Color Outline

Wavelength encoding (trichromacy)

Three cone types with different spectral sensitivities. Each cone outputs only a single number that depends on how many photons were absorbed. If two physically different lights evoke the same responses in the 3 cones then the two lights will look the same (metamers). Explains when two lights will look the same, not what they will look like.

Color appearance

Color opponency: appearance depends on the differences between cone responses (R-G and B-Y).

Chromatic adaptation: color appearance also depends on context because the each cone adapts (like light and dark adaptation) to the ambient illumination.

Color constancy: visual system infers surface color, despite changes in illumination.

Color appearance

Color opponency

Color opponency

Hue cancellation experiment

Hue cancellation experiment

Hue cancellation

Blue curve,
wavelengths that appear blue were cancelled by adding yellow light. Likewise for red and green.

Why is the curve red below 475 nm as well as above 580 nm ?

Color opponency neural computation

Color opponency

- Will a 650 nm light look redish or greenish?
- What about a 500 nm light?
- What monochromatic light will appear neither redish nor greenish? What color will it appear to have?

Neural circuits: rod pathway

Neural circuits in the retina (monkey rod pathway)

Parallel pathways (processing streams)

1. Anatomically distinct
2. Physiologically/functionally distinct
3. Complete coverage
4. Recombine

Example: rods and cones

Some retinal ganglion cell types

Parallel pathways: ganglion cells

Parasol ganglion cell:

1. Inputs from many photoreceptors
2. Fast/transient responses
3. Poor spatial resolution
4. Combine all cones ("color blind")

Midget ganglion cell:

1. Inputs from few (or one) photoreceptors
2. Slow/sustained responses
3. High spatial resolution

Ganglion cell receptive fields \& inputs from cone lattice

Field et al., Nature (2010)

Ganglion cell mosaics

Field et al., Nature (2010)

Blue/yellow pathway

S-cone (cross section)

S-cone sampling mosaic

Bistratified ganglion cell

Dendritic tree of bistratified ganglion cell branches in two separate layers of the retina.

- Inner tree avoids S cone bipolar cells.

Blue/yellow pathway

Light and dark adaptation

Surface luminance levels

- Sunlight: 10^{5} candelas $/$ meter ${ }^{2}\left(\mathrm{~cd} / \mathrm{m}^{2}\right)$
- Approx. 10^{22} photons $/ \mathrm{m}^{2} / \mathrm{sec}$
- $3 \%-90 \%$ of photons are reflected as luminance
- 3% for black surfaces, 90% for white surfaces
- Only some of the reflected photons enter the pupil of eye
- Indoor lighting, CRTs: $10^{2} \mathrm{~cd} / \mathrm{m}^{2}$
- Moonlight: $10^{-1} \mathrm{~cd} / \mathrm{m}^{2}$
- Starlight: $10^{-3} \mathrm{~cd} / \mathrm{m}^{2}$
- The eye can adjust to changes in light level by a factor of $100,000,000$!
- Yet firing rates only typically range from $0-400 \mathrm{~Hz}$.

Dark adaptation

Mechanisms of light/dark adaptation

1. Pupil size
2. Switchover between rods and cones
3. Bleaching/regeneration of photopigment
4. Feedback from horizontal cells to control the responsiveness of photoreceptors

Contras \dagger

mean $=1$ contrast $=50 \%$

mean $=1$
contrast = 100\%
contrast $=\frac{\text { amp of modulation }}{\text { mean }}$

mean $=2$
contrast $=50 \%$
Time or space

Responses increase with contrast
 high contrast ||| |||| |||||||||||||| |||||
time \rightarrow

Responses increase with contrast

low
stimulus contrast

high

Chromatic adaptation

Chromatic adaptation

\square

Asymmetric color matching

Memory matching

Dichoptic matching

Von Kries theory of chromatic adaptation (change of gain)

$$
\left(\begin{array}{l}
L \\
M \\
S
\end{array}\right)=\left(\begin{array}{cc}
\mathrm{G}_{\mathrm{L}} & 0 \\
& \\
\mathrm{G}_{\mathrm{M}} & \\
0 & \\
\mathrm{G}_{\mathrm{S}}
\end{array}\right)\left(\begin{array}{l}
L^{\prime} \\
M^{\prime} \\
S^{\prime}
\end{array}\right)
$$

Von Kries theory of chromatic

 adaptation (change of gain)
context cone
absorptions

What determines the gain

Neural computation
with coloropponency and adaptation

Lightness constancy

Surface reflectance

Simultaneous brightness contrast \dagger

Color constancy

Color signaling

Surface-illuminant equations

$$
\begin{aligned}
& \left(\begin{array}{l}
R \\
G \\
B
\end{array}\right)=\left(\begin{array}{l}
\mathrm{R}(\lambda) \\
\square \\
0
\end{array}\right)^{\mathrm{E}(\lambda)} \\
& G=\int E(\lambda) S(\lambda) R_{g}(\lambda) d \lambda
\end{aligned}
$$

Simultaneous color contrast

Principles

Psychophysics is part psycho and part physics.
Theory: linear systems.
Methodology: matching.
Computation: linear summation, static nonlinearity, adaptation.
Principle of univariance.
Parallel pathways.
Perceptual constancy (lightness, color, size, etc.), adaptation, and visual illusions (e.g., aftereffects).

