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Neuropsychiatric conditions like schizophrenia display a complex
neurobiology, which has long been associated with distributed
brain dysfunction. However, no investigation has tested whether
schizophrenia shows alterations in global brain signal (GS), a signal
derived from functional MRI and often discarded as a meaningless
baseline in many studies. To evaluate GS alterations associated
with schizophrenia, we studied two large chronic patient samples
(n = 90, n = 71), comparing them to healthy subjects (n = 220) and
patients diagnosed with bipolar disorder (n = 73). We identified
and replicated increased cortical power and variance in schizophre-
nia, an effect predictive of symptoms yet obscured by GS removal.
Voxel-wise signal variance was also increased in schizophrenia, in-
dependent of GS effects. Both findings were absent in bipolar
patients, confirming diagnostic specificity. Biologically informed
computational modeling of shared and nonshared signal propa-
gation through the brain suggests that these findings may be
explained by altered net strength of overall brain connectivity
in schizophrenia.
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The brain of humans and other mammalian species is orga-
nized into large-scale systems that exhibit coherent func-

tional relationships across space and time (1). This organizational
principle was discovered in the human brain primarily through
examination of correlated spontaneous fluctuations in the blood-
oxygenation level-dependent (BOLD) signal, which reflects blood
flow and is interpreted as a surrogate marker for regional brain
metabolic activity (2–4). Such resting-state functional connectivity
(rs-fcMRI) analyses further revealed the functional architecture of
the brain (1, 3) and its alterations in pathological states, wherein
disruptions of brain function may be restricted to certain regions,
or extend globally because of widespread neurotransmitter ab-
normalities (5, 6), possibly affecting widespread global signals
(GS) (7).
Schizophrenia (SCZ) has been described as a disorder of

distributed brain “dysconnectivity” (8), emerging from complex
biological alterations (9) that may involve extensive disturbances
in the NMDA glutamate receptor, altering the balance of exci-
tation and inhibition (10). The symptoms of SCZ are corre-
spondingly pervasive (11), leading to a lifetime of disability for
most patients (12) at profound economic cost. Understanding
the properties of neural disturbances in SCZ constitutes an im-
portant research goal, to identify pathophysiological mechanisms
and advance biomarker development. Given noted hypotheses
for brain-wide disturbances in cortical and subcortical compu-
tations (13), we hypothesized that SCZ might be associated with
GS alterations. However, most rs-fcMRI studies discard the GS
to better isolate functional networks. Such removal may fun-
damentally obscure meaningful brain-wide GS alterations in
SCZ. It is currently unknown whether prevalent implementation
of such methods affects our understanding of BOLD signal

abnormalities in SCZ or other clinical conditions that share
many risk genes, such as bipolar disorder (BD) (14).
Spontaneous BOLD signal can exhibit coherence both within

discrete brain networks and over the entire brain (7). In neuro-
imaging, signal averaged across all voxels is defined as GS. The
GS can to a large extent reflect nonneuronal noise (e.g., physi-
ological, movement, scanner-related) (9), which can induce ar-
tifactual high correlations across the brain. Thus, GS is often
removed via global signal regression (GSR) to better isolate
functional networks. This analytic step presumes that brain-wide
GS is not of interest, and its removal can improve the anatomical
specificity of some rs-fcMRI findings (15). However, this com-
mon approach remains controversial (16). Besides noise, GS may
reflect neurobiologically important information (7) that is pos-
sibly altered in clinical conditions. This reflection is potentially
problematic when comparing rs-fcMRI between diagnostic groups
that may have different GS profiles. Thus, GS removal may
discard critical discriminative information in such instances. This
possibility has received little attention in rs-fcMRI studies of
severe neuropsychiatric disease, such as SCZ.
We systematically characterized the GS profile across two

large and independent SCZ samples (n = 90 and n = 71), where
the first “discovery” sample established novel results and the
second sample replicated all effects. To establish diagnostic
specificity of SCZ findings, we compared them to a cohort of BD
patients (n = 73). As a secondary objective, we examined if GSR
alters inferences across clinical groups in empirical data. We
used both data-driven (17) and seed-based analyses (6, 18)
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focused on prefrontal and thalamo-cortical circuits, where dys-
connectivity in SCZ has been well established. Finally, we used
biologically informed computational modeling (19, 20) to ex-
plore how alterations in local circuit parameters could impact
emergent GS alterations, as observed in SCZ.
Collectively, results illustrate that GS is differentially altered

in neuropsychiatric conditions and may contain neurobiologically
meaningful information suggesting that GS should be explicitly
analyzed in clinical studies. Our modeling simulations reveal that
net increases in microcircuit coupling or global connectivity may
underlie GS alterations in SCZ.

Results
Power and Variance of the Cortical Gray Matter BOLD Signal Is
Increased in SCZ. We examined the cortical gray matter (CGm)
BOLD signal power spectrum in SCZ patients (n = 90), com-
pared with matched healthy comparison subjects (HCS, n = 90)
(6). Using the multitaper periodogram method (21) (SI Appen-
dix), we compared the group-averaged power across frequencies,
with and without GSR (Fig. 1). To perform GSR, the average
signal over all voxels in the brain (GS) was included as a nuisance
predictor and regressed out to produce a residual BOLD signal
without its GS component (SI Appendix). SCZ patients exhibited
higher CGm average power [F(1, 178) = 7.42, P < 0.01] and
variance [F(1, 178) = 7.24, P < 0.01] than HCS (i.e., Group main
effect). As expected, removal of GS (and its frequency con-
tributions) through GSR reduced the power amplitudes in all
frequency domains across groups [F(1, 178) = 248.31, P <
0.0001]) and attenuated CGm variance [F(1, 178) = 245.6, P <
0.0001] (i.e., main effect of Preprocessing). SCZ patients showed
greater reductions in CGm power (averaged over all subjects and
frequency domains) [F(1, 178) = 5.37, P < 0.025] and variance
[F(1, 178) = 5.25, P < 0.025] because of GSR (i.e., Group ×
Preprocessing interaction) (Fig. 1 A–C). Put simply, the GSR
effect was greater in SCZ than HCS. To verify “discovery”
findings, we repeated analyses in an independent sample of 71
SCZ patients and 74 HCS, fully replicating increased CGm
power/variance in SCZ and the effect of GSR (Fig. 1 D–F).
Reported effects held when examining all gray matter tissue (as

opposed to cortex only) (SI Appendix, Fig. S1) and were not
present in ventricles (SI Appendix, Fig. S2). Interestingly, SCZ
effects were more preferential for higher-order networks, but
were not evident in visual/motor networks (SI Appendix, Fig.
S12), suggesting that, despite robust GS effects, elevated vari-
ability may be particularly apparent in associative networks. We
also controlled for known confounds (movement, smoking,
medication dose and medication type), which did not explain
reported findings (Discussion and SI Appendix, Figs. S3 and S14).
Next, to investigate the diagnostic specificity of SCZ effects,

we examined an independent sample of 73 BD patients and 56
matched HCS. Strikingly, there was no increase in CGm power
in BD relative to HCS; the trend was toward reduced CGm
power in BD, the opposite of what we observed in SCZ [F(1,
127) = 3.06, P = 0.083, n.s.]. GSR did not significantly alter the
between-group difference for BD vs. HCS [no Group × Pre-
processing interaction: F(1, 127) = 2.9, P = 0.092, n.s.] (Fig. 1 G–
I). In addition, SCZ effects remained relative to BD patients
after explicit movement matching (SI Appendix, Fig. S12) and
controlling for medication type (SI Appendix, Fig. S14).
Finally, to establish the clinical relevance of SCZ effects, we ex-

amined the relationship of CGm power and variance with SCZ
symptom severity (Fig. 2 and SI Appendix, Fig. S4). In the discovery
sample (n = 90), we identified a significant relationship between
positive SCZ symptoms and the magnitude of average CGm power
before GSR (r = 0.18, P < 0.03; ρ = 0.2, P < 0.015). Effects
replicated in the independent SCZ cohort [r = 0.18, P < 0.05;
ρ = 0.18, P < 0.05; joint P (independent replications) < 0.002]
(Fig. 2) and were particularly prominent for Disorganization
symptoms across samples [ρ(discovery) = 0.26, P < 0.01;
ρ(replication) = 0.25, P < 0.025; joint P (independent repli-
cations) < 0.001]. Interestingly, symptom effects were atten-
uated and no longer significant following GSR, suggesting
removal of clinically meaningful information.

