that thresh-
olds were approximately a factor of 2 larger in the yes/no task. Hence,
the Westheimer and McKee definition of threshold underestimates lo-
cation-discrimination thresholds by a factor of 2. Many of the studies
of location discrimination that are described here have used the proce-
dure of Westheimer and McKee. When appropriate, the thresholds have
been doubled.
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Figure 19. Location discrimination for real and ideal observers. (Predictions of the ideal observer have been

scaled by the relative-efficiency method for the purpose of comparing shapes. In this case, scaling does not

correspond to vertical translation in log coordinates. A. Separation thresholds for thin, 12.8'-long lines

[presented for 200 ms] as a function of base separation. Data for 2 subjects are from Westhrimer & McKee,

1977b. Ideal predictions were scaled using a neutral density value of 3.6 tog units. B. Two-line separation

and resolution thresholds as a function of line length. Separation discrimination data for 2 subjects are
from Westheimer & McKee, 1977b. Ideal predictions were scaled using a neutral density value of 2.15 log

units. C. Vernier acuity for l'-wide dark lines presented for 750 ms on a 17.5 cd/m2 background as a
function of contrast [100% contrast is a completely dark line). Data for 2 observers are from Wilson, 1986.

Ideal predictions were scaled using a neutral density value of 3.3 log units.)
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Figure 20. Two-line separation discrimination. (A. Average pattern of
photon absorptions in the receptors produced by two thin [30"'-wide]
green lines separated by 3'. B. Average pattern of absorptions produced
when the lines are separated by 3.2'. C. Ideal receptive field for discrimi-
nating the patterns in A and B.)

in Figure 20C. The absorption patterns and ideal-receptive field
for two-line resolution are shown in Figure 21. The perfor-
mance of the ideal observer is given by the solid curve in Figure

19A, again scaled by the relative-efficiency method for the pur-
pose of comparing shapes.

Like the human observer, the ideal observer is much less sen-
sitive when the base separation is zero (resolution) and achieves
maximal sensitivity when the base separation reaches 2-5 min.
Thus, the present ideal-observer analysis shows that the dis-
crimination information available at the photoreceptors in the
two-line separation (hyperacuity) task is many times better than
that in the two-line resolution (acuity) task. This suggests that
the same neural mechanisms, operating at a constant level of
efficiency, could account for both results—no special mecha-
nisms would seem to he required. (In the discussion section, I
will show that a relatively sparse array of receptive fields could
underlie hyperacuity performance without the need for neural
interpolation processes.)

Unlike the human observer, the ideal observer's performance
does not deteriorate at larger base separations. This occurs be-
cause the ideal observer integrates information perfectly over
arbitrary distances. Apparently, the human observer is unable
to integrate information accurately over such large distances.

Stimulus size. Westheimer and McKee (1977b) also mea-
sured the effect of line length on separation discrimination for
a base separation of 3 min. The results for 2 subjects are shown
in Figure 19B. As can be seen, there is only a slight improve-
ment in sensitivity with line length—two points are localized
about as well as two lines. Consistent with this result is the fact
that two-point resolution is about as good as two-line resolution
(e.g., see Riggs, 1965). This result also illustrates that the hu-
man visual system does not effectively integrate information
over large distances.

Of course, the ideal observer does integrate information per-
fectly. The lower solid curve in Figure 19B shows the effect of
line length in the separation task for the ideal observer. Ideal-
observer sensitivity increases with the square root of line length
(unless the line length is very small), whereas real sensitivity
increases much more gradually. The upper solid line in Figure
19B shows that two-line resolution is predicted to increase
more slowly (with the fourth root) of line length.

Stimulus intensity and contrast. Geisler and Davila (1985)
measured the effects of point source and background intensity
on two-point resolution and two-point separation discrimina-
tion. The stimuli were presented for 100 ms and viewed through
a 3-mm artificial pupil. The points were less than 30 s in diame-
ter and were created on a CRT screen with a green (PI5) phos-
phor. The open symbols in Figure 22A show the results for the
separation task, with a base separation of 3 min. The circles
were obtained against a dark background, the triangles against
a uniform background of 21 td (photopic trolands). As point-
source intensity is increased, threshold is seen to decline rapidly
at first and then more gradually, reaching an asymptotic value
of around 11 s. The solid symbols are the results for the resolu-
tion task (base separation of zero). Again, threshold declines
rapidly at first, but quickly reaches a plateau of around 48 s.
These asymptotic values for resolution and separation discrimi-
nation are consistent with the data of Westheimer and McKee
(1977b) shown in Figure 19 A. Another interesting aspect of the
data is that at low point-source intensities, resolution threshold
is lower than separation threshold (the curves cross each other).

[t was rather surprising to find that the ideal observer shows
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Figure 21. Two-line resolution. (A. Average pattern of photon absorptions in the receptors produced by
two superimposed thin, 30*-wide green lines. B. Average pattern of absorptions produced when the lines
are separated by 50". C. Ideal receptive field for discriminating the patterns in A and B.)

a different effect of line length in the resolution task than in the
separation task. As shown in Figure 22B, the ideal observer also
shows a different effect of intensity in the two tasks. In particu-
lar, the ideal observer's resolution threshold decreases more
gradually with increasing intensity than does its separation
threshold. At high intensities, resolution threshold decreases
with the fourth root of intensity, but separation threshold de-
creases with the square root of intensity. In addition, at low in-
tensities the resolution and separation curves cross each other
so that resolution threshold is lower than separation threshold.
These predictions hold qualitatively in the psychophysical data,
although the quantitative fit is not precise. Specifically, the ob-
served slopes are shallower than predicted, corresponding to a

deviation from the predictions toward Weber's law (Geisler &
Davila, 1985). As was mentioned earlier, similar deviations
from the ideal-observer predictions toward Weber's law are ob-
served in intensity-discrimination experiments (e.g., see Fig-
ures 17Aand 18B).

Note that the predictions in Figure 22B have not been trans-
lated; thus, the reader can compare the absolute sensitivities of
the human and ideal observers. The predictions shown in Fig-
ure 22B were generated with a small level of dark noise in-
cluded, which has the effect of causing the predicted curves for
the dark-background condition to rise steeply toward infinity at
low point-source intensities. The dark noise has no noticeable
effect on the predictions for the 21 -td background conditions.



298 WILSON S. GEISLER

300

100

30

10

"A .

0,« NO BACKGROUND

&,* BACKGROUND

SEPARATION

DISCRIMINATION

2.5 10 3.5 4.0 45 5.0

LOG INTENSITY (QUANTA/FLASH/POINT)

I'"

10

O.I

RESOLUTION

SEPARATION

\

1 2 3 4

LOG INTENSITY (QUANTA/FLASH/POINT)

Figure 22. Two-point resolution and separation discrimination as a function of point-source energy. (A.

Circles are thresholds obtained in the dark-adapted eye. Triangles are thresholds obtained against a steady
background of 21 td. Open symbols are separation thresholds; closed symbols are resolution thresholds. B.
Predictions of the ideal observer for exactly the same conditions as in A. Dark-adapted predictions were
made assuming an arbitrary amount of receptor dark noise; 23 events/s/receptor. Dark noise has no signifi-
cant effect on predictions for the 21 -td background predictions. Predictions of the ideal observer have not
been scaled.)

