
Linear Systems Theory

• Introduction – Receptive fields and 
mechanisms

• Fourier Analysis – Signals as sums of sine 
waves

• Linear, shift-invariant systems

– Definition

– Applied to impulses, sums of impulses

– Applied to sine waves, sums of sine waves

• Applications

Fourier Analysis

Signals as sums of sine waves

• 1-d: time series

– fMRI signal from a voxel or ROI

– mean firing rate of a neuron over time

– auditory stimuli

• 2-d: static visual image, neural image

• 3-d: visual motion analysis

• 4-d: raw fMRI data

Linear Systems Analysis

Systems with signals as input and output

• 1-d: low- and high-pass filters in electronic 
equipment, fMRI data analysis, or in sound 
production (articulators) or audition (the 
ear as a filter)

• 2-d: optical blur, spatial receptive field

• 3-d: spatio-temporal receptive field

Spatial Vision

• Image representation or coding

– At each stage, what information is kept and 
what is lost?

• Image analysis

• Nonlinear: pattern recognition

Receptive Field

• In any modality: that region of the sensory 
apparatus that, when stimulated, can 
directly affect the firing rate of a given 
neuron

• Spatial vision: spatial receptive field can 
be mapped in visual space or on the retina

• Examples:

LGN V1

Receptive Field

A spatial receptive field is an image

with its own Fourier transform.



Neural Image

A spatial receptive field may also be treated as a linear 
system, by assuming a dense collection of neurons with the 
same receptive field translated to different locations in the 
visual field:

Neural Image of a Sine Wave

For a linear, shift-invariant system such as a linear model of 
a receptive field, an input sine wave results in an identical 
output sine wave, except for a possible lateral shift and 
scaling of contrast.

Frequency Response

This scaling of contrast by a linear receptive field in the 
neural image is a function of spatial frequency determined 
by the shape of the receptive field.
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Spatial Frequency

Frequency Response

This scaling of contrast by a linear receptive field in the 
neural image is a function of spatial frequency determined 
by the shape of the receptive field.
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Spatial Frequency

Orientation Tuning

If a receptive field is not circularly symmetric, the scaling of 
contrast is also a function of orientation (for a given spatial 
frequency) determined by the shape of the receptive field.
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Orientation

Application Preview: SF Adaptation 
(Blakemore & Campbell, 1969)



Application Preview: SF Adaptation 
(Blakemore & Campbell, 1969)

Summary: Linear Systems Theory

• Signals can be represented as sums of sine waves

• Linear, shift-invariant systems operate “independently” 
on each sine wave, and merely scale and shift them.

• A simplified model of neurons in the visual system, the 
linear receptive field, results in a neural image that is 
linear and shift-invariant.

• Psychophysical models of the visual system might be 
built of such mechanisms.

• It is therefore important to understand visual stimuli in 
terms of their spatial frequency content.

• The same tools can be applied to other modalities (e.g., 
audition) and other signals (EEG, MRI, MEG, etc.).

Auditory example: Pure tones

Pure tones can be described by 3 numbers:
Frequency = rate of air pressure modulation (related to pitch)
Amplitude = sound pressure level (related to loudness)
Phase = sin vs. cosine vs. another horizontal shift

Frequency and amplitude

weak 100 Hz strong 100 Hz weak 1000 Hz strong 1000 Hz

Time

1/100 s
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Fourier components of a square wave
Ampl.   Freq.

1        100

1/3      300

1/5      500

1/7      700

Square wave

‘f’ + ‘3f’/3

‘f’ + ‘3f’/3+’5f’/5

‘f’ + ‘3f’/3+’5f’/5+’7f’/7

Next

Prev

Fourier components of a square wave
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Fourier Synthesis – Building Stimuli from Sine Waves

Fourier spectrum representation of sound
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Pure tone

White noise

Violin note

100 10,0001000

Fourier spectra of some sounds Fundamental frequency and harmonics

Standing waves in 
a vibrating string

Flute (open pipe) harmonics



Other notes (shorten the pipe)

Reinforcing a harmonic (forcing a “node”)

Flute (open pipe) harmonics

Complex numbers and complex exponentials

real

imaginary
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Discrete Fourier Transform

k is frequency in cycles/image (or cycles/signal) and is computed 
effectively only for frequencies zero (DC), 1, 2, ..., N/2. The 
vector you get back from MATLAB (fft or fft2, inverses are ifft and 
ifft2), however, continues redundantly (for real signals, that is):

0, 1, ..., N/2-1, N/2=0, N/2-1, ..., 1.
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frequency (cycles per scan) frequency (cycles per scan)

(        in this case)

time points
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DFT of a Sine Wave
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The Fourier coefficient for this frequency
of k cycles/signal is:

  a + bi = (Acos!) + (Asin!)i

In other words, the amplitude is A and the phase 
is    .!

frequency frequency
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Similarity Theorem

If you stretch the x-axis, you shrink the frequency axis
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Properties of the DFT

Circular shift

If x[n]         X[k], then:

x[(n-m)N]         exp(-j2      km/N) X[k]

i.e., only phase (not magnitude) is affected

!