Elevated Voxel-Wise Variance in SCZ Remains Following GSR. We
demonstrated that SCZ is associated with elevated power/variance
relative to HCS both across cortex and all gray matter (Fig. 1 and
SI Appendix, Fig. S1). It remains unknown if SCZ is associated
with altered “local” variance structure of each voxel’s time series.
To test this hypothesis, we compared whole-brain voxel-wise
variance maps across diagnostic groups (Fig. 3). If specific regions
are driving the increases in CGm power/variance, this analysis
should reveal focal (or region-specific) clusters of between-group
difference.
We identified increased voxel-wise variance in SCZ relative to

HCS, across discovery and replication samples (Fig. 3A). At first,
the increase appeared diffuse, suggesting widespread increases
in voxel-wise signal variance in SCZ. We tested for preferential
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Fig. 1. Power and variance of CGm signal in SCZ and BD. (A) Power of CGm
signal in 90 SCZ patients (red) relative to 90 HCS (black) (see SI Appendix,
Table S1 for demographics). (B) Mean power across all frequencies before
and after GSR indicating an increase in SCZ [F(1, 178) = 7.42, P < 0.01], and
attenuation by GSR [F(1, 178) = 5.37, P < 0.025]. (C) CGm variance also
showed increases in SCZ [F(1, 178) = 7.25, P < 0.01] and GSR-induced re-
duction in SCZ [F(1, 178) = 5.25, P < 0.025]. (D–F) Independent SCZ sample
(see SI Appendix, Table S2 for demographics), confirming increased CGm
power [F(1, 143) = 9.2, P < 0.01] and variance [F(1, 143) = 9.25, P < 0.01]
effects, but also the attenuating impact of GSR on power [F(1, 143) = 7.75,
P < 0.01] and variance [F(1, 143) = 8.1, P < 0.01]. (G–I) Results for BD patients
(n = 73) relative to matched HCS (see SI Appendix, Table S3 for de-
mographics) did not reveal GSR effects observed in SCZ samples [F(1, 127) =
2.89, P = 0.092, n.s.] and no evidence for increase in CGm power or variance.
All effects remained when examining all gray matter voxels (SI Appendix,
Fig. S1). Error bars mark ± 1 SEM. ***P < 0.001 level of significance. n.s., not
significant.
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ratings (n = 153). (A) Significant positive relationship between CGm power
and symptom ratings in SCZ (r = 0.18, P < 0.03), verified using Spearman’s ρ
given somewhat nonnormally distributed data (ρ = 0.2, P < 0.015). (B and C)
Results held across SCZ samples, increasing confidence in the effect (i.e., joint
probability of independent effects P < 0.002, marked in blue boxes). All
identified relationships held when examining Gm variance (SI Appendix, Fig.
S4). Notably, all effects were no longer significant after GSR, suggesting GS
carries clinically meaningful information. The shaded area marks the 95%
confidence interval around the best-fit line.
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colocalization of voxel-wise effects, again showing robust effects
within the fronto-parietal control network (SI Appendix, Fig.
S13). The spatial pattern remained virtually unchanged after
GSR, indicating that increased BOLD variance in SCZ has both
local and global components that are at least somewhat in-
dependent of one another. Of note, local variance effects were
somewhat apparent across tissues (SI Appendix, Fig. S5).
These patterns of increased voxel-wise variance were again

specific to SCZ (Fig. 3B): BD patients showed no such increase
before or after GSR. Importantly, these results were also fully
movement scrubbed, reducing the possibility that the increased
voxel-wise variance in SCZ was exclusively driven by motion (22)
(however, see Discussion). These findings illustrate the need to
carefully decompose signal variance into global and local compo-
nents, which may be differentially affected in neuropsychiatric
conditions (see modeling for possible neurobiological implications).

Data-Driven Prefrontal Connectivity Results Are Altered Because of
Higher GS Variance in SCZ. Present effects have important impli-
cations for the widespread use of GSR in rs-fcMRI clinical
studies, which remains controversial (16, 23). If groups differ in
GS properties, GSR may affect between-group differences in
complex ways (23). Informed by the neurobiology of SCZ, we
tested this possibility in two ways: focusing on prefrontal cortex
(PFC) (17) and thalamo-cortical networks (6, 18, 24).
It is well established that SCZ involves profound alterations in

PFC networks (25). Previous rs-fcMRI studies have identified
specific functional connectivity reductions in the lateral PFC
in chronic SCZ patients (17). Using a data-driven global brain
connectivity (GBC) analysis restricted to the PFC (rGBC), we
tested whether GSR affects this pattern of between-group dif-
ferences (SI Appendix). Here we collapsed the two SCZ samples
to achieve maximal statistical power (n = 161). With GSR, we
replicated prior findings (17) showing reduced lateral PFC rGBC
in SCZ (Fig. 4). Without GSR, however, between-group dif-
ference patterns were qualitatively altered (Fig.4 A and B): we

found evidence for increased rGBC in chronic SCZ, and no
evidence for reductions.
This discrepancy between analyses could have occurred for

two reasons. First, because of large GS variance in SCZ, GSR
could have resulted in a “uniform” transformation of variance
structure, whereby the mean between-group difference is reduced
but the topography of voxel-wise between-group differences
remains the same (Fig. 4E). Despite the unchanged topography
of the between-group difference, statistical thresholding may lead
to qualitatively distinct between-group inferences after GSR in
this scenario (Fig. 4E). Alternatively, GSR could alter the to-
pography of rGBC differentially across groups, resulting in
qualitatively different results before and after GSR (i.e., a non-
uniform transformation) (Fig. 4F). It is vital to distinguish be-
tween these two alternatives in patient data because of complex
implications the second possibility may have on clinical resting-
state studies (16).
To this end, we computed a quantitative index of statistical

similarity (eta2) for the PFC rGBC between-group difference maps
before and after GSR using validated metrics (26). If GSR
fundamentally altered the topography of rGBC, we would
expect low similarity. However, we found high similarity in the
structure of rGBC computed with and without GSR (SI Ap-
pendix, Fig. S8), suggesting a relatively uniform transform of
the between-group effect after GSR (Fig. 4E).
Further analysis of the thalamo-cortical connectivity also

suggests preserved structure of between-group inferences fol-
lowing GSR (SI Appendix, Figs. S6 and S7), replicating prior
studies (18). However, GSR shifted the distributions of thalamo-
cortical connectivity for all groups into the negative range (SI
Appendix, Figs. S6 and S7), impacting some conclusions drawn
from the data (Discussion and SI Appendix).
Collectively, these results do not definitively answer whether

to use GSR in clinical connectivity studies. Instead, effects sug-
gest that GS needs to be characterized explicitly in clinical groups
to determine its contributions in connectivity analyses (SI Ap-
pendix, Figs. S6 and S7). Based on the outcome of such analyses,
researchers can reach a more informed decision if GSR is ad-
visable for specific analyses (Discussion).

Understanding Global Signal and Local Variance Alterations via
Computational Modeling. Presented results reveal two key obser-
vations with respect to variance: (i) increased whole-brain voxel-
wise variance in SCZ, and (ii) increased GS variance in SCZ.
The second observation suggests that increased CGm (and Gm)
power and variance (Fig. 1 and SI Appendix, Fig. S1) in SCZ
reflects increased variability in the GS component. This finding is
supported by the attenuation of SCZ effects after GSR. To ex-
plore potential neurobiological mechanisms underlying such
increases, we used a validated, parsimonious, biophysically based
computational model of resting-state fluctuations in multiple
parcellated brain regions (19). This model generates simulated
BOLD signals for each of its nodes (n = 66) (Fig. 5A). Nodes are
simulated by mean-field dynamics (20), coupled through struc-
tured long-range projections derived from diffusion-weighted
imaging in humans (27). Two key model parameters are the
strength of local, recurrent self-coupling (w) within nodes, and
the strength of long-range, “global” coupling (G) between nodes
(Fig. 5A). Of note, G and w are effective parameters that de-
scribe the net contribution of excitatory and inhibitory coupling
at the circuit level (20) (see SI Appendix for details). The pattern
of functional connectivity in the model best matches human
patterns when the values of w and G set the model in a regime
near the edge of instability (19). However, GS and local variance
properties derived from the model had not been examined pre-
viously, nor related to clinical observations. Furthermore, effects
of GSR have not been tested in this model.
Therefore, we computed the variance of the simulated local

BOLD signals of nodes (local node-wise variability) (Fig. 5 B and
C), and the variance of the “global signal” computed as the
spatial average of BOLD signals from all 66 nodes (global model

Z value

medial - L medial - R

B D

G
S

R
 P

E
R

F
O

R
M

E
D

S
u

rf
ac

e 
V

ie
w

 A
ft

er
 G

S
R

lateral - Rlateral - L

A Schizophrenia (N=161) C Bipolar Disorder (N=73)

N
O

 G
S

R
 P

E
R

F
O

R
M

E
D

Z value
50

Z value
50 0-3

lateral - Rlateral - L

medial - L medial - R

Z value
0-3

Fig. 3. Voxel-wise variance differs in SCZ independently of GS effects. Re-
moving GS via GSR may alter within-voxel variance for SCZ. Given similar
effects, we pooled SCZ samples to maximize power (n = 161). (A and B)
Voxel-wise between-group differences; yellow-orange voxels indicate
greater variability for SCZ relative to HCS (whole-brain multiple comparison
protected; see SI Appendix), also evident after GSR. These data are move-
ment-scrubbed reducing the likelihood that effects were movement-driven.
(C and D) Effects were absent in BD relative to matched HCS, suggesting that
local voxel-wise variance is preferentially increased in SCZ irrespective of
GSR. Of note, SCZ effects were colocalized with higher-order control net-
works (SI Appendix, Fig. S13).
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variability) (Fig. 5 D and E). Critically, this in silico global signal
differs from empirical GS because it contains only neural con-
tributions (and by definition no physiological artifact). We ex-
amined model dynamics as a function of w and G (see parameter
space in Fig. 5F). The local variance of each node increased as
a function of increasing w and G (Fig. 5 B and C). This finding
suggests that the empirically observed increase in voxel-wise
variance in SCZ might arise from increased neural coupling at
the local and long-range scales. The variance of simulated GS
increased as a function of increasing w and G (Fig. 5 D and E).
These effects were robust to particular patterns of large-scale an-
atomical connectivity (SI Appendix, Fig. S9). Finally, effects of GSR
resulted in attenuated model-based variance, a pattern that was
quite similar to clinical effects (Fig. 5 B–E, dashed lines; see SI
Appendix for GSR implementation). The GS variance was com-
pletely attenuated given that in silico GSR effectively removes the
model-derived signal mean across all time points.
These modeling findings illustrate that GS and local variance

alterations can possibly have neural bases (as opposed to driven
exclusively by physiological or movement-induced artifacts). The
abnormal variance in SCZ could arise from changes in w and G,
perhaps leading to a cortical network that operates closer to the
edge of instability than in HCS (Fig. 5F).

