Linear Systems Theory

- Introduction Receptive fields and mechanisms
- Fourier Analysis Signals as sums of sine waves
- Linear, shift-invariant systems
 - Definition
 - Applied to impulses, sums of impulses
 - Applied to sine waves, sums of sine waves
- Applications

Fourier Analysis

Signals as sums of sine waves

- 1-d: time series
 - fMRI signal from a voxel or ROI
 - mean firing rate of a neuron over time - auditory stimuli
- 2-d: static visual image, neural image
- · 3-d: visual motion analysis
- 4-d: raw fMRI data

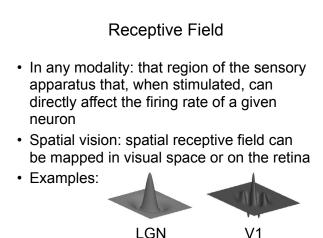
Linear Systems Analysis

Systems with signals as input and output

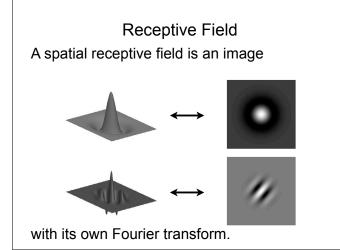
- 1-d: low- and high-pass filters in electronic equipment, fMRI data analysis, or in sound production (articulators) or audition (the ear as a filter)
- · 2-d: optical blur, spatial receptive field
- 3-d: spatio-temporal receptive field

Spatial Vision

- Image representation or coding - At each stage, what information is kept and what is lost?
- Image analysis
- Nonlinear: pattern recognition

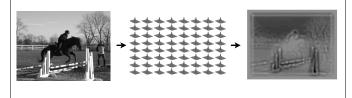


LGN



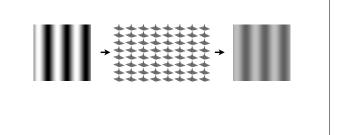
Neural Image

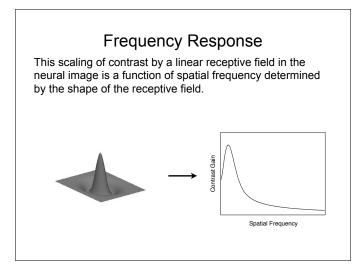
A spatial receptive field may also be treated as a linear system, by assuming a dense collection of neurons with the same receptive field translated to different locations in the visual field:

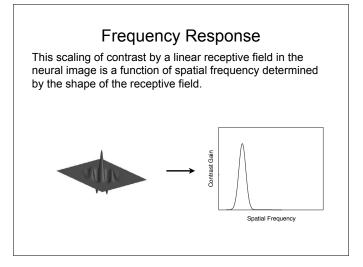


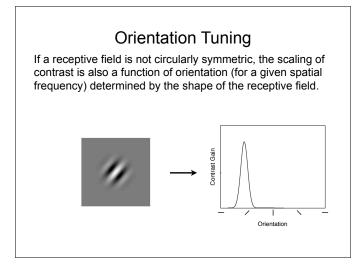
Neural Image of a Sine Wave

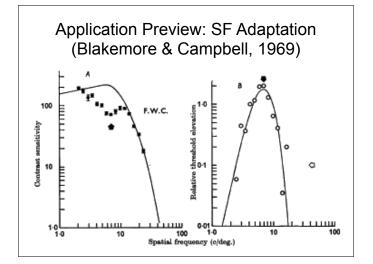
For a linear, shift-invariant system such as a linear model of a receptive field, an input sine wave results in an identical output sine wave, except for a possible lateral shift and scaling of contrast.

