Three methods for measuring perception

1. Magnitude estimation
2. Matching
3. Detection/discrimination

Concerns of the Psychophysicist

Bias/Criterion
Attentiveness
Strategy/Artifactual Cues
History of stimulation
Who controls stimulation

Detection / discrimination

In a detection experiment, the subject's task is
to detect small differences in the stimuli.

Procedures for detection/discrimination experiments

* Method of adjustment

* Method of limits

* Yes-No/method of constant stimuli
» Forced choice

Yes/no method of constant stimuli

Percent “yes” responses

Tone intensity

Do these data indicate that Laurie’s threshold is lower
than Chris’s threshold?

Forced Choice

» Present signal on some trials, no signal on other trials
(catch trials).

» Subject is forced to respond on every trial either “Yes”
the thing was presented” or “No it wasn't”. If they're not
sure then they must guess.

» Advantage: With the forced-choice method, we have
both types of trials so we can count both the number of
hits and the number of false alarms to get an estimate of
discriminability independent on the criterion.

« Versions: Yes-no, 2AFC, 2IFC
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Forced choice:
four possible
outcomes
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Internal response:
probability of occurrence curves

Distribution of internal
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Internal response

Information and criterion

Two components to the decision-making: signal strength and
criterion.

« Signal strength: Acquiring more information is good. The
effect of information is to increase the likelihood of getting
either a hit or a correct rejection, while reducing the
likelihood of an outcome in the two error boxes.

« Criterion: Different people may have different bias/
criterion. Some may may choose to err toward “yes”
decisions. Others may choose to be more conservative and
say “no” more often.

The criterion
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Applications of SDT: Examples

+ Vision
+ Detection (something vs. nothing)
+ Discrimination (lower vs greater level of: intensity,
contrast, depth, slant, size, frequency, loudness, ...
* Memory (internal response = trace strength = familiarity)

» Neurometric function/discrimination by neurons (internal
response = spike count)
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Discriminability (d-prime, d’)

d-prime is the distance between the N and S+N
curves

Probability density

Internal response

Discriminability (d-prime, d’)

High noise,
lots of overlap

separation Low noise,
L not much overlap
spread
signal
noise

Receiver Operating Characteristic (ROC)
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ROC curves
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Optimal Criterion

Response
Yes No
B S+N| Y Vel
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E(Yes | x) =V p(S+N|x)+ V) p(N| x)
E(No | x)=V.° p(S+N|x)+V°p(N | x)

Say yes if E(Yes | x) 2 E(No | x)

Optimal Criterion

E(Yes|x)=V.=p(S+N| x)+V,*p(N| x)

S+N

E(No | x)=V.° p(S+N|x)+V°p(N| x)

Say yes if E(Yes | x) 2 E(No | x)

(S+N|x)_ Vi -V V(Correct | N)
> =
p(N|x) v _yM  V(Correct|S+N)

S+N S+N

Say yes if P

Aside: Bayes’ Rule

A&B

Apply Bayes’ Rule

Posterior Likelihood Prior
— —
DS +N|X)= P(X| S+ N)p(S +N)
p(x)

¥ Nuisance normalizing term

p(x| N)p(N)
P(x)

pP(N| x)= , hence

p(S+N|x):(p(x|S+N)J[p(S+N)J
P(N| X) p(xIN) - p(N)

Likelihood ratio Prior odds

Posterior odds

p(A| B) = probability of A given that B is asserted to be true = %
p(A&B)=p(B)p(A|B)
=p(A)p(B| A)
_ P(BlA)p(A)
= PAD=T )
Optimal Criterion
Say yes if 2 (S+N|x), V(Correct|N)
p(N|x) — V(Correct|S+N)
ie., if p(x|1S+N)_ _p(N) _V(Correct|N) _ 8

p(x|N) — p(S+N)V(Correct|S + N) B

Example, if equal priors and equal payoffs, say
yes if the likelihood ratio is greater than one:

N S+N

Likelihood Ratio

Optimal binary decisions are a function of the likelihood ratio
(it is a sufficient statistic, i.e., no more information is needed
or useful).
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Gaussian Unequal Variance

S+N
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SDT (suboptimal): Say yes if x > c,

Optimal strategy: Say yes if x> ¢, orx <c,

Gaussian Unequal Variance
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Poisson Distribution

Counting distribution for processes consisting of “events”
that occur randomly at a fixed rate A events/sec.