Discussion
Power and Variability of BOLD Signals in SCZ. Local cortical com-
putations, and in turn large-scale neural connectivity, are pro-
foundly altered in SCZ (13). One outcome of such dysconnectivity
could be an alteration in the distributed gray matter BOLD sig-
nal, reflected in increased variance/power. We identified results

consistent with this hypothesis before GSR in a large SCZ sample
(n = 90), and replicated findings in an independent sample (n =
71). This effect was absent in BD patients, supporting diagnostic
specificity of SCZ effects. After GSR, the BOLD signal power/
variance for cortex and gray matter was significantly reduced
across SCZ samples, consistent with GSR removing a large
variance from the BOLD signal (28). However, removing a GS
component that contributes abnormally large BOLD signal
variance in SCZ could potentially discard clinically important
information arising from the neurobiology of the disease, as
suggested by symptom analyses. Such increases in GS variability
may reflect abnormalities in underlying neuronal activity in SCZ.
This hypothesis is supported by primate studies showing that
resting-state fluctuations in local field potential at single cortical
sites are associated with distributed signals that correlate posi-
tively with GS (7). Furthermore, maximal GSR effects colocalized
in higher-order associative networks, namely the fronto-parietal
control and default-mode networks (SI Appendix, Fig. S12), sug-
gesting that abnormal BOLD signal variance increases may be
preferential for associative cortices that are typically implicated
in SCZ (29, 30).
Although it is difficult to causally prove a neurobiological

source of increased GS variance here (given the inherent corre-
lational nature of BOLD effects), certain analyses add confidence
for such an interpretation. First, the effect was not related to
smoking or medication. Second, the effect survived in move-
ment-scrubbed and movement-matched data, inconsistent with
head-motion being the dominant factor. Third, albeit modest
in magnitude, increased CGm power was significantly related
to SCZ symptoms (particularly before GSR), an effect that
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Fig. 4. rGBC results qualitatively change when removing
a large GS component. We tested if removing a larger GS
from one of the groups, as is typically done in connectivity
studies, alters between-group inferences. We computed rGBC
focused on PFC, as done previously (17), before (A and B) and
after GSR (C and D). Red-yellow foci mark increased PFC rGBC
in SCZ, whereas blue foci mark reductions in SCZ relative to
HCS. Bars graphs highlight effects with standard between-
group effect size estimates. Error bars mark ± 1 SEM. (E) GSR
could uniformly/rigidly transform between-group difference
maps. Because of larger GS variability in SCZ (purple arrow)
the pattern of between-group differences is shifted, render-
ing increased connectivity in SCZ as the dominant profile (red
signal above the 95% confidence interval indicated by green
planes). If GSR shifts the distribution uniformly, then the in-
creased connectivity is now within the 95% confidence interval, but focal reduction becomes apparent with preserved topography. (F) Alternatively, GSR
could differentially impact the spatial pattern (i.e., nonuniformly transforming data, illustrated by a qualitatively different pattern before and after GSR). We
conducted focused analyses to arbitrate between these possibilities, suggesting that the effect is predominantly uniform (SI Appendix, Fig. S8). Note: top-
ographies in E and F represent a conceptual illustration, and do not reflect specific patient data. ***P < .001.

CB F

ED

AFig. 5. Computational modeling simulation of BOLD signal
variance illustrates a biologically grounded hypothetical mech-
anism for increased global and local variance. (A) We used
a biophysically based computational model of resting-state
BOLD signals to explore parameters that could reflect empirical
observations in SCZ. The two key parameters are the strength
of local, recurrent self-coupling (w) within nodes (solid lines),
and the strength of long-range, global coupling (G) between
66 nodes in total (dashed lines), adapted from prior work (19)
(B and C) Simulations indicate increased variance of local BOLD
signals originating from each node, in response to increased w
or G. (D and E) The GS, computed as the spatial average across
all nodes, also showed increased variance by elevating w or G. Shading represents the SD at each value of w or G computed across four realizations with
different starting noise, illustrating model stability. Dotted lines indicate effects after in silico GSR. (F) Two-dimensional parameter space, capturing the
positive relationship between w/G and variance of the BOLD signal at the local node level (squares, far right color bar) and the GS level (circles in each square,
the adjacent color bar). The blue area marks regimes where the model baseline is associated with unrealistically elevated firing rates of simulated neurons.
Model simulations illustrate how alterations in biophysically based parameters (rather than physiological noise) can increase GS and local variance observed
empirically in SCZ. Of note in B–E, when w is modulated, G = 1.25. Conversely, when G is modulated, w = 0.531. For permutations of anatomical connectivity
matrixes, mean trends and complete GSR effects, see SI Appendix, Figs. S9–S11.
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replicated across samples, thus unlikely to have occurred by
chance alone. Importantly, CGm/Gm power and variance increases
were diagnostically specific, as the pattern was not identified in BD
patients, even when controlling for movement and medication type
(SI Appendix, Figs. S3 and S14). Of note, cumulative medication
impact is notoriously difficult to fully capture quantitatively in cross-
sectional studies of chronic patients; therefore, longitudinal study
designs are needed to confirm present effects (although, see SI
Appendix, Fig. S14). Finally, given evidence for network specificity
of present SCZ effects, it is highly unlikely that metabolic, cardio-
vascular, movement or breathing-rate effects impacted these results
(i.e., effects were not as evident in sensory-motor and visual net-
works, althoughpresent in associative networks) (SIAppendix, Fig.
S12). Nevertheless vigilance levels (31) need to be ruled out (32).
Importantly, findings are indicative of a coherent signal con-

tribution as opposed to random noise (supported by power
analysis). Increased power could indicate disrupted neuronal
communication, reflecting a shift in the baseline amplitude or
durations of cortex-wide signals. A global increase in durations of
signal oscillations across frequencies, revealed in increased aver-
age power, could reflect globally delayed inhibition of local mi-
crocircuit signals in the setting of altered global connectivity.
In addition to elevated GS variance, we examined local voxel-

wise variance in SCZ. We observed, irrespective of GSR, that SCZ
is associated with increased local voxel-wise variance. The effect
was again diagnostically specific and not found in BD, highlighting
three points: (i) The unchanged whole-brain voxel-wise variance
pattern illustrates that the spatial distribution of this variability is
largely unaffected by GSR. (ii) Even when high-variance GS is
removed, there remains greater voxel-wise variability in SCZ
(despite movement-scrubbing). (iii) Interestingly, both the GS and
voxel-wise effects colocalized preferentially around associative
cortices (SI Appendix, Figs. S12 and S13), suggesting that these
disturbances may reflect signal alterations in specific higher-order
control networks, in line with recent connectivity findings (30).
Although these analyses were performed on movement-scrubbed

data, it may be possible that micromovements still remain (33),
which studies using faster acquisition (34) could address. Re-
latedly, a recent rigorous movement-related investigation (35)
suggests that motion artifacts can spatially propagate as complex
waveforms in the BOLD signal across multiple frames.

Effect of Large GS Variance on Between-Group Comparisons:
Methodological Implications. A key objective of this study was
empirical, namely to establish evidence for greater GS variance
in SCZ. However, this finding has methodological implications
for many future clinical connectivity studies, as GSR has been
hypothesized to impact patterns of between-group differences in
such studies (16, 23). Here it is important to examine which
measures may be sensitive to GSR in between-group clinical
comparisons because of greater GS variance in SCZ. We tested
this using two broad approaches centered on system-level ab-
normalities implicated in SCZ, namely thalamo-cortical (24) and
PFC dysconnectivity (17, 36).
Across all thalamo-cortical analyses we found that, irrespective of

GSR, SCZ was associated with the same relative direction of dif-
ferences compared with HCS, as reported previously (18). How-
ever, an interesting motif emerged: before GSR the direction of
the effect suggested that SCZ and HCS display positive tha-
lamo-cortical connectivity, wherein the magnitude of SCZ
connections exceed those of HCS. In contrast, after GSR both
groups were associated with negative thalamo-cortical connec-
tivity, wherein the magnitude of SCZ was lesser than HCS. Here
we also considered using correlations versus covariance to quantify
thalamo-cortical signals, given arguments suggesting that correla-
tion coefficients may not be always ideal (37) (SI Appendix, Figs.
S6 and S7). These results highlight that clinical studies dealing
with different magnitudes of BOLD signal variance across groups
may consider decomposing correlations, to allow a nuanced in-
ference regarding the alterations in functional connectivity.