Geisler and Davila (1985) showed that the surprising behav-

ior of the ideal observer as a function of intensity is not depen-

dent on the particular parameters or assumptions made about

the preneural mechanisms, but is explained by more funda-

mental properties of the information contained in the stimuli.

In particular, they showed by mathematical analysis that the

separation task is a "first-order task"—the information for

performing the task is contained in the first derivative of the

stimulus shape at the retina. Whereas the resolution task is a

"second-order task," the information is contained in the second

derivative of the stimulus shape. They also showed that the

square-root and fourth-root relations hold almost indepen-

dently of stimulus shape, as long as the intensity of the targets

is sufficiently high relative to the background intensity. Thus,

these relations can be added to the de Vries-Rose law as general

properties of quantum-noise-limited detectors and discrimina-

tors:

AN oc N1'2 intensity discrimination

A0 cc JV~"2 location discrimination (separation > 2')

A6 oc JV~"4 resolution (separation = 0')

It should be kept in mind, however, that under many circum-

stances, the target intensities do not differ sufficiently from the

background for these relations to hold. For example, in Figure

22B, the square-root and fourth-root relations are only approx-

imated at the highest point-source intensities. Another example

of this is the ideal-observer model's prediction for the experi-

ment of Wilson (1986). Wilson measured vernier threshold for

dark, 1' X 8' lines on a background of fixed luminance, as a

function of the intensity difference between the target and back-

ground. In Figure 19C, Wilson's data and the performance of

the ideal observer are compared. Again, the ideal-observer's

sensitivity has been reduced (by the relative-efficiency method)

for the purposes of comparing shapes. As can be seen, both the

ideal observer and the real observer display a power-law rela-

tion, but with an exponent significantly more negative than

-0.5. The receptor-absorption patterns and ideal receptive field

for vernier discrimination with dark lines is shown in Fig-

ure 23.

Image blur. Westheimer and McKee (1980), Westheimer

(1979), and Watt and Morgan (1983) have examined the effects

of blur on location discrimination. For example, Westheimer

and McKee measured the effects of Gaussian blur on three-line

stereo discrimination. Their data and the performance of the

ideal observer are shown in Figure 24. There are two points to

make about the effects of blur. First, the ideal-observer analysis

predicts that there should only be a modest effect of blur on the

localization of line stimuli. In other words, the information for

performing the task is not greatly reduced by moderate

amounts of blurring. But it does predict a considerably larger

effect than that found by Westheimer and McKee. For localiza-

tion of edges in a vernier task, Watt and Morgan found a some-

what larger effect of Gaussian blur, although again, not as large

as that predicted by the ideal-observer analysis. Curiously, this

result suggests that the relative efficiency of the human observer

increases as blur increases within this range. This might be ex-

plained by the fact that relative efficiency decreases at high in-

tensities for high-contrast stimuli (cf. Figure 20). Blurring the

stimuli reduces the peak intensity and, thus, may counteract the

effects of the blur on relative efficiency.

The second, rather obvious point is that the effects of blur
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Figure 23. Two-line vernier acuity. (A. Average pattern of photon ab-
sorptions in the receptors produced by two I'-wide, completely dark
lines against a gray background at an offset of 12". B. Average pattern
of absorptions produced when the lines are at an opposite offset of 12".
C. Ideal receptive field for discriminating the patterns in A and B.)

predicted by the ideal observer depend on the spatial frequency
content of the stimuli. For example, grating acuity, which de-
pends on a very narrow range of high spatial frequencies, is
more severely affected by blur than is two-line acuity. Of course,
the effects of blur also depend on the form of the blurring func-

tion. Thus, there is no general statement that can be made about
the effects of blur on the information available at the receptors
for discrimination—the ideal observer model must be evalu-
ated to check each case individually.

Context. Another variable that has been examined in the
localization paradigms is the context of visual objects within
which the task is performed. Westheimer and Hauske (1975)
showed that vernier acuity is elevated by flanking lines that are
2-7 min distant from the vernier junction. Similarly, R. A. Wil-
liams and Essock (1986) showed that vernier thresholds are
most elevated by rectangular background fields that are 3-4
min wide. These effects are superficially similar to those found
for increment detection as a function of background diameter
(see Figure 17B). Like the increment-detection case, the predic-
tion of the ideal-observer analysis is an increase in vernier
threshold with background size, but it does not predict the cor-
rect shape for the increase nor the subsequent decrease. Thus,
most of these effects can be explained neither by preneural fac-
tors nor by changes in the information content of the stimuli;
they must be due to neural mechanisms.

Chromatic Discriminations

In all of the experiments analyzed previously, the wavelength
distributions (spectral content) of the stimuli were held fixed
and were generally broad band enough to ensure that the R and
G cones were stimulated about equally well. Under these cir-
cumstances, the shapes of the predicted curves depend little on
the absorptance spectra of the photopigments or on the distribu-
tion and relative numbers of the three classes of cone. I will now
consider a few examples involving chromatic discriminations
for which the effects of the absorptance spectra and cone distri-
butions play a more important role.

100
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Figure 24. Comparison of real and ideal localization discrimination as
a function of Gaussian blur. (Data are stereo discrimination thresholds
for thin, 4.5'-long lines presented for 500 ms. Ideal-observer predictions
are for monocular localization of a single line of the same dimensions
[neutral density value = 3.8 log units]. Data for 3 subjects are from
Westheimer &McKee, 1980.)
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Figure 25. Comparison of ideal and real wavelength-discrimination
functions. (Solid line is the ideal-observer prediction translated by the
relative-efficiency method for the purpose of comparing shapes. No
meaningful neutral density value can be given because the stimulus pre-
sentation was continuous. Data are averages across subjects from Bed-

ford & Wyszecki, 1958, and Wright & Pitt, 1934.)

Wavelength discrimination. In the typical wavelength-dis-

crimination experiment, the observer must distinguish between

two regions each uniformly illuminated with monochromatic

light. The luminances of the regions are held constant, whereas

the wavelength of one of the regions is varied. Results obtained

with relatively large foveal stimuli (1 and 2° bipartite fields) are

shown in Figure 25—the dotted line gives the average data of

Wright and Pitt (1934) and the open triangles those of Bedford

and Wyszecki (1958). Recall that the derivation and computer

implementation of the current ideal-observer model assumes

that the stimuli are created by mixing three primaries. Thus,

our computer implementation cannot easily generate predic-

tions for chromatic discriminations of monochromatic lights.

However, for the case of discrimination of uniform regions, the

sensitivity of the ideal observer reduces approximately to the

following equation:

d' (10)

where R, G, and B are the mean number of photons absorbed

(per receptor) in the red, green, and blue sensitive cones; AR,

AC, and AB are the differences in the mean numbers of ab-

sorbed photons; and n,,«,, and n\, are the numbers of the three

cone types lying within the stimulus regions. This equation for

ideal-observer performance was originally described by Vos and

Walraven (1972), although they did not report its predictions. I

have used Equation 10 to generate the solid curve drawn in Fig-

ure 25.