0 1 2 3 4
N-1

N-2

=

0 1 2 3 4-1-2-3-4-5 5-6

f,  90 deg shift

2f,  180 deg shift



i.e., all cosine terms

i.e., all sine terms
To generate a signal or image from a transform:

Other Properties of the Fourier Transform

Linearity
 f + g ! F +G

Derivative

Integral
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Discrete-Time Fourier Transform (DTFT)

Edge effects:                vs.

Two-dimensional Fourier transform



Linear, Shift-Invariant Systems

• Linearity: scalar rule and additivity

• Applied to impulse, sums of impulses

• Applied to sine waves, sums of sine waves

  

Homogeneity (scalar rule)

Neural activity fMRI response

Additivity

  

Shift invariance

  

Linear systems

A system (or transform) converts (or maps) an input signal into an 
output signal:
    y(t) = T[x(t)]

A linear system satisfies the following properties:

1) Homogeneity (scalar rule):
    T(a x(t)] = a y(t)
2) Additivity:
    T(x

1
(t) + x

2
(t)] = y

1
(t) + y

2
(t)

Often, these two properties are written together and called 
superposition:
    T(a x

1
(t) + b x

2
(t)] = a y

1
(t) + b y

2
(t)

  

Shift invariance

For a system to be shift-invariant (or time-invariant) means that a 
time-shifted version of the input yields a time-shifted version of the 
output:
    y(t) = T[x(t)]

    y(t - s) = T[x(t - s)]

The response y(t - s) is identical to the response y(t), except that it 
is shifted in time.



Neural Image - Reprise

A spatial receptive field may also be treated as a linear 
system, by assuming a dense collection of neurons with the 
same receptive field translated to different locations in the 
visual field. In this view, it is a linear, shift-invariant system.

Linear, Shift-Invariant Systems

• Linearity: Scalar rule and additivity

• Applied to impulse, sums of impulses

• Applied to sine waves, sums of sine waves

  

Convolution as sum of impulse responses

Input:

Impulse response:

Output:

+

  

Convolution as sum of impulse responses

Input S(t):

Impulse response I(t):

1I(t t 1):

2I(t t 2):

3I(t t 3):

8I(t t 8):

9I(t t 9):

14I(t t 14):

i 1

14

i I(t ti):

141 2 3 4 5 6 7 8 9 10111213

  

Convolution

Discrete-time signal: x[n] = [x1, x2, x3, ...]

A system or transform maps an input signal into an output signal:
      y[n] = T{x[n]}

A shift-invariant, linear system can always be expressed as a 
convolution:

      y[n] =    x[m] h[n-m]

where h[n] is the impulse response.

  

Convolution derivation

Homogeneity:
     T{a x[n]} = a T{x[n]}

Additivity:
     T{x

1
[n] + x

2
[n]} = T{x

1
[n]} + T{x

2
[n]}

Superposition: 
     T{a x

1
[n] + b x

2
[n]} = a T{x

1
[n]} + b T{x

2
[n]}

Shift-invariance:
     y[n] = T{x[n]} => y[n-m] = T{x[n-m]}



  

Convolution derivation (contd.)

Impulse sequence:
   d[n] = 1 for n = 0, d[n] = 0 otherwise

Any sequence can be expressed as a sum of impulses:

   x[n] =    x[m] d[n-m]

where
   d[n-m] is impulse shifted to sample m
   x[m] is the height of that impulse

Example:

      =      +                    +

  

Convolution derivation (cont)
x[n]: input
y[n] = T{x[n]}: output
h[n] = T{d[n]}: impulse response

1) Represent input as sum of impulses:
   y[n] = T{x[n]}

   y[n] = T{    x[m] d[n-m] }

2) Use superposition:

   y[n] =    x[m] T{d[n-m]}

3) Use shift-invariance:

   y[n] =    x[m] h[n-m]

  

Convolution as sum of impulse responses

Input S(t):

Impulse response I(t):

1I(t t 1):

2I(t t 2):

3I(t t 3):

8I(t t 8):

9I(t t 9):

14I(t t 14):

i 1

14

i I(t ti):