We also tested if GSR impacts data-driven patterns of be-
tween-group differences. We used a well-validated data-driven
metric to capture global PFC connectivity (17). In contrast to
thalamo-cortical results, GSR affected between-group rGBC
inferences. Using GSR we replicated prior findings indicating
reductions in rGBC centered on lateral PFC (17). However,
without GSR the pattern of between-group differences was
consistent with PFC hyperconnectivity in chronic SCZ, in con-
trast to prevalent hypotheses that postulate PFC hypofunction
(25). This discrepancy raises an important point: significant dif-
ferences in rGBC results pre- and post-GSR show that GSR can
affect some between-group inferences.
The discrepancy, however, could have occurred because of two

very different scenarios, which have distinct implications re-
garding GSR effects on between-group comparisons. One pos-
sibility, suggested by certain mathematical modeling simulations
(16), is a nonuniform data transformation when removing a
larger GS from one group. Furthermore, if the magnitude of the
global BOLD variability is larger for one group, in combination
with this nonuniform effect, then the resulting between-group
effect will be different in magnitude and spatial pattern (Fig. 4F).
The alternative is that GSR generally induces a rigid or uniform
data transformation (Fig. 4E). Put differently, the magnitude of
the total Gm variability may be greater for one group, but its
spatial effect on voxel-wise connectivity is the same across groups.
Present findings support the latter possibility (SI Appendix, Fig.
S8), suggesting that GS removal does not fundamentally alter the
spatial topography of between-group differences.
Collectively, PFC and thalamic analyses indicate that GSR

does not necessarily always change between-group inferences. In
cases where GSR qualitatively altered between-group effects, the
discrepancy reflected a uniform data shift (Fig. 4). Nevertheless,
removing a GS component from one group could affect the
conclusions drawn about some between-group difference (given
the observed sign reversal) (28). Therefore, the preferred strat-
egy for future clinical connectivity studies may be twofold: (i)
studies should first carefully examine GS magnitude and power
spectra in each group to determine if they are indeed different;
and (ii) studies should test for the direction of clinical inferences
before and after GSR to allow a nuanced interpretation re-
garding the observed connectivity alterations (16). Such a step-
wise approach is critical to circumvent the debate whether to use
GSR or not and instead use rigorous data inspection to support
appropriate study-specific analytic decisions (see SI Appendix for
further discussion).

Neurobiological Mechanisms of GS Alterations in SCZ. Lastly, we
studied a biophysically based computational model of rs-fcMRI to
enhance our understanding of BOLD effects in SCZ (19). The
simulations showed increased GS variance after elevating local
node self-coupling (w) and global coupling (G) between nodes.
The modeling results also revealed a collective increase in local
variance for all simulated nodes as a result of increasing w or G
parameters. These simulations serve as an initial proof-of-principle,
showing that changes in GS and local variance can have neural
bases, rather than purely reflecting nonneural variables (as the
model explicitly excludes such signal sources).Empiricalmeasures of
local and GS variability can potentially be used to probe specific
neurobiological changes in cortical microcircuitry and long-range
interactions. Applying this model to healthy humans, Deco et al.
proposed that resting-state cortex operates near the edge of in-
stability, based on matching the empirically observed functional
connectivity (19). Using a similar architecture, we show that GS and
local variance increase near the edge of the instability by elevating w
and G. It is possible that SCZ patients operate even closer to this
edge than in HCS, which could potentially expose a vulnerability to
perturbations.Furthermore, in silicoGSRattenuated this increase in
variance, as observed clinically (dashed lines in Figs. 1 and 5). Future
studies can extend these proof-of-principle modeling findings to in-
terpret BOLD signal changes following SCZ illness progression (13),
which would also better control for some limitations of present

Yang et al. PNAS Early Edition | 5 of 6

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405289111/-/DCSupplemental/pnas.1405289111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405289111/-/DCSupplemental/pnas.1405289111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405289111/-/DCSupplemental/pnas.1405289111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405289111/-/DCSupplemental/pnas.1405289111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405289111/-/DCSupplemental/pnas.1405289111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405289111/-/DCSupplemental/pnas.1405289111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405289111/-/DCSupplemental/pnas.1405289111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405289111/-/DCSupplemental/pnas.1405289111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405289111/-/DCSupplemental/pnas.1405289111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405289111/-/DCSupplemental/pnas.1405289111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1405289111/-/DCSupplemental/pnas.1405289111.sapp.pdf


cross-section data. In turn, modeling can provide insights for
neuroimaging studies using pharmacological interventions, such
as the NMDA receptor antagonist ketamine, which may alter
local and long-range synaptic interactions in vivo (38).
Of note, SCZ is associated with both glutamatergic (excitatory)

and GABAergic (inhibitory) deficits in local microcircuits (39) as
well as striatal dopamine abnormalities (40). Within the model, G
and w reflect the net contributions of excitatory and inhibitory
interactions in cortical circuits. Other computational modeling
and neurophysiological evidence using behaving monkeys (41)
suggest that a reduction of local recurrent excitation could explain
cognitive deficits associated with SCZ. Present results can be
reconciled with these observations by considering excitation/in-
hibition balance (E/I balance) (42). Our modeling results suggest
that in the resting state, SCZ is associated with an increased E/I
balance of either local or long-range, which is in line with the
hypothesis of prominent inhibitory deficits in chronic SCZ (43). It
remains to be determined how current modeling simulations re-
late to complex network measures (36) and to task-based cognitive
deficits observed in SCZ (44).

Conclusion
This study addresses vital gaps in understanding GS in neuro-
psychiatric illness. (i) Results show that the GS is profoundly
altered in SCZ but not BD. (ii) GSR can affect between-group
analyses, altering conclusions in complex ways. (iii) Results show
that future clinical neuroimaging studies need to systematically
assess GS and consider its impact upon system-level connectivity

inferences. Finally, this study highlights the possible neurobiological
importance of global/local BOLD signal variance alterations in
SCZ, which may relate to synaptic coupling disruptions that could
be amenable to pharmacological intervention.

Experimental Procedures
Participants. For comprehensive procedures regarding subject selection, in-
clusion/exclusion criteria, group matching, medication, and symptom analyses,
see SI Appendix.

Neuroimaging. For a full description of acquisition, processing and all neu-
roimaging analyses see SI Appendix.

Computational Modeling. We used a validated computational model of
resting-state functional connectivity (19), extending a local circuit model (20)
to incorporate biologically plausible mechanisms for BOLD signal fluctua-
tions. Complete modeling details are presented in the SI Appendix.
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SI EXPERIMENTAL PROCEDURES 
 

Participant Inclusion Criteria and Characteristics. Here we studied three independent clinical samples: i) 90 
chronic SCZ patients and 90 demographically matched HCS (Table S1), to ‘discover’ all effects. ii) replication 
sample consisting of 71 SCZ patients and 74 demographically matched HCS obtained from a publicly-
distributed dataset provided by the Center for Biomedical Research Excellence (COBRE) 
(http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html) (Table S2); iii) 73 patients diagnosed with BD and 56 
HCS, to test the diagnostic specificity of SCZ effects(6) (Table S3). Across samples, all subjects met identical 
neuroimaging exclusion criteria, underwent identical preprocessing and analyses (see analysis sections 
below). The ‘discovery’ sample schizophrenia (SCZ) participants (N=90) were identified through outpatient 
clinics and community mental health facilities in the Hartford (CT) area. Complete recruitment details for this 
sample are described in our prior work(1). Briefly, patient inclusion criteria were as follows: i) SCZ diagnosis as 
determined by the Structured Clinical Interview (SCID) for the Diagnostic and Statistical Manual of Mental 
Disorders-IV (DSM-IV)(2), administered by experienced MA or PhD-level research clinicians; ii) no major 
medical or neurological conditions (e.g. epilepsy, migraine, head trauma with loss of consciousness); and iii) 
IQ>70 assessed by widely-accepted methods for estimating premorbid intelligence levels [either National Adult 
Reading Test (NART), Wide Range Achievement Test (WRAT) or Wechsler Test of Adult Reading (WTAR) 
depending on the study protocol](3). As in our prior studies, these measures were normed and converted to IQ 
equivalents for each subject. If more than one premorbid achievement measure was available per subject the 
scaled scores were averaged per standard practice(4). An important consideration in the present study is 
whether identified effects in any way relate to cognitive impairment in SCZ. Related to this question, the ‘IQ’ 
measures are based on measures that assess premorbid academic achievement levels and do not capture the 
more complex higher-order cognitive deficits(5). While this question is beyond the scope of our investigation, 
future studies should systematically examine if cognitive impairment relates to presently identified effects, In 
the present study we did not exclude patients with a lifetime co-morbid Axis I anxiety disorders and/or history of 
substance abuse in the schizophrenia sample to ensure an inclusive and representative sample of patients(6). 
However, all discovery SCZ sample participants were required to be fully remitted >6 months prior to the study. 

Healthy comparison subjects (HCS) (N=90) were recruited through media advertisements and flyers 
posted in the Medical Center area. Inclusion criteria for HCS were: i) no current or lifetime Axis I psychiatric 
disorder as assessed by SCID-NP; ii) no history of medical or neurological conditions; and iii) no history of 
psychotic disorders in first-degree relatives (reported by detailed family history). The bipolar disorder (BD) 
sample participants (N=73) were recruited at the same site as the SCZ discovery sample. The same general 
exclusion/inclusion criteria were applied, described previously in more detail(7-9). 

As noted, the SCZ ‘replication’ sample was provided to the neuroimaging community by COBRE 
researchers. Critically, this large and independent SCZ sample has been extensively characterized, 
demographically matched and quality-assured across a number of prior reports 
(http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html). Replication sample SCZ patients were excluded if 
they had: i) history of neurological disorder, ii) history of mental retardation, ii) history of severe head trauma 
with more than 5 minutes loss of consciousness; iv) history of substance abuse or dependence within the last 
12 months. Diagnostic decisions were reached using the SCID interview for the DSM-IV. Collectively, these 
criteria and demographic are highly comparable across the two SCZ samples. 

