Principles

Psychophysics is part psycho and part physics.
Theory: linear systems.
Methodology: matching.
Computation: linear summation, static nonlinearity, adaptation.
Principle of univariance.
Parallel pathways.
Perceptual constancy (lightness, color, size, etc.), adaptation, and visual illusions (e.g., aftereffects).

Color Outline

Wavelength encoding (trichromacy)

Three cone types with different spectral sensitivities. Each cone outputs only a single number that depends on how many photons were absorbed. If two physically different lights evoke the same responses in the 3 cones then the two lights will look the same (metamers). Explains when two lights will look the same, not what they will look like.

Color appearance

Color opponency: appearance depends on the differences between cone responses ($R-G$ and $B-Y$).
Chromatic adaptation: color appearance also depends on context because the each cone adapts (like light and dark adaptation) to the ambient illumination.

Color constancy: visual system infers surface color, despite changes in illumination.

Trichromacy and the color matching experiment

Wavelength and light

Electromagnetic spectrum

Spectro-radiometer

Movable slit

Spectral power distributions

Color matching experiment

Color matching experiment

1. Lights that are physically different can look the same (metamers).
2. Three primaries are enough to match any test light.
3. People behave like linear systems in the color matching experiment.

Linear systems

Color matching: scaling

Superposition of light: SPDs add

(a)

(b)

Color matching: additivity

Color matching as matrix multiplication

$$
\begin{aligned}
& \text { Color match SPD of } \\
& \text { settings Color matching functions test light } \\
& \left.\left.\left\lvert\, \begin{array}{l}
R \\
G \\
B
\end{array}\right.\right) \left.=\left(\begin{array}{llll}
r\left(\lambda_{1}\right) & r\left(\lambda_{2}\right) & \cdots & r\left(\lambda_{\mathrm{N}}\right) \\
g\left(\lambda_{1}\right) & g\left(\lambda_{2}\right) & \cdots & g\left(\lambda_{\mathrm{N}}\right) \\
b\left(\lambda_{1}\right) & b\left(\lambda_{2}\right) & \cdots & b\left(\lambda_{\mathrm{N}}\right)
\end{array}\right) \right\rvert\, \begin{array}{c}
t\left(\lambda_{1}\right) \\
t\left(\lambda_{2}\right) \\
\cdot \\
\quad \begin{array}{l}
\text { Intensities of } \\
\text { the three }
\end{array} \\
\cdot \\
t\left(\lambda_{\mathrm{N}}\right)
\end{array}\right) \\
& \begin{array}{l}
\text { the three } \\
\text { primary lights }
\end{array}
\end{aligned}
$$

Color matching: scaling

Scaling the input by α scales the output by α :

$$
\left.\begin{array}{l}
\begin{array}{c}
\text { Color match } \\
\text { settings }
\end{array} \\
\qquad \left.\left(\begin{array}{c}
\alpha R \\
\alpha G \\
\alpha B
\end{array}\right)=\left(\begin{array}{llll}
r\left(\lambda_{1}\right) & r\left(\lambda_{2}\right) & \cdots & r\left(\lambda_{\mathrm{N}}\right) \\
g\left(\lambda_{1}\right) & g\left(\lambda_{2}\right) & \cdots & g\left(\lambda_{\mathrm{N}}\right) \\
b\left(\lambda_{1}\right) & b\left(\lambda_{2}\right) & \cdots & b\left(\lambda_{\mathrm{N}}\right)
\end{array}\right) \right\rvert\, \begin{array}{c}
\text { SPD of } \\
\text { test light }
\end{array} \\
\alpha t\left(\lambda_{1}\right) \\
\alpha t\left(\lambda_{2}\right) \\
\cdot \\
\cdot \\
\cdot \\
\alpha t\left(\lambda_{\mathrm{N}}\right)
\end{array}\right) .
$$

Color matching: additivity

Adding two inputs gives the sum of the two outputs:

$$
\begin{aligned}
& \left.\left.\left\lvert\, \begin{array}{l}
R_{l} \\
G_{l} \\
B_{l}
\end{array}\right.\right)=\left(\begin{array}{l}
r(\lambda) \\
g(\lambda) \\
b(\lambda)
\end{array}\right)\left|t_{l}(\lambda)\right| \begin{array}{l}
R_{2} \\
G_{2} \\
B_{2}
\end{array}\right) \left.=\left(\begin{array}{l}
r(\lambda) \\
g(\lambda) \\
b(\lambda)
\end{array}\right) \right\rvert\,\left(\begin{array}{l}
\\
t_{2}(\lambda) \mid
\end{array}\right. \\
& \left(\begin{array}{l}
R_{1}+R_{2} \\
G_{1}+G_{2} \\
B_{1}+B_{2}
\end{array}\right)=\left(\begin{array}{l}
r(\lambda) \\
g(\lambda) \\
b(\lambda)
\end{array}\right)\left|t_{l}(\lambda)+t_{2}(\lambda)\right|
\end{aligned}
$$