141 2 3 4 5 6 7 8 9 10111213

  

Convolution as correlation with the
“receptive field” (time-reversed impulse
response):

Input S(t):

RF 1(t):

RF 1(t)S(t):

RF 2(t):

RF 2(t)S(t):

RF 8(t):

RF 8(t)S(t):

RF 9(t):

RF 9(t)S(t):

F (t):

141 2 3 4 5 6 7 8 9 10 11 12 13

  

Convolution as matrix multiplication

1
2
0
0
-1
2

5

2

-3

4

1   2   3   0   0   0
0   1   2   3   0   0
0   0   1   2   3   0
0   0   0   1   2   3

=

Columns contain shifted copies of the impulse response.
Rows contain time-reversed copies of impulse response.

Linear system <=> matrix multiplication
Shift-invariant linear system <=> Toeplitz matrix

  

past present future
input (impulse)

output (impulse response)

input (step)

output (step response)

0     0     0   1/2  1/4  1/8    0     0     0

0     0     0     1     0     0     0     0     0

0     0     0     1     1     1     1     1     1

0     0     0   1/2  3/4  7/8   7/8  7/8  7/8

weights1/8  1/4  1/2

1/8  1/4  1/2 weights

Figure 3: Convolution as a series of weighted sums.

Using homogeneity,

Now let be the response of to the unshifted unit impulse, i.e., . Then by using

shift-invariance,

(4)

Notice what this last equation means. For any shift-invariant linear system , once we know its

impulse response (that is, its response to a unit impulse), we can forget about entirely, and

just add up scaled and shifted copies of to calculate the response of to any input whatsoever.

Thus any shift-invariant linear system is completely characterized by its impulse response .

The way of combining two signals specified by Eq. 4 is know as convolution. It is such a

widespread and useful formula that it has its own shorthand notation, . For any two signals and

, there will be another signal obtained by convolving with ,

Convolution as a series of weighted sums. While superposition and convolution may sound

a little abstract, there is an equivalent statement that will make it concrete: a system is a shift-

invariant, linear system if and only if the responses are a weighted sum of the inputs. Figure 3

shows an example: the output at each point in time is computed simply as a weighted sum of the

inputs at recently past times. The choice of weighting function determines the behavior of the

system. Not surprisingly, the weighting function is very closely related to the impulse response of

the system. In particular, the impulse response and the weighting function are time-reversed copies

of one another, as demonstrated in the top part of the figure.

7

Convolution as sequence of weighted sums



  

Continuous-time derivation of convolution

  

and Young (1983), and Oppenheim and Schafer (1989).

Continuous-Time and Discrete-Time Signals

In each of the above examples there is an input and an output, each of which is a time-varying

signal. We will treat a signal as a time-varying function, . For each time , the signal has some

value , usually called “ of .” Sometimes we will alternatively use to refer to the entire

signal , thinking of as a free variable.

In practice, will usually be represented as a finite-length sequence of numbers, , in

which can take integer values between 0 and , and where is the length of the sequence.

This discrete-time sequence is indexed by integers, so we take to mean “the nth number in

sequence ,” usually called “ of ” for short.

The individual numbers in a sequence are called samples of the signal . The word

“sample” comes from the fact that the sequence is a discretely-sampled version of the continuous

signal. Imagine, for example, that you are measuring membrane potential (or just about anything

else, for that matter) as it varies over time. You will obtain a sequence of measurements sampled

at evenly spaced time intervals. Although the membrane potential varies continuously over time,

you will work just with the sequence of discrete-time measurements.

It is often mathematically convenient to work with continuous-time signals. But in practice,

you usually end up with discrete-time sequences because: (1) discrete-time samples are the only

things that can be measured and recorded when doing a real experiment; and (2) finite-length,

discrete-time sequences are the only things that can be stored and computed with computers.

In what follows, we will express most of the mathematics in the continuous-time domain. But

the examples will, by necessity, use discrete-time sequences.

Pulse and impulse signals. The unit impulse signal, written , is one at , and zero

everywhere else:

The impulse signal will play a very important role in what follows.

One very useful way to think of the impulse signal is as a limiting case of the pulse signal,

:

The impulse signal is equal to the pulse signal when the pulse gets infinitely short:

2

Pulses and impulses
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Figure 1: Staircase approximation to a continuous-time signal.