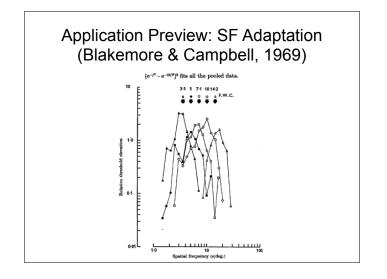






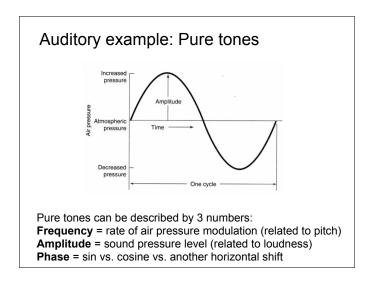


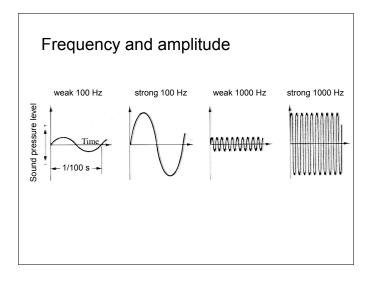


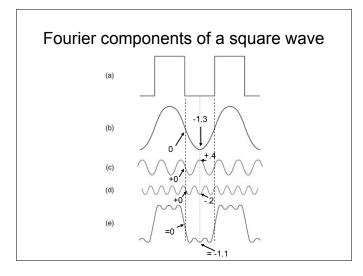


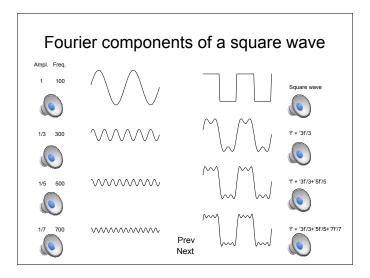
Summary: Linear Systems Theory

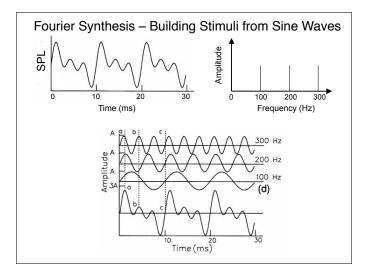
- · Signals can be represented as sums of sine waves
- Linear, shift-invariant systems operate "independently" on each sine wave, and merely scale and shift them.
- A simplified model of neurons in the visual system, the linear receptive field, results in a neural image that is linear and shift-invariant.
- Psychophysical models of the visual system might be built of such mechanisms.
- It is therefore important to understand visual stimuli in terms of their spatial frequency content.
- The same tools can be applied to other modalities (e.g., audition) and other signals (EEG, MRI, MEG, etc.).

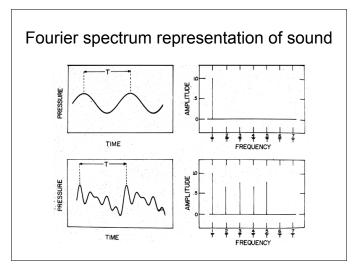


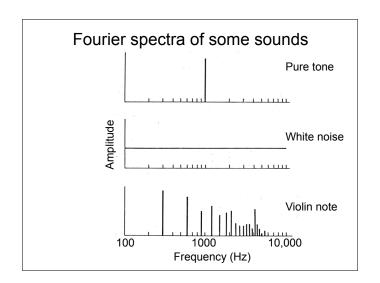


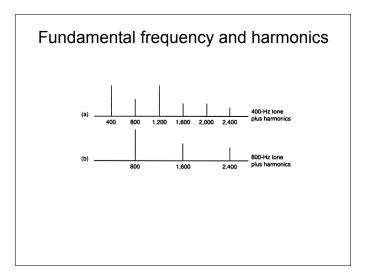


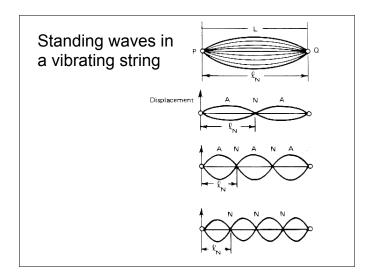


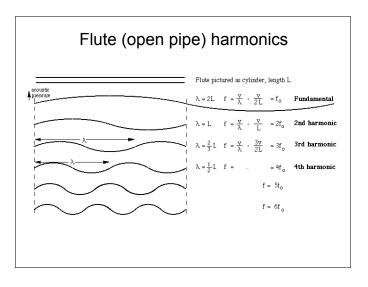


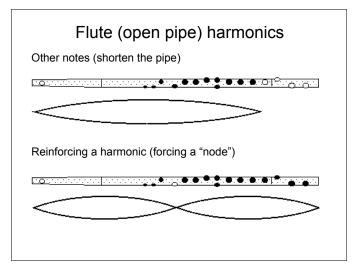




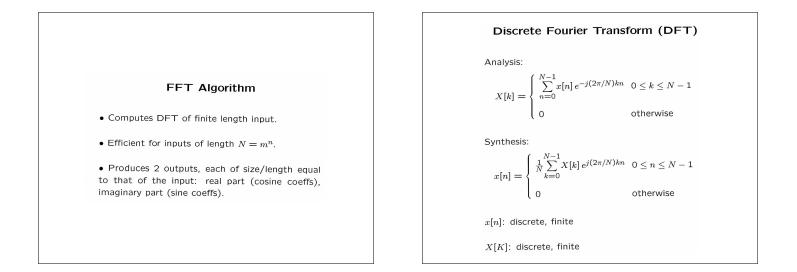


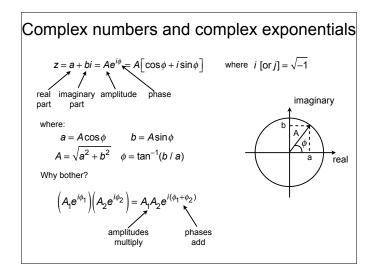


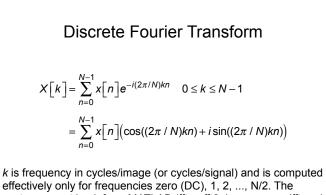




Lots of Fourier Transforms									
name	time domain	freq domain							
Fourier transform Fourier series	continuous, infinite continuous, periodic	continuous, infinite discrete, infinite							
DTFT DFS DFT	discrete, infinite discrete, periodic discrete, finite	continuous, periodic discrete, periodic discrete, finite							