Measuring the color matching functions

$$
\begin{gathered}
\begin{array}{c}
\text { Color match } \\
\text { settings of }
\end{array} \\
\left(\begin{array}{l}
r\left(\lambda_{1}\right) \\
g\left(\lambda_{1}\right) \\
b\left(\lambda_{1}\right)
\end{array}\right)=\left(\begin{array}{llll}
r\left(\lambda_{1}\right) & r\left(\lambda_{2}\right) & \cdots & r\left(\lambda_{\mathrm{N}}\right) \\
g\left(\lambda_{1}\right) & g\left(\lambda_{2}\right) & \cdots & g\left(\lambda_{\mathrm{N}}\right) \\
b\left(\lambda_{1}\right) & b\left(\lambda_{2}\right) & \cdots & b\left(\lambda_{\mathrm{N}}\right)
\end{array}\right)\left|\begin{array}{c}
1 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
0
\end{array}\right| \\
\text { monochromatic test light }
\end{gathered}
$$

Repeat with monochromatic test lights of each wavelength, always using the same 3 primary lights.

Standardized color matching functions

Commission Internationale d'Eclairage (CIE) standard set in 1931 using 3 monochromatic primaries at wavelengths of $435 \mathrm{~nm}, 546 \mathrm{~nm}$, and 700 nm .

Physiology of color matching

Photoreceptors: rods and cones

Rhodopsin

In the dark

Bleached by light

Measuring rod spectral sensitivity

(wavelength-dependence of rhodopsin absorption)

Light source

Rod spectral sensitivity

Let's say you have a 500 nm light with intensity 10. Can you match it's appearance with a 550 nm light? If so, what will be the intensity of the matching light?

The principle of univariance

The response of a photoreceptor is a function of just one variable (namely, the number of photons absorbed).
Thus, the response can be identical for:

- a weak light at the wavelength of peak sensitivity (few incident photons, a large fraction of them absorbed)
- a strong light at a wavelength of lower sensitivity (many incident photons, a small fraction of them absorbed)

Human cone mosaic

Subject JW, temporal
Subject JW, nasal

Subject AN, nasal
one degree eccentricity

Measuring cone photocurrents

Cone photocurrent

Cone responses are nonlinear

(but can be equated by scaling intensity)

Flash photon density (photons per square micron)

Cone spectral sensitivities

Trichromacy equations

Wavelength encoding equation

Input SPD

$$
\left.\right)=\left(\begin{array}{ccc}
\omega_{1} & l(\lambda) & \cdots \\
\cdots & m(\lambda) & \cdots \\
\cdots & s(\lambda) & \cdots
\end{array}\right)\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{n}
\end{array}\right)
$$

Metamers revisited

$$
\left.\begin{array}{rl}
\left(\begin{array}{c}
L \\
M \\
S
\end{array}\right)=\left(\begin{array}{ccc}
\cdots & l(\lambda) & \cdots \\
\cdots & m(\lambda) & \cdots \\
\cdots & s(\lambda) & \cdots
\end{array}\right)\binom{t_{1}}{\cdots} & \vdots\left(\begin{array}{ccc}
\cdots & l(\lambda) & \cdots \\
\cdots & m(\lambda) & \cdots \\
t_{n}
\end{array}\right) \\
\vdots & s(\lambda) \\
\cdots
\end{array}\right)\left(\begin{array}{l}
s_{1} \\
\vdots \\
s_{n}
\end{array}\right)
$$

Displays and color matching

Application: Color TV

Trinitron

Tri-dot

Color display equation

Color blindness

Color blindness and color matching

Trichromat
Dichromat

Color blindness

normal

red/green color blind

blue-yellow color blind

- Dichromats: missing one of the three photopigment/cone types.
- Can match with 2 primaries in the color matching experiment
- Will accept trichromat's match but trichromat will not always accept dichromats match.

Color blindness

normal

red/green color blind

blue/yellow color blind

People with color deficiencies may have difficulty distinguishing certain colors (e.g., a red/green color deficiency means that reds and greens are more difficult to distinguish). But as this photo demonstrates, many other colors are just as distinguishable to a person with a color deficiency as to someone with normal color vision.

Color matching and trichromacy cavaets

1. The 3 primary lights must be linearly independent:

2. For any set of primaries, there are test lights that are out of range such that the primary intensities must be higher than achievable or "negative" (which is physically impossible).
3. Trichromacy determines when two lights look the same, not what they look like.
4. Additive vs "subtractive" color mixtures.

Simultaneous color contrast

(identical lights look different in a different context)

RGB

red, green, blue-used in TVs
Additive mixing of light
sources

CMYK
cyan, magenta, yellow, blackused in printing Subtractive mixing of absorbing pigments

"Subtractive" color mixture: surface reflectance

"Subtractive" color mixture: surface reflectance

"Subtractive" color mixture: surface reflectance