The small irregularities seen in the predicted curve should be

assigned little significance. They occur because the wavelength-

discrimination thresholds predicted for monochromatic lights

are very sensitive to small perturbations in the assumed cone-

absorption spectra and ocular-transmittance function (Figures

4-6). In fact, because of what is apparently noise in the Estevez

absorptance spectra in Figure 6, the predictions in Figure 25

are actually based on the very similar, but smoother spectra of

Smith and Pokorny (1972, 1975) as tabled in Wyszecki and

Stiles (1982). The predictions with the Estevez spectra appear

similar but with larger irregular bumps. The predicted thresh-

olds for the other chromatic discrimination tasks discussed later

are not nearly so sensitive to slight measurement errors in the

absorption spectra and transmittance function; hence, the Es-

tevez primaries were used.

Figure 25 shows that the ideal observer placed at the level of

photon absorption in the receptors displays many (but not all)

of the qualitative features of the wavelength-discrimination

data. It predicts relatively poor discrimination in the middle

wavelengths and at the ends of the spectrum, and best perfor-

mance in the yellow and blue-green regions of the spectrum.

Thus, it appears that these aspects of the wavelength-discrimi-

nation data may be largely attributable to loss of information

at the receptors.

There are two aspects of the data not predicted by the ideal

observer. First, the ideal observer's sensitivity does not decline

quickly enough at the extreme long and short wavelengths. Sec-

ond, most human wavelength-discrimination functions display

a second (but smaller) bump in the short wavelength end of the

spectrum. There is some hint of this in the predicted curves,

but it is not nearly large enough. Some of these discrepancies

could be explained by errors in the measurement of the cone-

absorption spectra, transmittance function, or in the wavelength-

discrimination function at the short-wavelength end of the visi-

ble spectrum where the measurements are least reliable. How-

ever, it is more likely that they represent losses of information

by mechanisms further along the visual pathway.

One possible mechanism that has been widely suggested

would be an encoding of receptor outputs into opponent and

luminance channels. A wealth of psychophysical data suggests

that the receptor outputs are encoded by the visual system into

a red/green (e.g., R-G) channel, a blue/yellow (e.g., B-R) chan-

nel, and a luminance (e.g., R + G) channel (for a review, see

Boynton, 1979; for an example model that predicts a wide range

of discrimination data, see Guth, Massof, & Benzschawel,

1980). There is also ample physiological evidence for opponent

channels in macaque monkey (de Monasterio & Gouras, 1975;

Derrington,Krauskof,&Lennie, 1984;DeValois, 1965). How-

ever, an encoding of receptor signals into opponent and achro-

matic channels by itself is not enough to explain the present

discrepancies. For example, Vos and WaJraven's (1972) article

reported the predictions of a model with simple opponent and

achromatic stages following photon absorption. Nonetheless,

their predicted curve is quite similar to that predicted by Equa-

tion 10. It is smoother, but this is undoubtedly because they

further smoothed the absorptance and transmittance functions.

The reason that the two predicted curves appear very similar

is because Vos and Walraven's (1972) hypothesized postrecep-

tor stages removed little additional discrimination information.

The problem is this: If a hypothesized processing stage can (in

principle) be inverted to restore the original input, then it can-

not remove any information for discrimination. This is almost

true for their model, in which the only additional mechanism

for information loss is gain parameters on the opponent and

achromatic outputs. In fact, the information loss produced
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Figure 26. Luminance and chromatic contrast sensitivity at high spatial frequencies for real and ideal ob-
servers. (A. Circles are contrast sensitivity for isoluminant red [602 nm]/green [526 nm] gratings, and
triangles for green [526 nm] monochromatic gratings. Predictions of the ideal have been translated by the
relative-efficiency method for the purpose of comparing shapes. No meaningful neutral density value can

be given because number of cycles in the grating were not held fixed. B. Similar data and predictions for
isoluminant yellow [577 nm]/blue [470 nm] gratings and monochromatic yellow [577 nm] gratings. Data
are from Mullen, 1985.)
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by these gain factors could be produced by gain factors on the

receptor outputs without ever introducing postreceptor pro-

cessing.

The differences between ideal and real wavelength discrimi-

nation are most likely due to mechanisms such as internal noise

and/or nonlinearities operating in conjunction with opponent

mechanisms (Guthetal., 1980).

Chromatic contrast sensitivity. Just as the contrast-sensitivity

functions of luminance sine-wave gratings are fundamental for

understanding the spatial processing of luminance information,

measurements of contrast sensitivity for chromatic sine-wave

gratings are fundamental for understanding the spatial process-

ing of chromatic information. Within the limits of trichromacy,

an arbitrary image can be represented as a sum of sine-wave

gratings in three primary colors that may vary in amplitude,

frequency, orientation, and phase. Thus, under conditions in

which the visual systems behaves in an approximately linear

fashion, knowledge of how the visual system responds to chro-

matic and luminance gratings provides sufficient data to make

predictions of its responses to arbitrary stimuli.

Of particular interest in the linear-systems analysis of spatio-

chromatic processing are measurements of contrast-sensitivity

functions for isoluminant chromatic gratings. An isoluminant

grating varies only in wavelength composition across space;

running a light meter across it produces a constant reading. Iso-

luminant gratings can be produced by adding together, in oppo-

site phase, two gratings of different wavelength compositions

that have the same mean luminance and contrast. (For present

purposes, luminance is defined in accordance with the Com-

mission Internationale de 1'Eclairage [CIE] standard observer,

see Wyszecki & Stiles, 1982; and chromatic contrast is defined

as the contrast of the component gratings; see Footnote 5.)

The solid curves in Figure 26A show the predicted luminance

and isoluminance CSFs for the spatial configuration of the

Banks et a). (1987) study that used gratings that had a spatial

extent of 7 cycles in the vertical and horizontal direction. The

luminance predictions were for green (526 nm) gratings, the

isoluminance predictions for gratings obtained by adding to-

gether red (602 nm) and green (526 nm) gratings. Note that

when the chromatic contrast was 0.0, the stimulus was a uni-

form red-plus-green field (it appeared uniform yellow). Figure

26B shows similar predictions for yellow (577 nm) luminance

gratings and blue/yellow (470 nm/577 nm) isoluminance grat-

ings. These particular wavelengths are the ones used in the ex-

periments reported by Mullen (1985). Mullen's data for high

spatial frequencies are also plotted in the figures. The predicted

curves have been translated vertically together, by the relative-

efficiency method, for the purpose of comparing shapes.

Mullen's (1985) data were chosen because she took consider-

able care to control for luminance artifacts produced by chro-

matic aberration in the eye.8 Unfortunately, Mullen's (1985)

data are not entirely appropriate for comparison with the Banks

et al. (1987) study because the number of cycles in the gratings

was not held constant across spatial frequency. On the other

hand, it is likely that her obtained thresholds would not have

been much different had she kept the number of cycles fixed at

7 (or indeed at any number greater than 4; Howell & Hess,

1978). This is supported by the fact that the shape of her lumi-

nance CSF agrees quite well with that of Banks et al. In particu-

lar, the predicted luminance curves in Figure 26 are almost

identical in shape to those fitted to the luminance CSFs in Fig-

ure 14; they appear different because of the different scale.