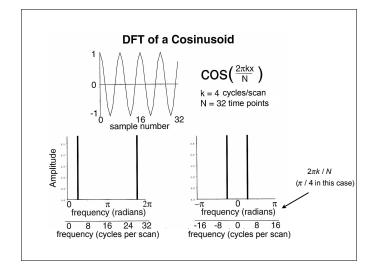


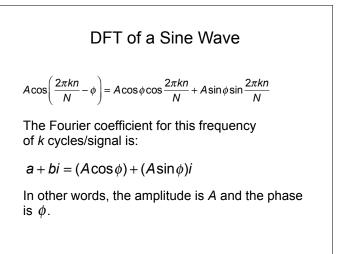




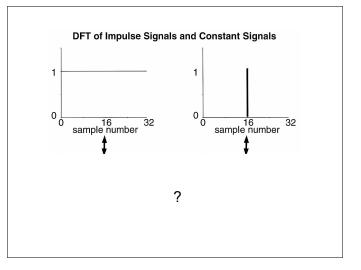
vector you get back from MATLAB (fft or fft2, inverses are ifft and ifft2), however, continues redundantly (for real signals, that is):

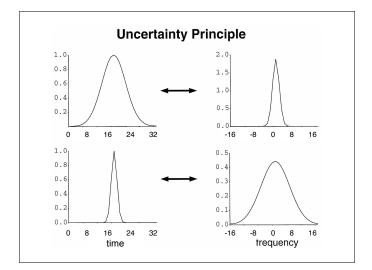
0, 1, ..., N/2-1, N/2=0, N/2-1, ..., 1.