To allow full inspection of these clinical samples we provide complete demographics details in Tables 
S1-3. Across all samples we accomplished matching on a number of relevant demographic variables, ensuring 
comparable between-group demographics. The discovery sample groups did not significantly differ on any of 
the variables (see Table S1), apart from educational attainment and premorbid intellectual functioning (IQ) 
(see aforementioned comments). IQ was lower for SCZ patients, and likely reflects the shortened educational 
achievement for patients due to illness onset(10). Also, education differences are impacted by the illness 
course and thus were not considered as a covariate as they likely reflect illness trajectory. Notably, 
alcohol/drug use, age, gender, smoking status and medication did not alter reported effects for the discovery 
sample (see Fig. S3 for comprehensive confound analyses). 75/90 schizophrenia patients were receiving 
antipsychotic treatment. SCZ patients for the COBRE replication sample were also receiving stable doses of 
antipsychotic medication with no medication changes for at least 1 month. All medication were converted to 
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chlorpromazine (CPZ) equivalents(11) and verified by trained raters (AA & AS). We used CPZ levels as a co-
variate for our discovery analyses and we verified that the CPZ values did not correlate with the CGm power 
and variance main effects (see Fig. S3). Critically, the two SCZ samples that were recruited across different 
sites received somewhat different levels of medication doses. Yet, the key effects replicated across both SCZ 
patient samples. Collectively, these results are inconsistent with medication being a major confound in our 
analyses. 

  
Schizophrenia Symptoms. Schizophrenia symptom severity, across both samples, was determined using the 
Positive and Negative Syndrome Scale (PANSS), a widely-used symptom instrument, which captures positive, 
negative and general psychopathology symptom dimensions(12) (Table S1). BD patients were in remission at 
the time of the scan(7), therefore no symptom analyses were attempted. 
 
Neuroimaging Data Acquisition. The SCZ discovery, the BD sample and the their respective HCS 
participated in neuroimaging data collection at the Olin Neuropsychiatry Research Center using a Siemens-
Allegra 3T scanner with identical acquisition parameters(7). Images sensitive to blood oxygenation level-
dependent (BOLD) signal were acquired with axial slices parallel to the anterior-posterior commissure (AC-PC) 
using a T2*-weighted gradient-echo, echo-planar sequence (TR/TE=1500/27ms, flip angle=60°, field of 
view=24x24 cm, acquisition matrix=64x64, voxel size=3.43x3.43x4mm) covering the whole brain. The 
acquisition lasted 5.25 minutes and produced 210 volumetric images per subject (29 slices/volume, inter-slice 
gap=1mm). Subjects were instructed to lay awake in the scanner and keep their eyes open. Subjects were 
monitored on a video camera to ensure that they stayed awake and were removed from the analyses if they 
fell asleep during the scan or if their head movement exceeded 1mm along any axis. Structural images were 
acquired using a T1-weighted, 3D magnetization-prepared rapid gradient-echo (MPRAGE) sequence 
(TR/TE/TI=2200/4.13/766ms, flip angle=13°, voxel size [isotropic]=.8mm, image size=240x320x208 voxels), 
with axial slices parallel to the AC-PC line. SCZ patients comprising the replication sample (N=71) and their 
respective HCS (N=74) underwent data collection at Center for Biomedical Research Excellence using a 
Siemens Tim-Trio 3T scanner. Full acquisition details for the SCZ replication sample and HCS is detailed 
previously(13-15). Briefly, BOLD signal was collected with 32 axial slices parallel to the AC-PC using a T2*-
weighted gradient-echo, echo-planar sequence (TR/TE=2000/29ms, flip angle=75°, acquisition matrix=64x64, 
voxel size=3x3x4mm). The acquisition lasted 5 minutes and produced 150 volumetric images per subject. 
Structural images were acquired using a 6 minute T1-weighted, 3D MPRAGE sequence (TR/TE/TI=2530/[1.64, 
3.5, 5.36, 7.22, 9.08]/900, flip angle=7°, voxel size [isotropic]=1mm, image size=256x256x176 voxels), with 
axial slices parallel to the AC-PC line. All the described parameters were provided via the publically-distributed 
website (http://fcon_1000..projects.nitrc.org/indi/retro/cobre.html). 
 
Neuroimaging Preprocessing & Analysis. Preprocessing followed prior validated approaches that were 
applied to clinical populations(7, 9). Critically, we performed identical preprocessing procedures across all 
subjects collected across scanners, which were then registered to the same common standard space and 
interpolated to the same resolution. We first performed the following preprocessing steps for all BOLD images, 
as done in our prior studies(7, 9): i) slice-time correction, ii) first 5 images removed from each run, iii) rigid body 
motion correction, iv) 12-parameter affine transform of the structural image to the Talairach coordinate system, 
and v) co-registration of volumes to the structural image with 3x3x3mm re-sampling, ensuring all BOLD images 
across both scanners were interpolated to the same resolution.  
 In addition, all BOLD images had to pass stringent quality assurance criteria to ensure that all functional 
data were of comparable and high quality: i) signal-to-noise ratios (SNR)>100, computed by obtaining the 
mean signal and standard deviation (sd) for a given slice across the BOLD run, while excluding all non-brain 
voxels across all frames(7). The final samples had high SNR values (see Tables S1-3); ii) movement 
scrubbing as recommended by Power et al.(16, 17). As accomplished previously(18), all image frames with 
possible movement-induced artifactual fluctuations in intensity were identified via two criteria: First, frames in 
which sum of the displacement across all 6 rigid body movement correction parameters exceeded 0.5mm 
(assuming 50mm cortical sphere radius) were identified; Second, root mean square (RMS) of differences in 
intensity between the current and preceding frame was computed across all voxels divided by mean intensity 
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and normalized to time series median. Frames in which normalized RMS exceeded the value of 3 were 
identified. The frames flagged by either criterion were marked for exclusion (logical or), as well as the one 
preceding and two frames following the flagged frame. Movement scrubbing was performed for all reported 
analyses across all subjects except for the power frequency analyses. The scrubbing step was omitted in this 
case, because removing arbitrary frames would have corrupted the time-dependent frequency information of 
the signal. Nevertheless, all effects remained robust with complementary analyses techniques (i.e. variance 
analyses) following stringent movement scrubbing and after explicitly controlling for movement (see Fig. S3). 
Collectively, these quality assurances add confidence that typical neuroimaging confounds (i.e. SNR or 
movement) are not driving present effect.  

Lastly, to remove spurious signal in resting-state data we completed additional preprocessing steps, as 
is standard practice(19): all BOLD time-series underwent high (>0.009 Hz) and low (<0.08 Hz) pass temporal 
filtering, removal of nuisance signal extracted from anatomically-defined ventricles, white matter, and the 
remaining brain voxels (i.e. global signal) (all identified via individual-specific FreeSurfer segmentations(20)), 
as well as 6 rigid-body motion correction parameters, and their first derivatives using previously validated in-
house Matlab tools(21).  

Where appropriate, type I error correction was implemented via threshold-free cluster enhancement 
(TFCE) non-parametric techniques implemented in FSL’s Randomise tool(22) (e.g. for the GBC analyses, see 
below for details). Results were visualized using Caret 5.5 (http://brainvis.wustl.edu/wiki/index.php/Caret) and 
NeuroLens software (http://www.neurolens.org). 

 
Global Signal Regression (GSR). GSR was performed using standard procedures(23) by calculating mean 
raw BOLD signal averaged over all voxels for each time point, explicitly excluding ventricles and white matter 
signal (which are defined as separate nuisance regressors). The GS and its first derivative (with respect to 
time) were used as nuisance predictor terms within a multiple linear regression model along with other 
nuisance predictor terms (ventricular signal, white matter signal, movement parameters, and the first 
derivatives of each of these, as noted above). 
 
Power Analysis. To quantify the impact of GSR on the frequency content of CGm and Gm BOLD signal, we 
evaluated frequency amplitudes using the multi-taper periodogram method, available as part of the Nitime 
Time-Series Analysis library (http://nipy.org/nitime/)(24). The first 5 volumes were discarded to allow for stable 
BOLD signal levels. We quantified the CGm power in each group and preprocessing condition by computing 
each individual’s average CGm frequency amplitude across all frequencies recorded from the periodogram of 
the CGm (or Gm) signal. The resulting average CGm power calculated for each individual was entered as a 
dependent measure into all 2nd level ANOVA analyses. 
 
CGm/Gm Signal and Thalamic Isolation. Across a number of analyses we quantified the alterations in 
CGm/Gm signal in SCZ versus BD as a function of GSR. Moreover, we computed the relationship between the 
CGm and anatomically-defined thalamic nuclei for each individual (see below). To extract appropriate 
Gm/CGm or thalamic signal for each individual we used individual-specific FreeSurfer segmentations(20), 
which were visually inspected for quality by a trained rater (AA) (Table S4 lists all FreeSurfer codes used 
across analyses). We extracted the BOLD signal from regions labeled as belonging to CGm/Gm for each 
individual, which was then used in all subsequent analyses. Similarly, we identified thalamic BOLD signal by 
extracting average time-series across all voxels in each subject’s bilateral thalamus, as done previously(1). 
 
Whole-brain Voxel-wise Variance Analysis. To test the hypothesis that voxel-wise whole-brain variance may 
be altered in SCZ, we computed the variability of each voxel’s time-series with and without GSR. This analysis 
is distinct from the variability of the CGm in that it computes the variance of each voxel, as opposed to the, 
spatial average across all Gm/CGm voxels. We computed the variability of each voxel’s time series after all 
noted preprocessing steps, including movement scrubbing. We did so for all SCZ patients, combining the 
discovery and replication samples (given a highly similar pattern of results) (N=161). We repeated the voxel-
wise analyses for BD patients to establish diagnostic specificity. Following the variance calculation, we 
computed a whole-brain voxel-wise between-group t-test for SCZ patients relative to HCS, treating each 
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voxel’s variance as the dependent variable. That is, we obtained a voxel-wise variance map for each subject, 
where each voxel’s value represents its variability over time. 
 