8 It was assumed that the correction for chromatic aberration was
perfect and, hence, that the point-spread functions were identical for all
three primaries.
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An obvious hypothesis for the poorer human contrast sensi-

tivity with isoluminant gratings is that the chromatically oppo-

nent channels produce more spatial summation (e.g., they have

receptive fields with larger center regions) than the luminance

channel. In particular, because an isoluminant grating would,

by definition, produce spatial modulations of output only in the

opponent channels, the difference in the CSF shape would be

produced if the spatial summation were much larger in the op-

ponent channels. However, it appears safe to conclude from the

ideal-observer predictions in Figure 26 that most (although not

all) of the difference between the luminance and chromatic

CSFs at high spatial frequencies are attributable to preneural

mechanisms.

Notice also that the ideal-observer analysis correctly predicts

the fact that the difference between chromatic and luminance

contrast sensitivity is about the same for the red/green and blue/

yellow gratings (at least for these particular chromaticities).

This occurs because the red and green cones are doing most of

the work, even for the blue/yellow gratings. However; in both

cases, the observed difference between the luminance and chro-

matic CSF is somewhat larger than predicted; this effect may be

due to neural mechanisms.

It would also be interesting to compare real and ideal CSFs

for stimuli modulated along the tritanopic confusion line, al-

though this case is not considered here. Because of the low den-

sity of blue cones and the low transmittance of the ocular media

at short wavelengths, the ideal-observer model will predict

strongly reduced contrast sensitivity under these conditions.

Mullen (1985) also explored the region between pure lumi-

nance and pure chromatic contrast sensitivity. This was done

by measuring contrast sensitivity as a function of the luminance

ratio of red to green and blue to yellow, while holding total lumi-

nance fixed. Figure 27 A shows the predictions and data for grat-

ing threshold as a function of red/green luminance ratio for

high spatial frequencies.9 Figure 27B shows similar predictions

and data as a function of the blue/yellow ratio. Note that the

ideal observer does a reasonable job of predicting the effect of

luminance ratio, even correctly predicting a shift in the point

at which the red/green and blue/yellow functions reach their

minimum.

Two factors in the ideal-observer analysis contribute to the

predicted difference between luminance and chromatic CSFs.

First, and most important, is the high degree of spectral overlap

of the middle- and long-wavelength photo pigments and the rel-

atively small number of blue cones. The spectral overlap of the

photopigments greatly reduces the effective retinal contrast of

the grating. This is illustrated in Figure 28. Figure 28A shows

the pattern of photon absorptions produced by a red/green grat-

ing of zero contrast (a uniform yellow field). Figure 28B shows

the pattern produced by a red/green, 20-c/deg grating at a chro-

matic contrast of 1.0 (the highest possible). Figure 26 should be

compared with Figure 12B, which shows the pattern of photon

absorptions produced by a luminance grating of 20 c/deg at a

contrast of 1.0. Obviously, there is a drastic difference in the

effective contrast at the receptors.

The second, but less important, factor contributing to the

difference between luminance and chromatic CSFs is the reduc-

tion in receptor-sampling efficiency near the isoluminant point.

The best way to understand this is to consider red and green

gratings for which the mean luminances produce identical ab-

sorptions in the red-sensitive cones. If these two gratings are

added in opposite phase, the result is a grating that can only be

seen by the green cones, which are a third as numerous as the

red cones. This undersampling will produce some information

loss at high spatial frequencies. The effect will increase, the

closer the mean luminances are to producing the same rate of

absorptions in the red (or green) cones.

Two conclusions can be drawn from the ideal-observer analy-

sis. First, the difference between the high-frequency cutoff of

luminance and chromatic CSFs should be attributed largely to

the overlap of the photopigment absorption spectra. The obvi-

ous alternative hypothesis, that the difference is due to differ-

ences in spatial summation within the chromatic and lumi-

nance channels, appears to be ruled out. Second, the applica-

tion of ideal-observer analysis to the studies of Banks et al.

(1987) and Mullen (1985) suggests that for spatial frequencies

above a few cycles per degree, the efficiency of visual processing

beyond the level of the photopigments is nearly constant for

both luminance and chromatic discrimination (for gratings

with a fixed number of cycles). That is, much of the variation

in the threshold across all of these conditions may be accounted

for by losses of information prior to photoreceptor output. This

is consistent with the physiological evidence that the chromatic

and luminance information travel initially along the same neu-

ral channels (de Monasterio & Gouras, 1975; Derrington et al.,

1984; De Valois, 1965).

As with the luminance CSF, some important aspects of the

isoluminance CSF are not explained by preneural factors. For

instance, the ideal observer is many times more sensitive than

the human observer. Possible explanations are the same as the

ones discussed earlier in connection with the luminance CSFs.

Inspection of Figure 26 shows that the difference between the

luminance and chromatic CSFs is somewhat larger than that

predicted by the preneural factors alone. This effect might be

explained in part by differences in the gain, nonlinearities, or

neural noise between the opponent and luminance channels.

The final important aspect of the data not explained by the

ideal-observer analysis occurs at low spatial frequencies, which

were excluded from Figure 26. At low spatial frequencies, the

chromatic CSF approaches a constant value, whereas the ideal-

observer predicts that it should continue to increase. There are

of course a number of possible explanations for this leveling-off

effect: a shortage of large low-frequency units, relatively greater

noise and/or reduced gain in low-frequency units, or a failure

at low frequencies to integrate information over a fixed number

of cycles.

Recall also that the luminance CSF does not just level off

but decreases at low spatial frequencies; in fact, it crosses the

chromatic CSF (see Figure 15). This difference between chro-

matic and luminance CSFs could easily result if cortical lumi-

nance and opponent units were formed by combining the re-

' The data in Figure 27 differ slightly from those originally reported
in Mullen (1985) in that they have been scaled to correct for the loss of
contrast in the display that occurred at high spatial frequencies. Mullen
(personal communication, November 4, 1987) had applied this correc-
tion to the data that are replotted in Figure 26, but not to those in Fig-
ure 27.
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Figure 27. Chromatic contrast sensitivity for real and ideal observers as a function of the ratio of (A) red-

to-green and (B) yellow-to-blue luminance while mean luminance was held constant. (Stimulus parameters
were the same as for Figure 26B. Ideal-observer predictions were translated by the same amount as in Figure

24A. Data are from Mullen, 1985.)

sponses of LGN units as hypothesized by D'Zmura and Lennie

(1986). In particular, because the chromatic units are not spa-

tially opponent, they would produce no low-frequency roll-off.

Chromatic vernier acuity. As a final example, consider posi-

tion discrimination with chromatic stimuli. Morgan and Aiba

(1985) have recently measured vernier acuity for green targets

in a red, 41-cd/m2 background, as the intensity of the green

target was varied from below to above the point of equal lumi-

nance with the background. In the vernier task, the observer

must discriminate the relative position of lines or bars that are

positioned end-to-end. Figure 29 shows the data for two observ-

ers and the prediction of the model. For purposes of comparing

predicted and observed shapes, the predicted curve has been

translated by the relative-efficiency method. The predictions

were generated using Morgan and Aiba's 1-mm pupil size and

our best estimate of the spectral distributions of their CRT

phosphors. The model shows that the factor of 3 increase in

vernier acuity that occurs near the equal luminance point could

be explained by loss of information at the receptors. Again, this

loss is due mainly to the overlap of the absorption spectra of the

red- and green-cone photopigments. At higher luminances of

the green vernier targets, the ideal observer would continue to

increase in sensitivity, whereas the human observers would

surely have leveled off. This same discrepancy between real and

ideal performance also occurs in hyperacuity and acuity tasks

with pure luminance stimuli (see Figure 22) and may be due to

the same mechanisms responsible for producing the transition

from square root to Weber's law in intensity discrimination.

