Principles

Psychophysics is part psycho and part physics.

Theory: linear systems.

Methodology: matching.

Computation: linear summation, static nonlinearity, adaptation.

Principle of univariance.

Parallel pathways.

Perceptual constancy (lightness, color, size, etc.), adaptation, and visual illusions (e.g., aftereffects).

Color Outline

Wavelength encoding (trichromacy)

Three cone types with different spectral sensitivities. Each cone outputs only a single number that depends on how many photons were absorbed. If two physically different lights evoke the same responses in the 3 cones then the two lights will look the same (metamers). Explains when two lights will look the same, not what they will look like.

Color appearance

Color opponency: appearance depends on the differences between cone responses (R-G and B-Y).

Chromatic adaptation: color appearance also depends on context because the each cone adapts (like light and dark adaptation) to the ambient illumination.

Color constancy: visual system infers surface color, despite changes in illumination.

Trichromacy and the color matching experiment

- 1. Lights that are physically different can look the same (metamers).
- 2. Three primaries are enough to match any test light.
- 3. People behave like linear systems in the color matching experiment.

Commission Internationale d'Eclairage (CIE) standard set in 1931 using 3 monochromatic primaries at wavelengths of 435nm, 546nm, and 700nm.

The principle of univariance

The response of a photoreceptor is a function of just one variable (namely, the number of photons absorbed).

Thus, the response can be identical for:

- a weak light at the wavelength of peak sensitivity (few incident photons, a large fraction of them absorbed)
- a strong light at a wavelength of lower sensitivity (many incident photons, a small fraction of them absorbed)

Color blindness

normal

red/green color blind blue-yellow color blind

• Dichromats: missing one of the three photopigment/cone types.

• Can match with 2 primaries in the color matching experiment

• Will accept trichromat's match but trichromat will not always accept dichromats match.

Color blindness

normal

red/green color blind

blue/yellow color blind

People with color deficiencies may have difficulty distinguishing certain colors (e.g., a red/green color deficiency means that reds and greens are more difficult to distinguish). But as this photo demonstrates, many other colors are just as distinguishable to a person with a color deficiency as to someone with normal color vision.

Color matching and trichromacy cavaets

1. The 3 primary lights must be linearly independent:

- For any set of primaries, there are test lights that are out of range such that the primary intensities must be higher than achievable or "negative" (which is physically impossible).
- 3. Trichromacy determines when two lights look the same, not what they look like.
- 4. Additive vs "subtractive" color mixtures.

Simultaneous color contrast

(identical lights look different in a different context)

http://www.bbso.njit.edu/Documentations/gimpdoc-html/color.html