The time until the next event occurs follows an exponential
distribution: p(t) = 1e™

Since A is the rate, then over a period of T seconds, the
expected count is A T. The distribution of event count is

Poisson: -AT k
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2-IFC and SDT

N S+N
1
0 d’
P(Correct) = P(N(d’,1) > N(0,1))
= P(N(d",1) = N(0,) > 0)
= P(N(d""2) > 0)
= P(N(” /v/2,1)> 0)
= P(N(0,1) < 0" I 2)

Where N(u,0) means a random variable with
mean u and SD o.

2-IFC and SDT
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Note: the criterion is d’/\/E
away from each peak.

2-IFC and the Yes-No ROC

Hits

} dP(S=c)=P(S=c)dc

P(N<c)

False Alarms

P(Correct in 2-IFC) = .[P(S =c)P(N <c)dc
Area under the ROC

Proportion Correct

Measuring thresholds

VA A'GN

Low intensity High intensity

Signal intensity Signal intensity

Assumptions: x < signal strength, c constant

Aside: 2-IFC and Estimation of Threshold

* Frequently one wishes to estimate the signal strength
corresponding to a fixed, arbitrary value of d’, defined as
threshold signal strength.

» For this, one can measure performance at multiple signal
strengths, estimate d’ for each, fit a function (as in the
previous slide) and interpolate to estimate threshold.

+ Staircase methods are often used as a more time-
efficient method. The signal strength tested on each trial
is based on the data collected so far, trying to
concentrate testing at levels that are most informative.

* Methods: 1-up/1-down (for PSE: point of subjective
equality), 1-up/2-down, etc., QUEST, APE, PEST, ...

General Gaussian Classification
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General Gaussian Classification

The d-dimensional Gaussian distribution:

p(x)= 11,2exp{—1()‘(— A= (x- )
(2”)(1/2 ‘Z‘ 2

X = the covariance matrix

General Gaussian Classification
Say “Category A” if

1
@n)" ‘ZA‘w/z eXp|:* 2

LR(x) = >1

1, -
76Xp[—7(X— b)) T (X )}
(27[)‘“2 ‘28‘1/2 2 B B B
Take log and simplify. Say “Category A” if

(% 1) 25 (%~ i)~ (X~ 1,) (%~ 1)
= MD(%,fi,) - MD(%,fi,) > C

which is a quadratic in x.

General Gaussian Classification

In 2 dimensions:  \1ahalanobis distance
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General Gaussian Classification

A

General Gaussian Classification

Application: Absolute Threshold

Question: What is the minimal number of photons
required for a stimulus to be visible under the best
of viewing conditions?

Hecht, Schlaer & Pirenne (1942)




Sensitivity by Eccentricity
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Stimulus Variability (Poisson)

Model with no Subject Variability
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Application: Ideal Observer

Question: What is the minimal contrast required
to carry out various detection and discrimination
tasks?

Geisler (1989)




Sequential Ideal Observer
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Poisson Statistics

Ideal Discriminator

Given two known possible targets A and B with
expected photon absorbtions a; and b; and actual
photon catches Z; in receptor i, respectively,
calculate the likelihood ratio p(Zi| ai)/p(Zi| bi), take
the log, do some algebra and discover the
following quantity is monotonic in likelihood ratio:

Z=YZIn(a /b,)

Decisions are thus based on an “ideal receptive
field.”

Example: 2-Point Resolution