Discussion

A fundamental problem in visual science is to link physical

and physiological mechanisms to behavioral performance. For

complex stimuli, it has been difficult to assess the contributions

to performance of even the relatively simple preneural factors

of photon noise, preretinal optics, receptor optics, the receptor-

lattice arrangement, and the receptor-absorption spectra. The

sequential ideal-observer analysis presented here offers a rigor-

ous means of assessing the contributions of such factors in two-

alternative discrimination experiments with arbitrary two-di-

mensional stimuli. Furthermore, the analysis can, in principle,

be generalized to other classification tasks. By factoring out the

contributions of the preneural factors, vision scientists can,

within this approach, also assess the likely contribution of

higher level neural mechanisms.

The many examples presented here illustrate the usefulness

of ideal-observer analysis in the study of visual discrimination.

In particular, it was found that a wide range of phenomena are

predicted by the variations in information content of the stim-

uli at the level of photon absorptions in the receptor photopig-

ments. Those effects most completely predicted by the analysis

are those involving detection of stimuli containing relatively

high spatial frequencies measured under steady adaptation con-

ditions—luminance contrast sensitivity (Figure 14), the foveal

Ricco's area (Figure 17C), and chromatic contrast sensitivity

(Figures 26 and 27). The relative importance of stimulus-infor-

mation content and preneural mechanisms here may be ex-

plained because these stimulus conditions minimize the influ-

ence of nonlinear visual mechanisms.

Under some other conditions, neural mechanisms are clearly

responsible for major effects seen in the data, yet stimulus-infor-

mation content and preneural mechanisms also appear to be of

fundamental importance—vernier acuity as a function of con-

trast (Figure 19C), resolution versus separation threshold as a

function of luminance (Figure 22), wavelength discrimination
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Figure 28. Chromatic contrast detection of isoluminant sine-wave gratings. (A. Average pattern of photon
absorptions produced by the sum of uniform red [602 nm] and green [526 nm] fields. B. Average pattern
of photon absorptions in the receptors produced by a 100% contrast isoluminant red/green sine-wave grat-
ing at 20 c/deg [cycles per degree). Compare with Figure 12B. C. Ideal receptive field for discriminating
the patterns in A and B.)

(Figure 23), and chromatic vernier acuity (Figure 29). The most
dramatic predictions concern the relation between resolution
and separation (hyperacuity) thresholds. Ideal-observer analy-
sis shows that the physical information for localizing separated
objects or features {as in the two-point separation task) is much
superior to that for localizing objects that are placed close to-
gether (as in the two-point resolution task). Information con-
tent and preneural mechanisms may be the major factors re-

sponsible for the dramatic differences in performance observed
in acuity and hyperacuity tasks.

There are, of course, many discrimination phenomena not
predicted by the ideal-observer analysis—luminance (and chro-
matic) contrast sensitivity at low spatial frequencies (Figure 15),
Weber's law for detection threshold as a function of background
luminance (Figures 15, 17A), contrast discrimination, and
masking (Figure 18), and the effects of base separation, size,
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Figure 29. Two-line vernier acuity for green bars in a red background
of fixed intensity (R) for various green-bar intensities (G). (Predictions

of the ideal observer [solid curve] have been translated by the relative-
efficiency method. No meaningful neutral density value can be given

because the stimuli remained on until the subject responded. Data for
the 2 subjects are from Moigan & Aiba, 1985.)

and blur on location discrimination (Figure 19A and 19B, and

Figure 24). The ideal-observer analysis is also informative in

such cases because it tells us which phenomena must be ex-

plained by neural mechanisms. For example, recall that in the

contrast-masking experiment the ideal-observer's performance

was essentially unaffected by the contrast or spatial frequency

of the masking grating. This helped to validate the contrast-

masking experiment as a method for estimating the bandwidths

of neural spatial-frequency selective mechanisms. On the other

hand, for subthreshold summation experiments, ideal-observer

analysis predicts substantial effects of the sort that have been

interpreted as evidence for spatial-frequency-selective mecha-

nisms. This leads one to question the validity of using sub-

threshold summation experiments to estimate spatial-mecha-

nism bandwidths.

It is my belief that an ideal-observer analysis like that devel-

oped here should be used as routinely as a light meter in

designing and interpreting discrimination experiments. If the

physiological mechanisms included in the analysis are suffi-

ciently accurate and complete (which seems likely), then the

analysis provides a precise measure of the information con-

tained in the discrimination stimuli at the level of photon ab-

sorption in the receptors. In other words, the performance of

ideal observer serves as an information meter for the stimuli.

Real performance measured using appropriate psychophysical

techniques serves as a meter of the information transmitted

through the whole system. The difference in the meter readings

measures the aspects of performance that must be explained by

neural factors. The ideal-observer model should also serve as

an appropriate starting point for developing models containing

hypothesized neural mechanisms.

As more quantitative information about the neural mecha-

nisms becomes available, it may be possible to develop ideal-

observer models that include higher-level mechanisms. As more

and more mechanisms are included, the discrepancy between

ideal and real observers should diminish.

Relative Importance of the Various Preneural

Mechanisms

In this article, the primary concern has been with the com-

bined effects of all of the preneural mechanisms. However, it

is worthwhile to consider briefly the relative information loss

produced by the individual mechanisms (Figure 1) and, hence,

their importance in the overall predictions.

As I have mentioned earlier, eye movements (specifically un-

certainty about eye position) may cause some loss of sensitivity

in detection tasks with stimuli containing mostly high-spatial-

frequency information. Monte Carlo simulations with Equa-

tion 7 show that these effects are not large, however, being on

the order of a factor of 2. Furthermore, they show that eye move-

ments have a negligible effect in discrimination experiments

with suprathreshold targets. This is because position uncer-

tainty is effectively removed when the target stimuli become

clearly visible.

The optics, as represented by the optical point-spread func-

tion (Figure 3), do produce a substantial amount of informa-

tion loss. For example, as shown in Figure 13B, it is the most

important factor contributing to the shape of the contrast-sensi-

tivity function at high spatial frequencies. The transmittance

of the ocular media also produces substantial information loss

especially in the short-wavelength end of the spectrum.