PFC Connectivity Analysis. The data-driven global brain connectivity (GBC) approach(9, 25) was applied 
using in-house Matlab tools, here restricted to the PFC (referred to hereafter as restricted global brain 
connectivity - rGBC). We focused on the PFC given numerous prior studies implicating PFC dysfunction in 
SCZ(26), and to remain maximally powered given the smaller search space of PFC voxels. Furthermore, our 
prior reports identified PFC rGBC alterations in chronic SCZ, which served as a basis for comparison. 
Importantly, the PFC rGBC analysis is fully data-driven, adding a complementary technique to the thalamic 
seed-driven analyses. Specifically, rGBC provides a sensitive measure by computing correlational strength of 
each voxel with all other voxels being considered. As previously described(7, 9, 25), GBC is designed to 
estimate the connectivity between each individual voxel and every other voxel in the brain or a restricted 
search space. Thus, rGBC is optimized to estimate connectivity at every voxel with every other voxel in a 
specific search space (in this case PFC).  

As done previously(7, 9), we conducted rGBC analysis restricted to voxels only within subject-specific 
anatomically defined PFC gray matter masks defined via Freesurfer software(20) (see Table S4 for a list of all 
relevant FreeSurfer codes). All PFC Freesurfer segmentations were also visually inspected for quality by a 
trained rater (AA). Before rGBC analysis, BOLD signal within the subject-specific cortical mask was spatially 
smoothed with a 6mm full-width-at-half-maximum (FWHM) Gaussian kernel and dilated by two voxels (6mm) to 
account for individual differences in anatomy. Finally, for each PFC voxel, we computed a correlation with 
every other PFC voxel, transformed the correlations to Fisher z-values, and finally computed their mean. This 
calculation yielded an rGBC map for each subject where each voxel value represents the mean connectivity of 
that voxel with the rest of PFC (see Fig. 4). 
 
Quantification of Between-Group Difference Map Similarity and Overlap. The data-driven PFC rGBC 
analyses (Fig. 5) suggest that GSR may affect the pattern of between-group differences in complex ways that 
result in distinct between-group effects before and after this processing step is applied. Because of the larger 
magnitude of the GS variability in SCZ, this could lead to two distinct possibilities, as noted in the main text: i) 
GSR could have introduced a ‘uniform’ shift in the data that is just larger in magnitude for the SCZ group; ii) 
GSR could have introduced a ‘non-uniform’ shift such that the effect is differentially distributed across voxels 
for one group versus the other, a possibility articulated by mathematical simulations(27). We designed two 
analyses to arbitrate between these possibilities:  
 
1) Testing for Similarity of Between-Group rGBC Maps Before and After GSR: If the spatial configuration of the 
rGBC is non-uniformly affected by GSR then the between-group maps should be qualitatively distinct (i.e. they 
should not be similar before and after GSR). Conversely, if the pattern is largely similar but just uniformly 
shifted by a rigid transform (see Fig. 4E), then the statistical similarity of the maps should be high (without any 
statistical threshold employed). To distinguish between these hypotheses and assess the similarity of between-
group difference maps pre/post GSR via a single value, we made use of the eta2 index that quantifies the 
pattern of similarity between two signals, or in this case functional images. Briefly eta2 is designed to vary from 
0 for no similarity to 1 for perfect signal similarity; for further detail see(28). That is, the employed method was 
explicitly designed to capture similarity (eta2) between a pair of functional connectivity maps(28). To 
accomplish this calculation we converted the Fz between-group difference maps to one-dimensional vectors 
for each PFC voxel. Next, we computed eta2 between vectors before and after GSR. This calculation captured 
the similarity across the two between-group maps before and after GSR without any statistical threshold 
employed. In addition to eta2 we also used standard r-values. However, there are important benefits of using 
eta2: whereas r reflects only the dissimilarities in the pattern of connectivity, eta2 also captures possible 
differences in the connectivity strength for voxels with similar connectivity patterns. Therefore, the resulting 
eta2 captures the overall ‘similarity’ between two connectivity maps – in this case the maps showing between-
group differences before and after GSR: 
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As described in detail by Cohen and colleagues(28), here ai and bi correspond to connectivity at position i (in 
this case a given voxel in the PFC) for maps a and b respectively (in this case the between-group difference for 
patients vs. control before (map A) and after (map B) GSR). mi corresponds to the mean value of the two 
images at position i, (ai+bi)/2. M-bar represents the grand mean value across the mean image (designated by 
m). By computing, eta2 and r-values we are able to quantitatively assess the degree of similarity between 
resulting maps pre and post GSR (see Fig. S8A-B).  
 
2) Testing for Percentage of Overlapping Voxels of Between-Group rGBC Maps Before and After GSR: The 
eta2 and r-value calculations above provide a single index of statistical similarity before and after GSR. 
However, to further assess if the similarity is dominated by a certain ‘range’ of values in the statistical map, we 
quantified the percent of overlapping voxels for the two between-group difference maps at a given peak level 
(i.e. with different levels of thresholding applied). To accomplish this we first rank-ordered all the voxels across 
the between-group difference PFC rGBC map before and after GSR. Next, we selected voxels that fell only in 
a given range but that were either at the top or bottom of the range (here the top voxels reflect regions that are 
higher in SCZ than CON, whereas bottom ranked voxels would reflect regions where CON are higher than 
SCZ). We specifically used a sliding window where we selected the top/bottom 1%, 5%, 10% and 20% of the 
voxels. Put simply, if the maps show a large degree of similarity then the spatial overlap for each of the 
selected ranges should be significantly higher than what would be expected by chance (and should not be 
dominated by only a single range). After computing the percentage of voxels that overlap across the two 
between-group difference maps, we tested for significance of overlap using the binomial proportion test (as 
done in prior work (1)) (see Fig. S8C). 
 
Thalamo-Cortical Connectivity Analyses as a Function of Global Signal Removal (GSR). To quantify 
whether GSR altered thalamo-cortical relationships in SCZ versus BD, we computed two separate but 
complementary analyses:  

i) We quantified the relationship between CGm (i.e. the entire cortical gray matter for each subject) and 
the thalamus. This analysis was explicitly designed to be non-specific (i.e. considering the entire CGm BOLD 
signal) to provide proof-of-principle examination of the ways in which large-scale thalamo-cortical relationships 
can be altered by GSR differentially across different neuropsychiatric conditions. We computed thalamo-
cortical connectivity using the Pearson’s correlation coefficient (r), which was then de-composed into variance 
and covariance components. The aim was to examine whether shared versus non-shared sources of variance 
in cortical/thalamic signals are differentially altered as a function of GSR. Put simply, GSR may uniquely impact 
the variability of different regional BOLD signals in SCZ. In such a case the correlation coefficient may not be a 
precise measure given that it combines both shared and non-shared variability(29).  

ii) Several studies(30, 31), including our group(1), identified profound alterations in thalamo-cortical 
connectivity in SCZ. These neuroimaging investigations observed a pattern whereby SCZ was associated with 
thalamic over-connectivity with sensory-motor regions, but thalamic under-connectivity with prefrontal-
cerebellar regions(1, 31). Here we rigorously tested whether GSR would affect between-group differences 
within areas identified in our prior study. Although we examined the effects of GSR broadly in the analyses 
described above (juxtaposing the total CGm results before and after GSR), here we explicitly quantified its 
effects within the identified subset of areas known to show thalamic-cortical dysconnectivity in SCZ. Briefly, we 
computed the whole-brain seed-based thalamus correlation map using the N=90 SCZ discovery sample, a 
result originally reported and characterized in our prior study(1) (see Fig. S6-7). Next, we extracted the 
average time-series across all voxels in each subject’s bilateral anatomically-defined thalamus (again through 
subject-specific Freesurfer-based segmentation(20, 32)). This thalamic signal was then correlated with each 
gray matter voxel and the computed Pearson correlation values were transformed to Fisher Z values (Fz) using 
a Fisher r-to-Z transform. This yielded a map for each subject, where each voxel’s value represents 
connectivity with the thalamus. Between-group differences, Fz maps were entered into an independent 
samples t-test, results of which were reported in detail in our prior work(1). We used these identified areas 
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showing over/under thalamic connectivity in SCZ to test the effects of GSR on the pattern of between-group 
differences for the discovery SCZ sample (N=90), which served to identify these effects originally(1). We 
repeated all analyses for the SCZ replication sample (N=71) and BD sample (N=73), both fully statistically 
independent of the discovery effect (Fig. S6-7). The key objective was to examine if GSR would alter the 
pattern of between-group inferences when focusing on specific thalamo-cortical systems known to exhibit 
dysconnectivity in SCZ. 
 