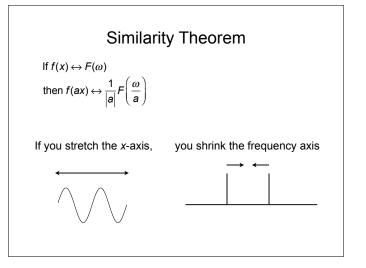


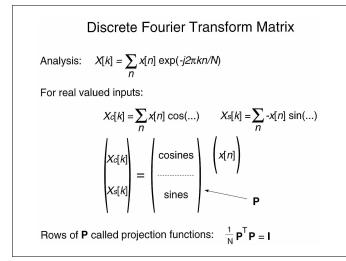


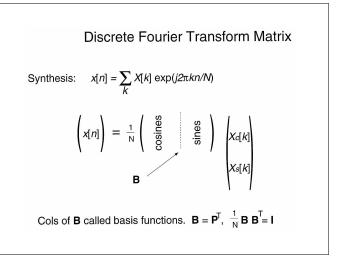


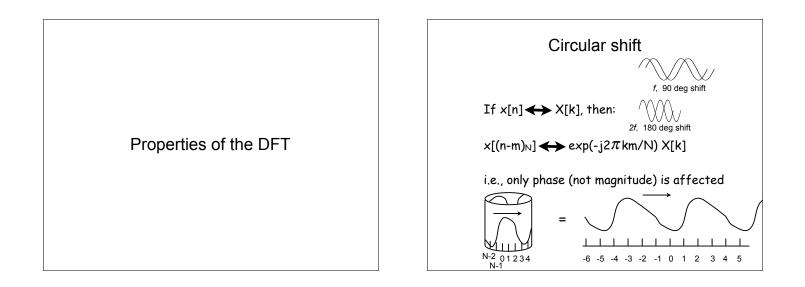


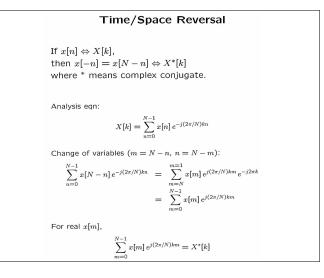


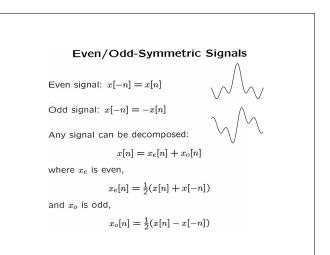


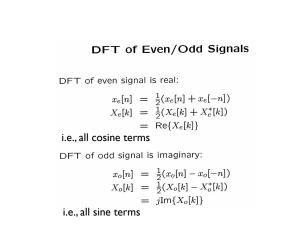


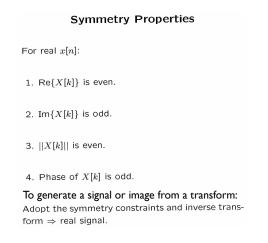


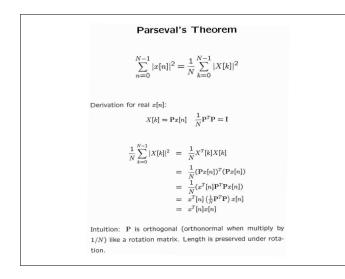


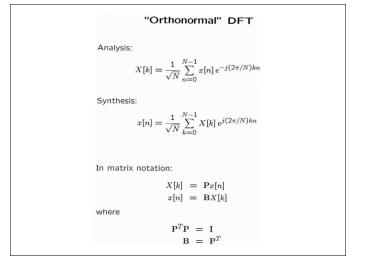


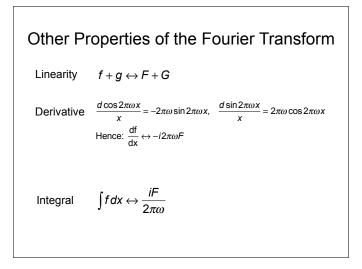


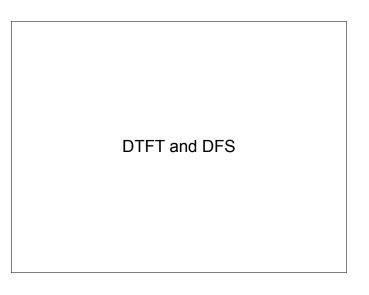












Discrete-Time Fourier Transform (DTFT)

Analysis:

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

Synthesis:

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega$$

x[n]: discrete, infinite, not necessarily periodic

 $X(\omega)$: continuous, periodic (with period 2π)

$$X(\omega) \text{ is Periodic}$$

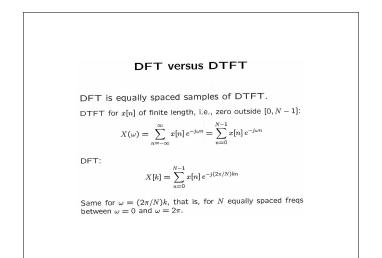
$$X(\omega + 2\pi) = \sum_{n=1}^{\infty} x[n] e^{-j(\omega + 2\pi)n}$$

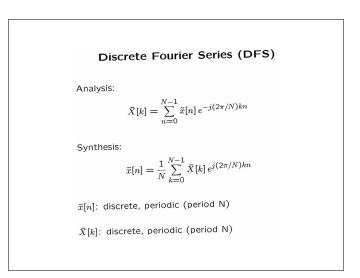
$$= \sum_{n=1}^{\infty} x[n] e^{-j\omega n} e^{-j2\pi n}$$

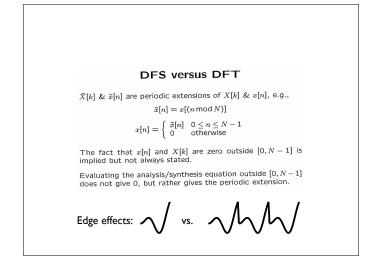
$$= \sum_{n=1}^{\infty} x[n] e^{-j\omega n}$$

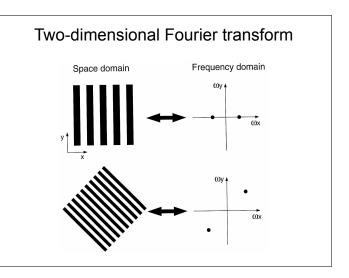
$$= X(\omega)$$
where:
$$e^{-j2\pi n} = \cos(2\pi n) + j \sin(2\pi n)$$