In the fovea, the structure of the receptor lattice produces

relatively little loss of information over what has already been

lost in the optics. This was shown in several ways. First, when

an actual foveal lattice (Figure 7 top) was used in place of the

perfectly regular lattice of Figure 9A, there was a negligible

change in the performance of the ideal observer in all of the

tasks we have examined. Second, there was also only a very

small improvement in ideal performance if finer lattices (with

correspondingly smaller receptors) were used. This is because

the foveal lattice is well matched to the optics of the eye. How-

ever, peripheral lattices (e.g., Figure 7, middle and bottom) pro-

duce a decrease in ideal-observer performance. Third, attempts

to find a substantial effect of the approximately triangular ar-

rangement of the foveal lattice failed. Hirsch and Hylton (1984)

measured spatial frequency-discrimination thresholds for sine-

wave gratings as a function of orientation and found that thresh-

old modulated with a 60° periodicity. They noted that this mod-

ulation was correlated with the approximately triangular ar-

rangement of the foveal receptor lattice. (Note that in the

perfectly triangular lattice of Figure 9, the receptor density

along a line varies with a period of 60° as the line is rotated.)

The solid line in the bottom of Figure 30 shows the performance

of the ideal observer in this experiment for a spatial frequency

of 26 c/deg. This frequency was picked because it exactly di-

vides the lattice spacing and should produce the largest possible

effect. As can be seen, there is essentially no effect. The upper

curves in Figure 30 show the predictions when the triangular

lattice is exploded to 3 times the normal spacing, while keeping

the receptor diameter fixed. In this unnatural situation, there

is indeed a 60° periodicity. However, the effect depends on the

position of the grating with respect to the lattice. When the two

are in-phasc (upper solid curve), the threshold decreases every

60°; when they are out-of-phase (upper dashed curve), it in-

creases every 60°. Thus, even in this unnatural case, small eye
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Figure 30. Spatial frequency discrimination of the ideal observer for

26 c/deg (cycles per degree) sine-wave gratings as a function of grating
orientation. (Solid line at the bottom is the prediction for a normal fo-

veal receptor lattice. Upper curves are predictions for a lattice exploded

to 3 times the normal spacing while maintaining the normal receptor
diameter.)

movements would largely wipe out the effect. Any bumps in

threshold as a function of orientation will have to be explained

by factors other than lattice structure. It should be added that

perceptual effects of the 60° symmetry of the foveal lattice have

been observed with high-contrast, high-frequency gratings (110

c/deg) produced by laser interferometry (Williams, 1988).

However, these effects do not occur under normal viewing con-

ditions.

Receptor optics also produce relatively minor information

loss. As shown in Figure 13, the receptor aperture does account

for some of the high-frequency roll-off in contrast sensitivity at

high spatial frequencies.

The directional selectivity of the cones (the Stiles-Crawford

effect) also has some effect. However, it is very small in the cen-

tral fovea with small pupil diameters (the conditions of most

interest here). Its primary effect is to attenuate retinal intensi-

ties and to effectively reduce the pupil diameter by a small

amount (Stiles-Crawford apodization). Thus, it does not

strongly affect the shapes of threshold curves predicted by the

ideal observer.

The photopigment spectral sensitivities produce substantial

information loss under some circumstances. They play the cru-

cial role in the predicted differences between luminance and

chromatic contrast sensitivity and in the predictions for wave-

length discrimination and chromatic vernier acuity. They do

not result in much information loss in the experiments that

used stimuli constructed from monochrome, broad-band light.

Ideal Receptive Fields

In a given task, the maximum-likelihood decision rule of the

SDE ideal observer, when placed at the level of the photorecep-

tors, can be implemented by a single ideal receptive field (RF).

Because the weights assigned to the receptors depend only on

the ratio of the mean quantum absorptions produced by the

two stimuli (see Equation 8), the shapes of the ideal RFs are

unaffected by scaling the stimulus intensities. In other words,

the shapes of the ideal RFs are not affected by changing the

overall intensity of a visual display or the illumination of a scene

nor are they affected when the sensitivity of the ideal observer

is reduced in the relative-efficiency method of comparing real

and ideal performance. The shape of the ideal RF for a particu-

lar task is, of course, strongly dependent on the shapes and spec-

tral compositions of the stimuli in the discrimination task.

The neurons in the early levels of the visual system have es-

sentially hard-wired receptive fields of particular shapes. Thus,

it may be worth pursuing the hypothesis that the discrimination

stimuli for which relative efficiency is high are those whose asso-

ciated ideal RFs approximate the real RFs found in the ma-

caque (and presumably human) visual system. Barlow (1978)

and Watson et al. (1983) have made a similar suggestion with

respect to quantum efficiency.

In fact, there seems to be a crude correspondence between

high relative (or quantum) efficiency and real RF shape. For

example, Figures 19A and 19B show that relative efficiency is

greatest in two-line separation discrimination when the lines

are short and close together; this is also true for two-line vernier

discrimination. Under these conditions, the ideal RFs are of

similar spatial extent in all directions, a property that holds for

measured RFs up to the level of striate cortex. When the lines

are long, the ideal observer still integrates the information per-

fectly; hence, it uses long ideal RFs that do not have counter-

parts at the early levels of the visual system.

A similar story holds for contrast detection of sine-wave grat-

ing patches. Recall that in grating detection, the visual system

appears to integrate effectively over only a small, fixed number

of cycles for all but the lowest spatial frequencies (Howell &

Hess, 1978). Furthermore, the integration area seems to be of

the same spatial extent in all directions. Watson et al. (1983)

found that quantum efficiency was highest for grating patches

of 4 c/deg that contain around 3 cycles. Crowell et al. (1988)

found that relative efficiency was uniformly optimum for

patches from 5 to 40 c/deg that contain around 2 cycles. The

ideal RFs for such stimuli are like the one shown in Figure 12C.

Simple cells in macaque striate cortex have similar receptive

fields that also extend over 2-3 cycles, although the number of

cycles tends to increase slightly with optimum spatial frequency

(DeValoisetal., 1982;Movshonetal., 1978).

There are, however, some potential weaknesses in this general

line of argument. To begin with, even if the visual system lacks

a receptive field that is near optimal for a particular discrimina-

tion, it does not imply that any discrimination information is

lost. Sampling-theory analysis (Geisler & Hamilton, 1986)

shows that the visual cortex could (ignoring the effects of noise)

represent faithfully all of the information extracted by the pho-

toreceptors. If a near-ideal RF does not exist in the retina or

striate cortex, the discrimination information may still be con-

tained in a set of units. However, it might reasonably be argued

that distributed information in the cortex is not extracted as

efficiently as that concentrated in one or a few striate neurons.

Even if one supposes that hard-wired receptive fields provide

the most efficient form of information extraction, there is an-

other potential problem. The ideal observer places its ideal RF
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Figure 31. Performance of the ideal receptive fields for two-point sepa-
ration discrimination and two-point resolution as a function of the off-
set of the stimuli from optimal alignment with the receptive field.