Representing signals with impulses. Any signal can be expressed as a sum of scaled and

shifted unit impulses. We begin with the pulse or “staircase” approximation to a continuous

signal , as illustrated in Fig. 1. Conceptually, this is trivial: for each discrete sample of the

original signal, we make a pulse signal. Then we add up all these pulse signals to make up the

approximate signal. Each of these pulse signals can in turn be represented as a standard pulse

scaled by the appropriate value and shifted to the appropriate place. In mathematical notation:

As we let approach zero, the approximation becomes better and better, and the in the limit

equals . Therefore,

Also, as , the summation approaches an integral, and the pulse approaches the unit impulse:

(1)

In other words, we can represent any signal as an infinite sum of shifted and scaled unit impulses. A

digital compact disc, for example, stores whole complex pieces of music as lots of simple numbers

representing very short impulses, and then the CD player adds all the impulses back together one

after another to recreate the complex musical waveform.

This no doubt seems like a lot of trouble to go to, just to get back the same signal that we

originally started with, but in fact, we will very shortly be able to use Eq. 1 to perform a marvelous

trick.

Linear Systems

A system or transform maps an input signal into an output signal :

where denotes the transform, a function from input signals to output signals.

Systems come in a wide variety of types. One important class is known as linear systems. To

see whether a system is linear, we need to test whether it obeys certain rules that all linear systems

obey. The two basic tests of linearity are homogeneity and additivity.

4
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Using additivity,

Convolution

Im pu ls es
Im pu ls e Res pon s eIm pu ls e
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is  th e fin a l s ys tem  res pon s e

Figure 2: Characterizing a linear system using its impulse response.

The way we use the impulse response function is illustrated in Fig. 2. We conceive of the input

stimulus, in this case a sinusoid, as if it were the sum of a set of impulses (Eq. 1). We know the

responses we would get if each impulse was presented separately (i.e., scaled and shifted copies of

the impulse response). We simply add together all of the (scaled and shifted) impulse responses to

predict how the system will respond to the complete stimulus.

Nowwewill repeat all this in mathematical notation. Our goal is to show that the response (e.g.,

membrane potential fluctuation) of a shift-invariant linear system (e.g., passive neural membrane)

can be written as a sum of scaled and shifted copies of the system’s impulse response function.

The convolution integral. Begin by using Eq. 1 to replace the input signal by its repre-

sentation in terms of impulses:

Using additivity,

Taking the limit,

6
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past present future
input (impulse)

output (impulse response)

input (step)

output (step response)

0     0     0   1/2  1/4  1/8    0     0     0

0     0     0     1     0     0     0     0     0

0     0     0     1     1     1     1     1     1

0     0     0   1/2  3/4  7/8   7/8  7/8  7/8

weights1/8  1/4  1/2

1/8  1/4  1/2 weights

Figure 3: Convolution as a series of weighted sums.

Using homogeneity,

Now let be the response of to the unshifted unit impulse, i.e., . Then by using

shift-invariance,

(4)

Notice what this last equation means. For any shift-invariant linear system , once we know its

impulse response (that is, its response to a unit impulse), we can forget about entirely, and

just add up scaled and shifted copies of to calculate the response of to any input whatsoever.

Thus any shift-invariant linear system is completely characterized by its impulse response .

The way of combining two signals specified by Eq. 4 is know as convolution. It is such a

widespread and useful formula that it has its own shorthand notation, . For any two signals and

, there will be another signal obtained by convolving with ,

Convolution as a series of weighted sums. While superposition and convolution may sound

a little abstract, there is an equivalent statement that will make it concrete: a system is a shift-

invariant, linear system if and only if the responses are a weighted sum of the inputs. Figure 3

shows an example: the output at each point in time is computed simply as a weighted sum of the

inputs at recently past times. The choice of weighting function determines the behavior of the

system. Not surprisingly, the weighting function is very closely related to the impulse response of

the system. In particular, the impulse response and the weighting function are time-reversed copies

of one another, as demonstrated in the top part of the figure.

7

Representing the input signal as a sum of pulses:

Taking the limit,

Using homogeneity (scalar rule),

Defining h(t) as the impulse response,

Linear, Shift-Invariant Systems

• Linearity: Scalar rule and additivity

• Applied to impulse, sums of impulses

• Applied to sine waves, sums of sine waves

Shift-invariant linear 
systems and impulses



Example – Bass/Treble filters

Low-pass or
Bass Filter

High-pass or
Treble Filter

Miles Davis
“Half Nelson”

Bass only:

Treble only:

Time

Signal Frequency content

Filter

Next
Prev

Convolution and multiplication

Convolution:

x1[n] * x2[n]           X1[k] X2[k]

Multiplication:

x1[n] x2[n]           (1/N) X1[k] * X2[k]

convolution

time sample

frequency sample

Fourier transform

The Big Payoff

  

The signal: f ! F

The system T  has impulse response i ! I

The system's response is T(f ) = i " f ! IF

In other words, the Fourier transform of the impulse
response is the modulation transfer function (MTF). 