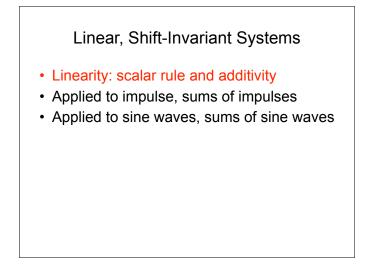
$$= 1 + 0$$

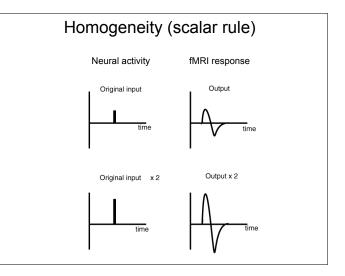


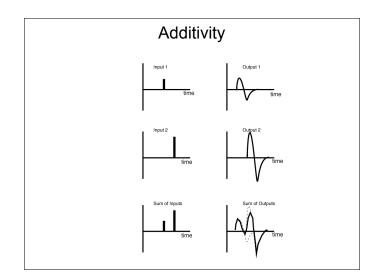


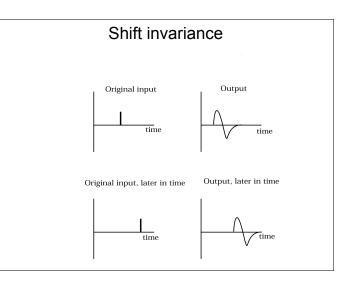












Linear systems

A system (or transform) converts (or maps) an input signal into an output signal: y(t) = T[x(t)]

A linear system satisfies the following properties:

1) Homogeneity (scalar rule): T(a x(t)] = a y(t)2) Additivity: T($x_1(t) + x_2(t)$] = $y_1(t) + y_2(t)$

Often, these two properties are written together and called superposition: $T(a x_1(t) + b x_2(t)] = a y_1(t) + b y_2(t)$ Shift invariance

For a system to be shift-invariant (or time-invariant) means that a time-shifted version of the input yields a time-shifted version of the output: y(t) = T(y(t))

$$y(t) = T[x(t)]$$

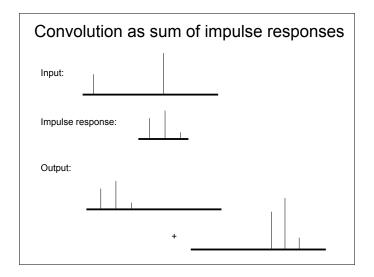
$$y(t-s) = \mathsf{T}[x(t-s)]$$

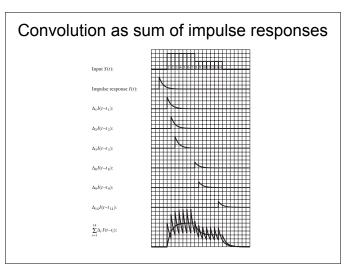
The response y(t - s) is identical to the response y(t), except that it is shifted in time.

<text><text>

Linear, Shift-Invariant Systems

- · Linearity: Scalar rule and additivity
- · Applied to impulse, sums of impulses
- · Applied to sine waves, sums of sine waves





Convolution Discrete-time signal: $x[n] = [x_1, x_2, x_3, ...]$ A system or transform maps an input signal into an output signal: $y[n] = T\{x[n]\}$ A shift-invariant, linear system can always be expressed as a convolution: $y[n] = \sum x[m] h[n-m]$ where h[n] is the impulse response.

Convolution derivation

Homogeneity: $T\{a x[n]\} = a T\{x[n]\}$

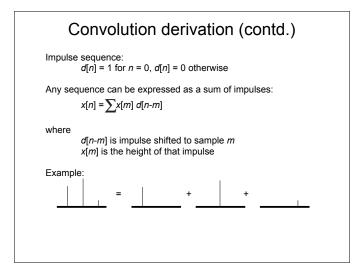
Additivity:

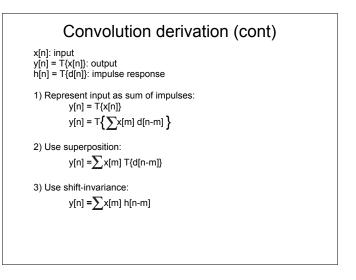
 $T\{x_1[n] + x_2[n]\} = T\{x_1[n]\} + T\{x_2[n]\}$

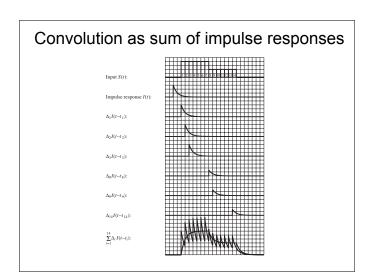
Superposition: $T\{a x_1[n] + b x_2[n]\} = a T\{x_1[n]\} + b T\{x_2[n]\}$

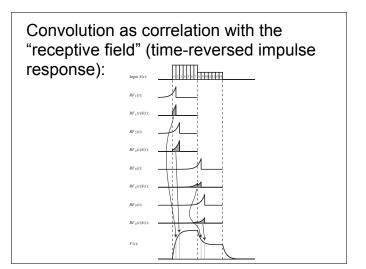
Shift-invariance:

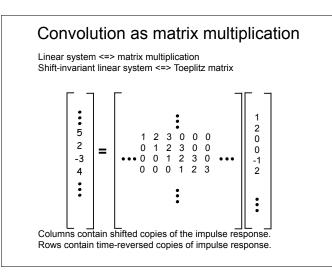
 $y[n] = T{x[n]} => y[n-m] = T{x[n-m]}$



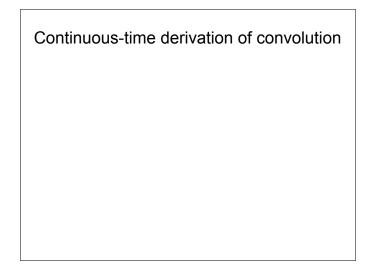


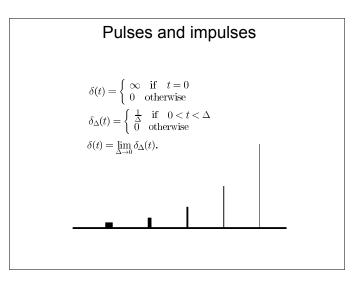


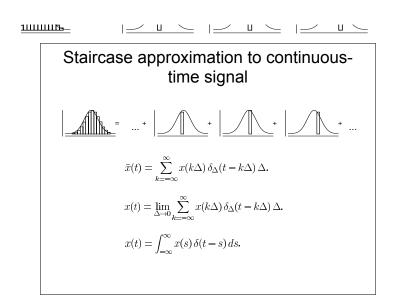


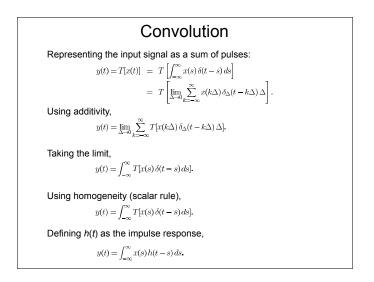


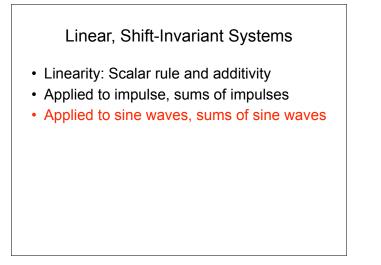
Convo	luti	on	as	se	qı	lei	nce	of weighted sums
p	ast	pre	esent			futu	ire	
0	0	0 	1 0	0	0	0	0	input (impulse)
	1/8	1/4 1	1/2 —	•				weights
0	0	01	/2 1/4	1/8	0	0	0	output (impulse response)
0	0	0	1 1	1	1	1	1	input (step)
			1/8 1/4	1/2		•		weights
0	0		1/2 3/4	NI.		7/8	7/8	output (step response)