(Dashed lines are for offsets in the horizontal direction; solid lines are
for offsets in the vertical direction; thresholds are for changes in the
separation of the points in the horizontal direction.)

in exactly the correct position to extract all of the discrimina-

tion information. Because there are only a finite number of real

RFs, there may be a good chance that on many of the trials in

an experiment no appropriate receptive field would be in the

right position. If so, the visual system may always have to inte-

grate partial information from many receptive fields in order to

achieve its high level of performance. This raises the question

of how well positioned an ideal RF has to be in order to achieve

the performance level of a human observer. To examine this

question, the performance of the ideal observer in the two-point

separation and resolution tasks (Figure 22) was calculated as a

function of the offset of the stimuli from the optimal position

in the ideal RF (e.g., Figure 11C). The results are shown in Fig-

ure 31 for offsets of the stimuli in the vertical and horizontal

directions. Figure 31 shows that the ideal RF does quite well

(would exceed human performance) as long as the stimuli are

within approximately ±30 s of the optimal position. (Note that

the predictions have been scaled by the relative-efficiency

method to match human performance at 0 offset.) The density

of small receptive fields in the retina and striate cortex is high

enough (Barlow, 1981) to make it plausible that a real RF would

be close enough to the "right" position to serve as a near-

optimal RF in some tasks. Thus, it is possible that real RF shape

may prove useful for predicting relative efficiency, or vice versa,

although it is too early to be certain.

Extensions of Ideal-Observer Analysis

The applications of sequential ideal-observer analysis pre-

sented here illustrate its usefulness in analyzing the effects of

physiological mechanisms and stimulus information content on

human discrimination performance. The present analysis is

reasonably convincing because it is based on fairly solid knowl-

edge of the physics of light, the optics of the eye, the receptor

lattice, and the receptor photopigments. An obvious question is

whether this kind of rigorous analysis can be pushed further up

the visual pathway. Recent measurements of macaque receptor

responses and noise properties (e.g., Baylor et al., 1984; Nunn

et al., 1984) may be sufficiently precise and complete to allow

inclusion of neural receptor mechanisms in a sequential ideal-

observer analysis. This might allow one to compute—to a close

approximation—how much information is lost in the photore-

ceptors for arbitrary discrimination tasks. I am currently ex-

ploring this possibility. Unfortunately, accurate knowledge of

neuron response and noise properties will necessarily be very

slow in coming, so that it may be decades or longer for the next

retinal layer to be accurately characterized. The major hin-

drances to the development of an accurate characterization of

the postreceptor layers are the complexity of the responses of

the individual neurons and the wide range of the response and

noise properties observed across neurons at the same level (e.g.,

seeRodieck, 1973).

However, it may be possible to carry out a limited ideal-ob-

server analysis on postreceptor stages by restricting the analysis

to specific discrimination tasks. One approach that I am cur-

rently exploring involves developing and testing methods for ap-

plying ideal observers to single-neuron responses (Geisler,

1988). The idea is to measure the repeated response of a single

neuron to two stimuli, a and b. Each presentation of a or b pro-

duces a spike train. Some fraction of these measured spike

trains to each stimulus is used to build a minimodel of the neu-

ron's response to that particular stimulus. These minimodels

are then used to design an ideal discriminator that is applied to

the remaining fraction of the measured spike trains from each

stimulus. If the two minimodels are sufficiently accurate, the

performance of the ideal discriminator will be an accurate esti-

mate of the amount of information transmitted by that neuron

for the specific discrimination being tested. Computer simula-

tions with synthetic neurons suggest that relatively few trials are

necessary to construct a discriminator that is nearly ideal. If a

number of neurons at a given neural stage are analyzed in the

same discrimination task, it may be possible to estimate the

total amount of information for that particular discrimination

that is transmitted by that stage.

It should also be possible to apply sequential ideal-observer

analysis to other visual systems, those of other species and per-

haps to abnormal human visual systems.'0 Once the optics, re-

ceptor-lattice structure, and photopigment-absorption spectra

have been accurately measured, it is a relatively straightforward

matter to incorporate them into the present computer imple-

mentation.

10 Banks and Bennett (1988) have applied the present ideal-observer
analysis to the visual system of human neonates.
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Appendix A

Linear-Systems Analysis

Consider stimuli generated on a monochrome display screen located
at a fixed distance in front of the eye. Ignoring the temporal dimension,
one can describe an arbitrary stimulus as a two-dimensional intensity
distribution that is a function of the horizontal and vertical directions
expressed in visual angles. The optical system forms a two-dimensional
retinal-intensity distribution that can also be described as a function
of these two variables. Thus, the eye transforms one two-dimensional
intensity distribution into another.

Under restricted conditions, the human eye, like many other optical
systems, can be accurately modeled as a two-dimensional, linear shift-
invariant (LSI) system. A system is said to be linear if (a) its response
to the sum of two arbitrary inputs equals the sum of its responses to the
individual inputs, and (b) multiplying the input by an arbitrary factor
multiplies the output by the same factor. A linear system is shift-invari-
ant if shifting an arbitrary input function to a different position causes
a corresponding shift in the output function with no change in its shape.
Most optical systems are shift-invariant only over a limited region of
the visual field. Thus, it is often necessary to divide the visual field into
a number of regions so that over each region the optical system can be
treated as an LSI system.

An LSI system is relatively easy to analyze and model. This is because
its response to any input can be calculated from knowledge of its re-
sponse to a single impulse (the impulse-response function). In the pres-
ent case, the appropriate impulse would be a unit-energy point source.
The impulse-response function to a unit-energy point source is called
the point-spread function. To see how the point-spread function can be
used to predict the output for an arbitrary input, note that an input
image can be regarded as the sum of a large number of individual point
sources that vary in position and energy. The point-spread function,
together with the scaling and shift-invariance properties, allows one to
determine the output-intensity distribution for each individual point
source. The additivity property implies that the complete output is
given by the sum of the outputs for each point source. Formally, these
two steps are achieved by computing the convolution of the point-
spread function with the input-intensity distribution. Thus, the LSI sys-
tem can be completely characterized by its point-spread function.

The methods of Fourier analysis and synthesis often prove useful in
measuring point-spread functions and in carrying out convolutions.
The fundamental theorem in Fourier theory is that any function can be
decomposed into a sum of sinusoidal functions of differing frequencies,
amplitudes, and phases. This decomposition is called the Fourier trans-
form. The result of a Fourier transform is a pair of functions: amplitude
as a function of frequency (the amplitude spectrum) and phase as a
function of frequency (the phase spectrum). In the case of two-dimen-
sional images, the sinusoidal functions are sine-wave gratings; that is,
they are patterns in which the intensity modulates sinusoidally over

space. As shown in Figure Al, these two-dimensional sine waves have
both a vertical and a horizontal spatial frequency. (A slice of any orien-
tation through a two-dimensional grating has a sinusoidal profile.)
Thus, both the amplitude and phase spectra are functions of vertical
and horizontal spatial frequency. Note that (a) a vertically oriented grat-
ing has a spatial frequency of zero in the vertical direction, (b) a horizon-
tally oriented grating has a frequency of zero in the horizontal direction,
and (c) all other gratings have nonzero frequencies in both directions.

11 is sometimes possible to determine the point-spread function of an
optical system by direct measurement, but it is often easier to first mea-
sure the Fourier transform of the point-spread function, otherwise
known as the transfer function (TF), which is a complex-valued func-
tion. The real-valued amplitude and phase spectra contained in the
transfer function are called the modulation-transfer function (MTF) and
the phase-transfer function (PTF), respectively. The point-spread func-
tion is obtained from the transfer function by applying an inverse Fou-
rier transform.