Computational Modeling Framework. As noted in the main text, here we employed a validated 
computational model of resting-state functional connectivity(33), extending a local circuit model(34), to 
incorporate biologically plausible mechanisms for BOLD signal fluctuations. The network is composed of 66 
nodes and is a dynamic mean-field model(34), coupled through a large-scale anatomical connectivity matrix, 
which was derived from diffusion tractography in humans as reported in Hagmann et al. (35). We extracted the 
anatomical connectivity matrix from Fig. 1 of Deco & Jirsa(36). Specifically, the digital image provided an RGB 
value for each connection that we quantitatively matched to a calibrated color bar, allowing us to extract the 
quantitative strengths of the connections which we used as in prior modeling studies(36). 
 Of note, the strengths of global connections allow for an undetermined scale factor, which accounts for 
differences in the range of G and w values between this study and that of Deco et al.(33).  BOLD signals were 
simulated via the Balloon-Windkessel model, as done previously(Deco et al., 2013). We parametrically varied 
strengths of local self-coupling (w) within nodes and global coupling (G) between nodes. Default values were 
set to w=0.531, G=1.25, and sigma=0.0004. All reported effects did not depend qualitatively on the specific 
default values, as shown in Fig. 5F. All other parameter values were set to those of Deco and colleagues(Deco 
et al., 2013). To realistically capture the percentage of BOLD signal variance represented by the GS variance, 
we introduced a common input to all nodes, mimicking low baseline level correlations seen empirically in gray 
matter. Specifically, a shared noise term of amplitude 0.0005 was added to the signal of all nodes.   

In the original model implementation, Deco and colleagues (2013) utilized different default w/G/sigma 
values and did not incorporate a common shared signal component. When using the original approach, we 
found the results to be somewhat unrealistic given the known large contribution of GS in empirical data (see 
Fig. 1). For instance, in our empirical data, we found that ~90% of the variance of the healthy control BOLD 
signal was accounted for by the GS component, which constitutes the upper bound of GS, reflecting both 
neuronal and physiological signal present in vivo. Therefore, we implemented a common noise input into our 
model architecture. This way we were able to simulate a neuronal GS that accounts for 77% of the total 
simulated BOLD signal variance at default values given above (see Figure S15 for a parameter sweep showing 
percentage of GS at different values of w/G/sigma). We opted for this value to account for the fact that 
empirical GS certainly contained a physiological non-neuronal component. In turn, these adjustments produced 
a very robust effect of GSR in silico (see Figure 5, dotted lines), as seen empirically (see Figure 1, dotted 
lines). Put simply, by including a ‘common’ noise signal (amplitude=0.0005) we observed a much more realistic 
effect of GSR in the model. 

 
Implementing GSR in the Model. In the model architecture, we implemented a GSR component in the following 
way:  
 
i) A GS was computed across as the spatial average over all n=66 nodes: 

 

𝐺𝑆 𝑡 =   
𝐵𝑂𝐿𝐷!(𝑡)!

!
𝑛

 
 

where t is time and BOLDi(t) is the signal for node i as a function of time.  
 
ii) To mimic the effects of GSR, as computed empirically, we conducted GSR for each node in the model (as 
would be done per voxel in vivo): 
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𝐵𝑂𝐿𝐷!!"#(𝑡) =   𝐵𝑂𝐿𝐷  ! 𝑡 −   𝐺𝑆(𝑡) 
 

where again t is time, BOLDi(t) is the signal for node i as a function of time, and BOLDi
GSR(t) is the signal after 

GSR for that node. 
 

SI RESULTS 
 
Influence of Confounding Variables on Cortical Power & Variance in SCZ. The increase in CGm power 
and variance is robust across our two independent SCZ samples, but it could still be related to statistical or 
physiological confounds. We examined several possible confounds suggested by previous literature: i) 
smoking status, which could affect BOLD fluctuations via oxygen availability in the lungs(37); ii) psychotropic 
medication levels, which affect measured functional connectivity(38); and iii) head motion(16) (Fig. S3).  

First, we explicitly compared smoker (N=50) vs. non-smoker (N=46) SCZ patients (collapsing across 
both replication and discovery samples with available smoking status information, N=96 total). CGm power 
[t(94)=.51, p=.61, NS] and variance [t(94)=.54, p=.59, NS] did not differ as a function of smoking status (Fig. 
S3A-B). Consistent with the findings not being driven by confounds of smoking, CGm power [t(138)=3.23, 
p<.0016] and variance [t(138)=3.22, p<.0016] were still significantly higher for non-smoking SCZ patients vs. 
non-smoking HCS prior to GSR (Fig. S3A-B). 

To examine the effect of medication, we converted all medication levels to chlorpromazine (CPZ) 
equivalents, a standard measure of overall level of psychotropic medication(11). For the discovery SCZ sample 
the CPZ equivalents did not significantly correlate with either CGm power (r=-.03, NS) or variance (r=-.02, NS) 
(Fig. S3C-D). The same result was observed in the replication sample for power (r=.1, NS) and variance (r=.1, 
NS), suggesting medication dosage cannot explain the GS effects observed in SCZ. 

Lastly, we sought to rigorously establish that movement did not drive our core effects via two follow-up 
analyses. First, we examined the CGm power/variance effects across N=100 HCS and N=100 SCZ (evenly 
selected across the samples) explicitly statistically matched for the number of frames eliminated during 
movement scrubbing (19% frames for SCZ and 17.22% frames for HCS, p=.22, NS). We also movement-
scrubbed these data for the variance analyses (Fig. S3F). The CGm power [(t(198)=2.12, p<.036] and 
variance [(t(198)=2.14, p<.035] remained elevated in SCZ relative to HCS (Fig. S3E-F, left panels). We 
performed the same analysis in N=73 SCZ and N=73 BD patients statistically matched for the number of 
frames scrubbed (13.22% frames for SCZ and 11.24% frames for BD, p=.13, NS). This cross-diagnostic 
analysis further confirmed that increased CGm power [t(144)=2.03, p<.045] and variance [t(144)=2.1, p<.04] 
are specific to SCZ, even when explicitly comparing movement-matched clinical groups (Fig. S3E-F, left 
panels). In combination, these analyses are not supportive of a relationship between CGm power/variance 
effects in SCZ and smoking, medication or movement.   
 
Between-Group Differences in Variance and Covariance Structure of Thalamo-Cortical Signals Are 
Reduced and Change Sign As a Function of GSR. We demonstrate that the average CGm signal power is 
significantly increased in SCZ and that GSR reduces average CGm power/variance differentially across clinical 
groups (Fig. 1). As noted, this discovery has methodological implications for all future connectivity studies. To 
illustrate this issue, we present data-driven connectivity analyses (Fig. 4) suggesting that removal of large GS 
variance from one of the groups can affect the final pattern of between-group results. Another possible 
methodological consequence is that such large GS variance could in turn alter system-level covariance 
relationships differentially before and after GSR in SCZ(27).  

Building on recent evidence suggesting that thalamo-cortical connectivity is altered in SCZ(31, 39), we 
first investigated the consequences of differential GSR effects upon large-scale thalamo-cortical relationships. 
Specifically, we examined the correlation (a commonly used measure of functional connectivity) between 
thalamic and CGm signals with and without GSR. However, use of correlations can at times be problematic in 
between-group clinical comparison because this measure combines the shared and non-shared sources of 
variability(29). That is, the correlation coefficient normalizes the covariance between signals, by using the 
variance of each of the signals (Fig. S6, bottom panel). We hypothesized that this can result in conflicting 
between-group inferences if the variance structure of each signal is different between groups and/or 
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differentially altered across groups as a function of GSR. Therefore, to fully parse effects, we decomposed the 
correlation into covariance and variance components (Fig. S6A-D).  

As noted, CGm signal variance was significantly higher in SCZ relative to HCS [F(1,178)=7.24, p<0.01]. 
Also, thalamic and CGm variances were significantly altered across groups as a function of GSR (thalamic 
variance alteration [F(1,178)=12.02, p<0.001], CGm variance alteration [F(1,178)=5.246, p<0.03]). We also 
observed a significant group difference in CGm-thalamic covariance [F(1,178)=21.52, p<0.0001] (Fig. S6A, 
top), which GSR altered differentially for each group (i.e. group x preprocessing interaction [F(1,178)=12.52, 
p<0.001]). Next, by computing the correlation coefficient (Fig. S6D), we found in the discovery sample that 
patients’ average correlations between CGm and thalamic signal also significantly differed from HCS (i.e. 
group main effect [F(1,178)=23.59, p=0.0001]) (Fig. S6D, top). However, the GSR effect on between-group 
differences was no longer significant (i.e. group x preprocessing interaction [F(1,178)=0.32, p=0.57, ns]). That 
is, the average thalamo-cortical correlation group differences were similar before and after GSR (Fig. 6D, top). 
This was in contrast to the measures of average CGm-thalamic covariance, where SCZ patients’ measures 
became more similar to those of HCS after GSR. All findings were fully replicated in the independent SCZ 
sample (n=71) (Fig. S6A-D, middle row), which underwent identical movement scrubbing (see Experimental 
Procedures). This might initially suggest that correlations can perhaps be effective in dealing with GSR vs. 
non-GSR differences when conducting between-group comparisons because between-group correlation 
differences do not seem to be attenuated by GSR. However, correlations could be potentially problematic in 
some cases for the same reason that GSR is problematic: both obscure a variance component from between-
group comparisons. The observation that GSR has no effect on reducing between-group correlation 
differences likely arises from correlations having already ‘normalized’ some of the variance that would 
otherwise have been removed by GSR.  
 A parallel examination of the BD sample showed significant between-group differences in thalamic 
variance (Fig. S6C, bottom row) [F(1,127)=8.99, p<0.01] and CGm-thalamic covariance (Fig. S6A, bottom 
row) [F(1,127)=7.37, p<0.01], but no significant between-group differences in CGm variance (as reported in 
Fig. 1). In contrast to SCZ, GSR did not alter between-group differences in the BD sample for any of the 
measures, again demonstrating diagnostic specificity of the SCZ GSR effect (all p-values >0.08). Interestingly, 
the thalamo-cortical covariance and correlation relationships for the BD patients show striking similarities to 
those found for SCZ patients when contrasted with HCS. Yet, BD exhibited lower CGm and thalamic variance 
than SCZ prior to GSR. In other words, the correlation structure may be insufficient to distinguish SCZ from 
BD; more specificity was gained from additionally examining variance. Collectively, these observations further 
suggest that correlations may sometimes not be ideal when the variance structure drastically differs across 
clinical groups. Alternatively, depending on the goal of the study, correlations could be used because they 
provide results untarnished by differences in variability. Considering these pros and cons will likely depend on 
the type of research question and selecting the best statistical metric for a given inference.  