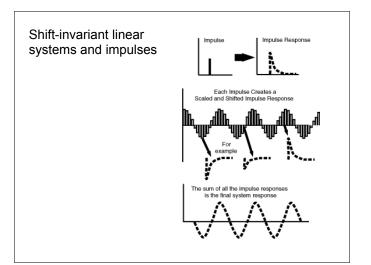


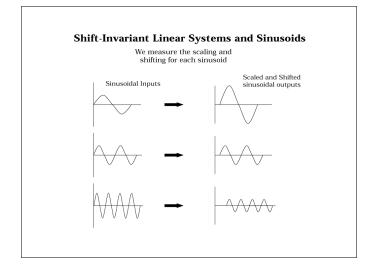


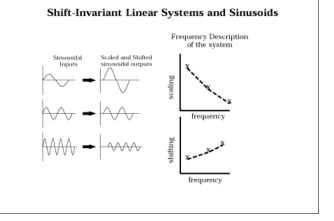


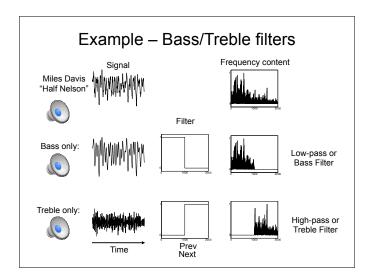


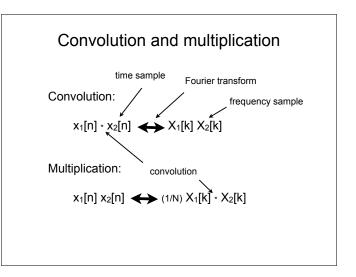


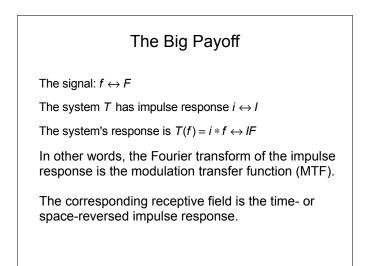


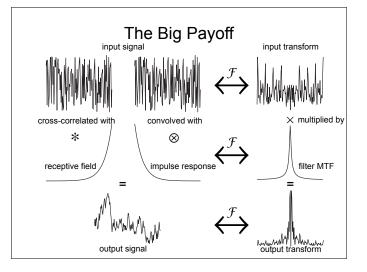


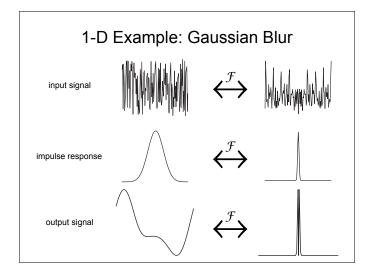


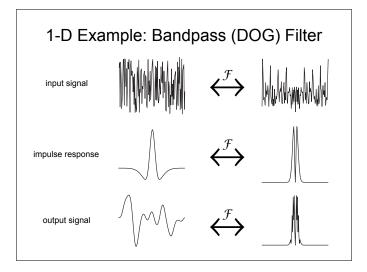


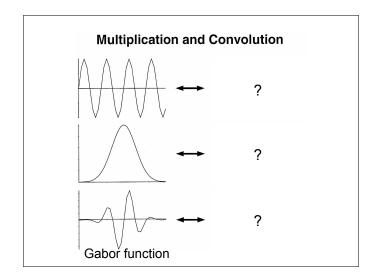


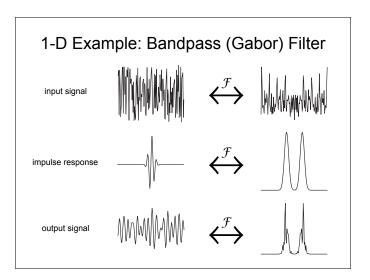


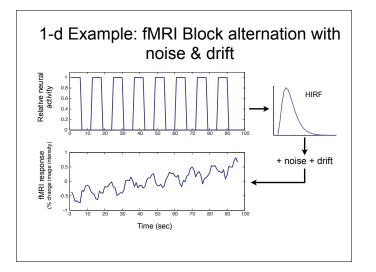


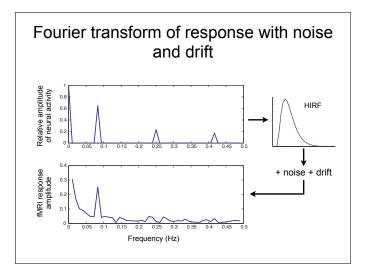


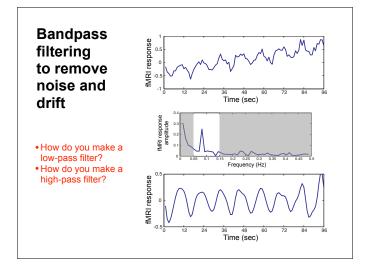


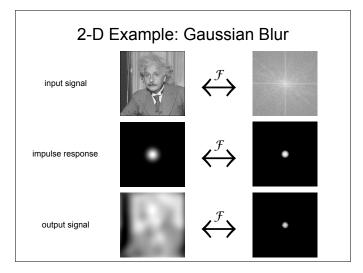


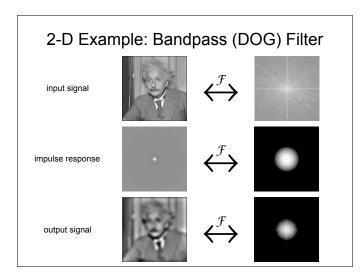


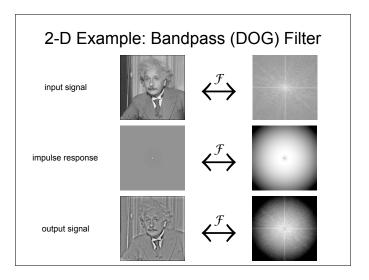


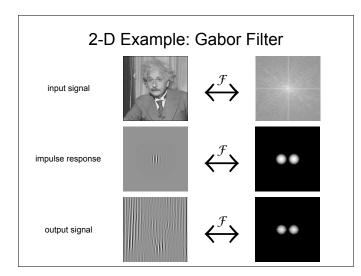


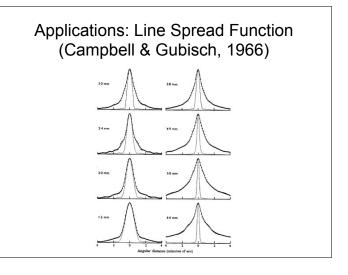


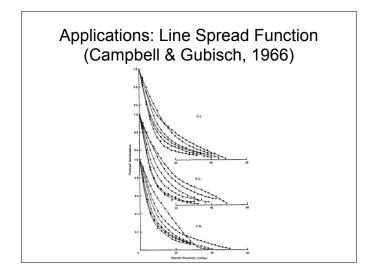


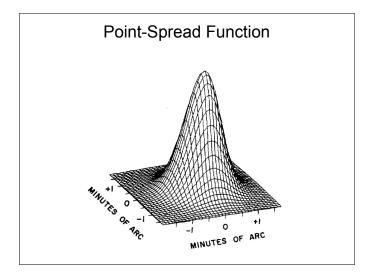


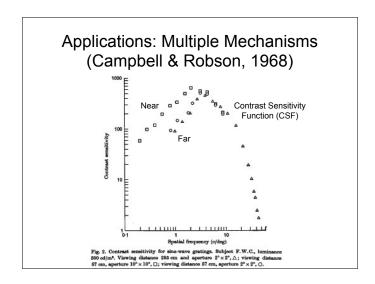


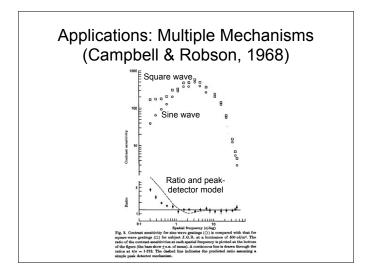


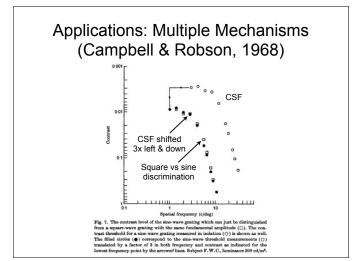