The usual methods of measuring the transfer function are based on
the following facts of Fourier theory, (a) The amplitude spectrum of the
output of an LSI system is the product of the amplitude spectra of the
input and the impulse-response function (in the present case, the point-
spread function):

AOUI = Ain X MTF. (la)

(b) The phase spectrum of the output is the sum of the phase spectra
of the input and the impulse-response function:

Figure Al. Example of a two-dimensional sinewave with spatial fre-
quencies that are equal in the vertical and horizontal directions.
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= Pin + FTP. (2a)

(c) A sine-wave input to an LSI system produces a sine-wave output

that can differ from the input only in amplitude and phase. These prop-

erties imply that one can measure the transfer function of an optical

system by presenting sine-wave gratings of all different spatial frequen-

cies. If the amplitude and phase of all the gratings are recorded at both

the input and the output, then the modulation-transfer function can be

obtained by dividing output amplitude by input amplitude:

MTF =

The phase-transfer function can be obtained by subtracting input phase

from output phase:

PTF = PM-f,,.

Properties a and b are also sometimes useful for computing the convolu-
tion of the point-spread function with an input image (i.e., computing

the output of a linear system). If one obtains the Fourier transform of

the input, then the Fourier transform of the output can be easily ob-

tained with Equations 1 a and 2a. Finally, an inverse Fourier transforma-
tion yields the output image. This circuitous route through the Fourier

domain is sometimes faster on a digital computer than directly calculat-

ing the convolutions. Such techniques were used in computing the per-

formance of the present ideal-observer models (see Appendix B).

Appendix B

Computation Of Ideal-Observer Performance

This appendix provides some details on how the performance of the

ideal observer was computed. Figure Bl illustrates the sequence of cal-
culations.

Recall that in order to compute the retinal-intensity distribution, the

input image must be convolved with the optical point-spread function

and the receptor-aperture function (see Appendix A and the discussion

of Equation 6 in the text). As discussed in Appendix A, convolutions

can often be computed most quickly on a digital computer using Fourier

transform techniques. Thus, the first step was to obtain the Fourier

transform of the two stimuli in the discrimination task.

The most obvious way to obtain the Fourier transform is to apply a

Fast Fourier Transform (FFT) routine. However, this has an undesirable

consequence: Because the FFT is applied to discrete samples, it often

introduces sampling artifacts (aliasing). These sampling artifacts are

particularly large and troublesome for stimuli with sharp edges (discon-

tinuities), a very common type of stimulus in psychophysical experi-

ments. The common method of controlling for such artifacts in image

processing is to remove the sharp edges by directly convolving the image

with a small blurring function before applying the FFT (Rosenfeld &

Kak, 1982). However, unless the sampling rate is very high (which is

expensive in computation time), the size of the blurring function must

be so large that the computations of the model would become inaccu-

rate.

Therefore, a less general, but faster and more accurate, method was

used. In particular, the program was constrained to deal only with stim-

uli that could be constructed by adding elementary parts with known

Fourier transforms. These parts included rectangles, ellipses, two-di-

mensional Gaussian functions, and two-dimensional half-cosine func-

tions of any size, aspect ratio, orientation, location, or color (mixture

of primaries). In addition, any of these parts could be multiplied by a

sine-wave function of any amplitude, phase, and frequency. Because

the exact Fourier transform of each of these elementary parts is known

(Gaskill, 1978), the exact Fourier transform of the stimuli could be ob-

tained by summing the Fourier transforms of the parts composing the
stimuli.

The second step in the computation was to multiply the Fourier trans-

forms of the stimuli, in each primary, by the Fourier transform of the

optical point-spread function (the OTF) associated with that primary.

The point-spread function was normalized to have a volume of 1.0, so

that it had no effect on the number of quanta reaching the retina. The

OTFs were obtained by fitting the Campbell and Gubisch (1966) line-

spread data with a sum of two Gaussian functions and (if needed) an

exponential function, and taking Fourier transforms and converting

them to two-dimensional OTFs assuming symmetric optics. Ocular

CONSTRUCT THE FOURIER TRANSFORM OF THE STIMULI

IN THREE PRIMARIES FROM ELEMENTARY PARTS

WITH KNOWN FOURIER TRANSFORMS
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Figure Bl. Flow diagram of ideal-observer calculations.

(Calculations proceed from top to bottom.)

transmittance was handled in the primary-to-cone transformation ma-
trix described later. As discussed in Appendix A, multiplication in the

Fourier domain corresponds to convolution in the image domain.
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The third step was to multiply the result just discussed by the Fourier
transform of the receptor-aperture function (ATF). The aperture func-

tion was also normalized to a volume of 1.0. The receptor-collection
area was handled by the lattice-sampling stage described later.

The next step was to multiply the output for the three primaries by a

3 X 3 matrix that maps unit intensities of the primaries into the frac-
tions of quantum absorptions in the cones. This matrix included both

the effects of ocular transmittance and the absorptance spectra of the

photopigments. Because Fourier transformation and matrix multiplica-
tion are both linear operations, it is legitimate to apply the primary-to-

cone transformation matrix in the Fourier domain. Applying it at that
stage saved storage by allowing all the inverse FFTs that followed to use
the same complex data array.

The fifth step was to apply an inverse FF'T in order to obtain the
final images (expressed in units of cone absorption). At this point, the

calculations went from a precise continuous representation to a discrete

representation. However, the sampling problems associated with the in-
verse FFT were minor here because the optical point-spread function

and aperture function effectively blurred the edges. In particular, the
OTF and the ATF always limited the final image to contain frequencies
below 60 c/deg. The Whittaker-Shannon sampling theorem implies that

in this case, aliasing is avoided by keeping the sampling rate above 120

samples/deg. The effects of sampling were checked by varying the sam-

pling rate within range of 120 to 360 samples/deg (1 to 3 times the
Nyquist rate). For most stimuli, a sampling rate anywhere within this
range was found to produce nearly identical results. It was necessary to

stay near to top of this range only for stimuli composed almost entirely
of very high spatial frequencies.

The sixth step was to evaluate the final image for each cone class at

the lattice positions of the individual cones. The blur produced by the
cone aperture was already incorporated into the calculations with the
application of the ATF. Therefore, it was only necessary here to evaluate
the image at the position of the center of each receptor and multiply by
the area of the receptor.

The inverse FFT only produces the intensities of the images at the
discrete locations of a square lattice. To obtain the image intensity at

arbitrary receptor positions, it was necessary to interpolate the image
intensities between the square lattice points. This was done by noting
that each set of three neighboring image lattice points forms an isosceles
triangle. Furthermore, the image intensity values above these points de-
fine a plane (in three space). Thus, the intensity at a given receptor posi-
tion was obtained (to close approximation) by (a) finding the isosceles
triangle in which the receptor center was located, (b) computing the
plane through the associated image intensities, and (c) evaluating this
plane at the position of the receptor's center. (Sine function interpola-

tion would have been slightly more accurate, but was not worth the
increase in computation time.)

The final step was to compute d' using the closed-form expression
given by Equation 9 in the text. For the position uncertainty cases, d'

was computed by Monte Carlo simulation.
Thresholds were obtained by repeatedly executing the preceding cal-

culations (while varying the appropriate stimulus parameter) until a d'
of 1.36 (+/- 0.01) was found. Recall that a d' of 1.36 corresponds to
75% correct in a two-interval forced-choice task.
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