
1. Magnitude estimation
2. Matching
3. Detection/discrimination

Three methods for measuring perception Concerns of the Psychophysicist

• Bias/Criterion

• Attentiveness

• Strategy/Artifactual Cues

• History of stimulation

• Who controls stimulation

Detection / discrimination

In a detection experiment, the subject's task is
to detect small differences in the stimuli.

Procedures for detection/discrimination experiments

• Method of adjustment

• Method of limits
• Yes-No/method of constant stimuli
• Forced choice Do these data indicate that Laurie’s threshold is lower 

than Chris’s threshold?

Yes/no method of constant stimuli
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Forced Choice

• Present signal on some trials, no signal on other trials 
(catch trials).

• Subject is forced to respond on every trial either “Yes” 
the thing was presented” or “No it wasn’t”. If they're not 
sure then they must guess.

• Advantage: With the forced-choice method, we have 
both types of trials so we can count both the number of 
hits and the number of false alarms to get an estimate of 
discriminability independent on the criterion.

• Versions: Yes-no, 2AFC, 2IFC
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Forced choice: 
four possible 
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Criterion shift
Information and criterion

Two components to the decision-making: signal strength and 
criterion.

• Signal strength: Acquiring more information is good. The 

effect of information is to increase the likelihood of getting 
either a hit or a correct rejection, while reducing the 
likelihood of an outcome in the two error boxes.

• Criterion: Different people may have different bias/
criterion. Some may may choose to err toward “yes” 
decisions. Others may choose to be  more conservative and 
say “no” more often.

Internal response:
probability of occurrence curves 
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Applications of SDT: Examples
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• Vision

• Detection (something vs. nothing)

• Discrimination (lower vs greater level of: intensity,
     contrast, depth, slant, size, frequency, loudness, ...

• Memory (internal response = trace strength = familiarity)

• Neurometric function/discrimination by neurons (internal
    response = spike count)
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Correct rejects
(response “no” on no-signal trial)
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(response “no” on signal trial)

Criterion

Internal response

P
ro

b
a

b
il

it
y

 d
e

n
s

it
y

Say “yes”Say “no”

N
S+N

False Alarms
(response “yes” on no-signal trial)
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Discriminability (d-prime, d’)

d-prime is the distance between the N and S+N 
curves

d!

Discriminability (d-prime, d’)

d’ = 
separation

spread

 = 
signal

noise

Receiver Operating Characteristic (ROC)
SDT: Gaussian Case
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ROC: Gaussian Case
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Optimal Criterion
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Optimal Criterion
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Aside: Bayes’ Rule

A B

A & B

  

p(A & B) = p(B)p(A | B)

= p(A)p(B | A)

! p(A | B) =
p(B | A)p(A)

p(B)

  

p(A | B) = probability of A given that B is asserted to be true = 
p(A & B)

p(B)

Apply Bayes’ Rule
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Posterior PriorLikelihood

Nuisance normalizing term

Posterior odds
Likelihood ratio Prior odds

Optimal Criterion
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Example, if equal priors and equal payoffs, say
yes if the likelihood ratio is greater than one:

S+NN

Likelihood Ratio

Optimal binary decisions are a function of the likelihood ratio
(it is a sufficient statistic, i.e., no more information is needed
or useful).

p(x|N) p(x|S+N)

LR

log(p(x|N))
log(p(x|S+N))

log(LR)

x x



Gaussian Unequal Variance
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Poisson Distribution

Counting distribution for processes consisting of “events”

that occur randomly at a fixed rate ! events/sec.

The time until the next event occurs follows an exponential
distribution:

Since ! is the rate, then over a period of " seconds, the 

expected count is ! ". The distribution of event count is

Poisson:
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2-IFC and SDT

S+NN

  

P(Correct) = P(N( !d ,1) > N(0,1))

= P(N( !d ,1) " N(0,1) > 0)

= P(N( !d , 2) > 0)

= P(N( !d / 2,1) > 0)

= P(N(0,1) < !d / 2)

  

Where N(µ,! ) means a random variable with

mean µ  and SD !.
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2-IFC and SDT
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  !d / 2Note: the criterion is
away from each peak.

2-IFC and the Yes-No ROC
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P(Correct in 2-IFC) = P(S = c)P(N ! c)dc"
=  Area under the ROC
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Measuring thresholds
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Assumptions: x ! signal strength, "  constant

Aside: 2-IFC and Estimation of Threshold

• Frequently one wishes to estimate the signal strength 
corresponding to a fixed, arbitrary value of d’, defined as 
threshold signal strength.

• For this, one can measure performance at multiple signal 
strengths, estimate d’ for each, fit a function (as in the 
previous slide) and interpolate to estimate threshold.

• Staircase methods are often used as a more time-
efficient method. The signal strength tested on each trial 
is based on the data collected so far, trying to 
concentrate testing at levels that are most informative.

• Methods: 1-up/1-down (for PSE: point of subjective 
equality), 1-up/2-down, etc., QUEST, APE, PEST, ...
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General Gaussian Classification
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The d-dimensional Gaussian distribution:

General Gaussian Classification

In 2 dimensions:
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General Gaussian Classification

Say “Category A” if

Take log and simplify. Say “Category A” if

which is a quadratic in
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General Gaussian Classification

General Gaussian Classification Application: Absolute Threshold

Question: What is the minimal number of photons 
required for a stimulus to be visible under the best 
of viewing conditions?

Hecht, Schlaer & Pirenne (1942)



Sensitivity by Eccentricity Spatial Summation

Spatial Summation Temporal Summation

Choice of Wavelength The Data



Stimulus Variability (Poisson) Model with no Subject Variability

Model with no Subject Variability Model with no Subject Variability

Model with Subject Variability Application: Ideal Observer

Question: What is the minimal contrast required 
to carry out various detection and discrimination 
tasks?

Geisler (1989)



Sequential Ideal Observer Point-Spread Function

Idealized Receptor Lattice Poisson Statistics

Ideal Discriminator

Given two known possible targets A and B with 
expected photon absorbtions ai and bi and actual 
photon catches Zi  in receptor i, respectively, 
calculate the likelihood ratio p(Zi | ai)/p(Zi | bi), take 
the log, do some algebra and discover the 
following quantity is monotonic in likelihood ratio:

  

Z = Z
i
ln a

i
/ b

i( )
i

!

Decisions are thus based on an “ideal receptive 
field.”

Example: 2-Point Resolution