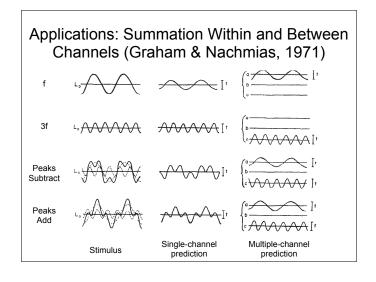


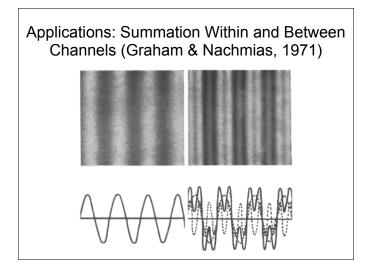


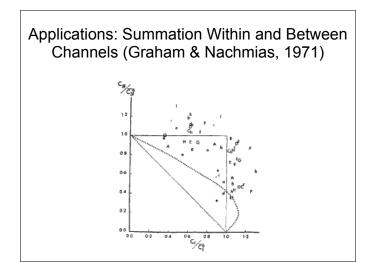


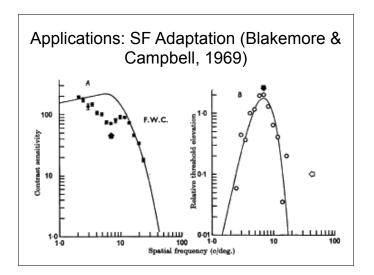


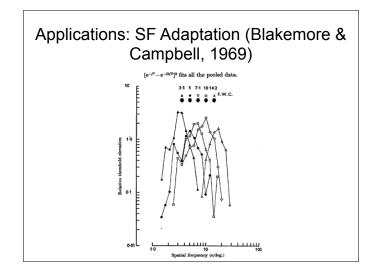


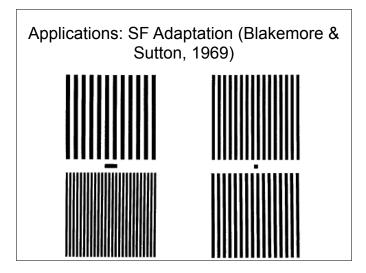


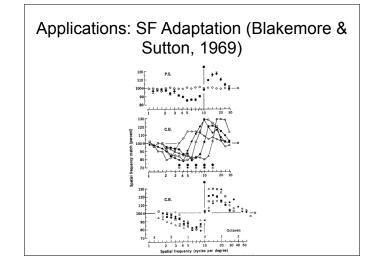












Applications: Pattern Masking (Wilson et al., 1983)

- Mask one pattern (Gabor, D6, ...) by another (e.g., a ٠ sine wave grating, tilted obliquely)
- Threshold is raised by the masker if channel being ٠ used is sensitive to both
- Many possible explanations of the rise in threshold ٠ with masker contrast:
 - Weber's Law, possibly as a result of multiplicative noise (noise whose SD is proportional to mean $\frac{\Delta l}{k} = k$ response):
 - Nonlinearity followed by additive noise

Applications: Pattern Masking (Wilson et al., 1983) ; ; ; 0.8 Elevation Elevat 2.02.0 Ihreshold hreshold

5,0

1.0 0.5

2.0 4.0 8.0

Spatial Frequency (C/D)

DKM

2.0

1.0

.5 1.0 2.0

Spatial Frequency (C/D)