The corresponding receptive field is the time- or 
space-reversed impulse response.

The Big Payoff

!
F

!
F

!
F

!!

!

= =

input signal

cross-correlated with convolved with

impulse responsereceptive field

output signal

input transform

multiplied by

filter MTF

output transform



1-D Example: Gaussian Blur
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F

!
F

!
F

input signal

impulse response

output signal

1-D Example: Bandpass (DOG) Filter

!
F

!
F

!
F

input signal

impulse response

output signal

?

?

?

Gabor function

1-D Example: Bandpass (Gabor) Filter
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1-d Example: fMRI Block alternation with 
noise & drift

+ noise + drift

Fourier transform of response with noise 
and drift
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+ noise + drift
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Bandpass 
filtering
to remove 
noise and 
drift

• How do you make a 
low-pass filter?

• How do you make a 
high-pass filter?

2-D Example: Gaussian Blur

!
F

!
F

!
F

input signal

impulse response

output signal

2-D Example: Bandpass (DOG) Filter
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impulse response
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2-D Example: Bandpass (DOG) Filter
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impulse response

output signal

2-D Example: Gabor Filter
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F

!
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!
F

input signal

impulse response

output signal

Applications: Line Spread Function
(Campbell & Gubisch, 1966)



Applications: Line Spread Function
(Campbell & Gubisch, 1966)

Point-Spread Function

Applications: Multiple Mechanisms
(Campbell & Robson, 1968)

Far

Near Contrast Sensitivity
Function (CSF)

Applications: Multiple Mechanisms
(Campbell & Robson, 1968)

Sine wave

Square wave

Ratio and peak-
detector model

Applications: Multiple Mechanisms
(Campbell & Robson, 1968)

CSF

Square vs sine
discrimination

CSF shifted
3x left & down

Applications: Summation Within and Between 
Channels (Graham & Nachmias, 1971)

Peaks
Subtract

Peaks
Add

Stimulus
Single-channel 

prediction
Multiple-channel 

prediction

f

3f



Applications: Summation Within and Between 
Channels (Graham & Nachmias, 1971)

Applications: Summation Within and Between 
Channels (Graham & Nachmias, 1971)

Applications: SF Adaptation (Blakemore & 
Campbell, 1969)

Applications: SF Adaptation (Blakemore & 
Campbell, 1969)

Applications: SF Adaptation (Blakemore & 
Sutton, 1969)

Applications: SF Adaptation (Blakemore & 
Sutton, 1969)



Applications: Pattern Masking
(Wilson et al., 1983)

• Mask one pattern (Gabor, D6, ...) by another (e.g., a 
sine wave grating, tilted obliquely)

• Threshold is raised by the masker if channel being 
used is sensitive to both

• Many possible explanations of the rise in threshold 
with masker contrast:

- Weber’s Law, possibly as a result of multiplicative 
noise (noise whose SD is proportional to mean 
response):

- Nonlinearity followed by additive noise
 

!I

I
= k

Applications: Pattern Masking
(Wilson et al., 1983)

Applications: Pattern Masking
(Wilson et al., 1983)

Applications: Pattern Masking
(Wilson et al., 1983)

Applications: Pattern Masking
(Wilson et al., 1983)

Applications:Detection vs. Identification,
Labeled Lines (Watson & Robson, 1981)



Applications:Detection vs. Identification,
Labeled Lines (Watson & Robson, 1981)

Applications:Detection vs. Identification,
Labeled Lines (Watson & Robson, 1981)

Applications:Detection vs. Identification,
Most Discriminating Mechanism

(Regan & Beverley, 1985)

Applications:Detection vs. Identification,
Most Discriminating Mechanism

(Regan & Beverley, 1985)

Applications:Sampling and Reconstruction
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Applications:Sampling and Reconstruction
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Applications:Sampling and Reconstruction
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Applications:Sampling and Reconstruction
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Applications:Sampling and Reconstruction

!
F

Time Frequency

Box Filtersinc(x) = sin(x)/x

Sample spacing

Applications:Sampling and Reconstruction Applications:Sampling and Reconstruction

!
F
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Applications:Sampling and Reconstruction

!
F

Applications:Sampling and Reconstruction

Applications:Sampling and Reconstruction
(Yellott, 1983)

Fovea

Applications:Sampling and Reconstruction
(Yellott, 1983)

Parafovea (approx. 6 deg ecc.)

Periphery (approx. 35 deg ecc.)

Applications:Sampling and Reconstruction
(Yellott, 1983)