Notably, GSR did not significantly alter the between-group differences of CGm-thalamic correlation for 
any of the patient samples (Fig. S6D top, middle, bottom rows). Yet, GSR did significantly alter the magnitude 
of between-group differences in CGm-thalamic covariance for both SCZ samples but not for the BD sample. In 
addition, across all analyses, GSR resulted in a ‘shift’ of positive thalamo-cortical covariance (or correlations) 
into the negative range for all three groups, altering interpretations for all findings, as predicted by prior 
simulation studies(40). That is, in each case SCZ and BD showed a more positive value relative to HCS, but 
after GSR all values changed sign and the gap between SCZ and HCS relationships reduced – a notable 
difference from the inferred connectivity strength before GSR. Collectively, these effects show how GSR can in 
some cases impact the variance and covariance structure of large-scale thalamo-cortical systems for different 
between-group comparisons, leading to possibly conflicting inferences depending on the preprocessing 
method. 
 
Covariance/Correlation Structure of A Priori Defined Thalamo-Cortical Networks Do Not Change Sign 
After GSR. As noted above, based on the discovery of larger GS power/variance, an important objective was 
to explore how GSR could differentially impact inferences across different clinical analyses. We first focused on 
the relationship between thalamus and CGm, which is known to be disrupted in SCZ. As discussed above, 
these covariance analyses were significantly affected by GSR. However, GSR could potentially produce 
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different effects when focusing on thalamo-cortical relationships within a priori selected regions(31) of cortex, 
rather to the entire cortex. To test this more specific case we examined previously identified regions that show 
thalamo-cortical dysconnectivity in SCZ, independently replicated by several groups(1, 30, 31). Specifically, 
prior studies identified two types of thalamo-cortical alterations in SCZ: i) regions showing reductions in 
thalamic coupling (i.e. under-connectivity), and ii) regions that show increases in thalamic coupling (i.e. over-
connectivity)(1). Here we tested, using these a priori defined areas (see SI Experimental Procedures above), 
whether GSR altered between-group inferences. This analysis accomplishes two important additional 
objectives: i) based on present effects it is vital to examine their methodological implications; namely, whether 
GSR alters established findings in the literature; ii) this analysis provides another replication of prior effects(1), 
via an independent SCZ sample (N=71). In turn, such independent verification of thalamo-cortical effects 
provides, irrespective of GSR, additional confidence for future studies focusing on this finding as a viable SCZ 
biomarker.  

Notably, these analyses are distinct from results above (which averaged the entire CGm signal). That 
is, here we examine whether between-group differences in subsets of thalamo-cortical connections remain 
unaltered by GSR. As predicted, we observed significant GSR effects(40). However, correlation and 
covariance measures for SCZ patients retained the same sign after GSR (Fig. S7) instead of inverting as 
observed for the total CGm analysis (Fig. S6). HCS patterns generally retained the same sign after GSR (Fig. 
S6). Thus, the overall polarity of thalamo-cortical findings (irrespective of GSR) remained unchanged across 
samples, showing that certain types of between-group analyses remain more robust to GSR. The discrepancy 
between these system-specific effects and analyses above that focused on the entire cortex could occur if 
GSR homogeneously decreases variance across cortex in SCZ (described in Fig. S3). This would effectively 
shift the whole-brain pattern of covariance relationships in a way that attenuates differences between patients 
and HCS (since GSR drastically reduces a major difference between SCZ and HCS: the CGm variance). 
Conversely, when a priori regions are defined for functional connectivity (as done here using prior 
discoveries(1)), then the between-group effect may remain robust and retain the same sign irrespective of 
GSR. This consideration is potentially important for studies focusing on a priori selected regions versus those 
using data-driven analyses (see Fig. 4 and S8 for data-driven effects focused on PFC). 

Lastly, here we also found that using the correlation coefficient did not always fully capture the 
alteration in thalamo-cortical relationships before and after GSR (as was observed for covariance, see Fig. 
S6). This difference of sensitivity to GSR is caused by the large variance component in the denominator of the 
correlation equation for SCZ prior to GSR – the resulting correlation “divides out” the variance, and is therefore 
less sensitive to further decrements in variance resulting from GSR, whereas covariance is more vulnerable to 
variance-reducing processes such as GSR. Collectivity, these thalamo-cortical effects illustrate a complex 
impact of GSR on system-level inferences in SCZ (see Discussion for a set of recommendations for future 
clinical connectivity studies). 

 
Computational Modeling – Calculating Mean GS Values. In addition to variance calculations, we also 
examined mean levels of node-wise signal amplitude and GS amplitude in the model. We found that the mean 
of simulated GS also increased as a function of G and w (Fig. S10). This pattern was expected because the 
mean value of each simulated local signal also increased as a function of G and w, and GS is the average of 
local signals. This increase in mean signal values reflects an increase in local recurrent excitation, which will in 
turn drive up the signal at each local node. Additionally, increased global coupling across nodes will result in an 
elevated signal propagating throughout all the nodes, thereby increasing mean local node signal levels. 
 
Computational Modeling – Examining Effects of GSR. Once implemented, GSR resulted in attenuated local  
variance in the model, a pattern that was quite similar to the empirical effects (see Fig. 1). However, the GS 
variance was virtually completely effaced given that implementing GSR in the model subtracts the entire mean 
of the model-derived signal across all time points. What remains is mathematically zero (see Fig. S11).  
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SI DISCUSSION 
 

Implications for the controversy regarding the role of global signal regression in resting state 
connectivity analyses. The principal findings of the current study do not offer an unequivocal suggestion to 
perform GSR or not. However, several attempted rigorous analyses (see Fig. 4 in the main text, as well as Fig. 
S6, S7 & S8) demonstrate that this is complex issue, depending on the particular analysis. Therefore, the 
clearest possible recommendation that one can make to the neuroimaging community based on these results 
is to carefully examine and analyze the GS across all clinical connectivity analyses. As noted in the main text, 
these effects indicate that GS needs to be characterized explicitly in clinical groups to determine its potential 
contributions in focused connectivity analyses (see Fig. S6-7). Only once such analyses have been completed 
in a given dataset, researchers can reach a more informed decision if GSR is advisable. Furthermore, as 
shown here, future studies should test for the direction of clinical inferences before and after GSR to allow a 
nuanced interpretation regarding the observed connectivity alterations. Such a step-wise approach is critical to 
improve connectivity-derived neuroimaging markers in neuropsychiatric research, circumventing the debate 
whether to use GSR or not; instead employing rigorous data inspection to support appropriate study-specific 
analytic decisions. 
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SI TABLES & FIGURES 
 

Table S1 | Clinical and Demographic Characteristics         

Characteristic  HCS (N=90) SCZ (N=90) Significance  

  M  S.D. M S.D. T Value / Chi-Square P Value (two-tailed) 
Age (in years) 

 
30.71 11.99 32.93 11.25 1.28 0.2 

Gender (% male) 
 

66.00 
 

73.00 
 

1.13 0.26 
Father's Education (in years) 

 
14.37 3.21 13.67 3.47 1.42 0.16 

Mother's Education (in years) 
 

13.99 2.81 13.50 2.92 1.15 0.25 
Participant's education (in years) 

 
15.24 2.22 13.18 2.21 6.26* <.001 

Handedness (% right) 
 

84.21 
 

80.00 
 

0.85 0.4 
Signal-to-noise (SNR) 

 
215.37 45.25 206.81 62.05 1.06 0.3 

% Frames Flagged 
 

10.13 7.89 17.63 17.00 3.79* <.001 
IQ Estimate 

 
106.77 8.92 97.78 15.71 4.55* <.001 

Medication (CPZ equivalents) 
 

- - 229.00 195.81 - - 
PANSS Positive Symptoms 

 
- - 15.80 4.73 - - 

PANSS Negative Symptoms 
 

- - 14.34 5.53 - - 
PANSS General Psychopathology 

 
- - 30.48 7.18 - - 

PANSS Total Psychopathology   - - 60.51 14.25 - - 
 

Table S1. Discovery Schizophrenia Sample Demographics. HCS, Healthy Comparison Subjects; SCZ; 
Patients diagnosed with Schizophrenia; PANSS, Positive and Negative Syndrome Scale; M, Mean; SD, 
Standard Deviation; IQ, intelligence quotient; age, education levels, parental education, are expressed in 
years. CPZ, Chlorpromazine equivalents were calculated according to latest validated approaches(11). * 
denotes a significant T statistic for the between-group t-test. 
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Table S2 | Clinical and Demographic Characteristics - Schizophrenia Replication Sample   

Characteristic  HCS (N=74) SCZ (N=71) Significance  

  M  S.D. M S.D. T Value / Chi-Square P Value (two-tailed) 
Age (in years) 

 
35.82 11.58 38.14 13.99 1.09 0.28 

Gender (% male) 
 

69.00 
 

80.00 
 

1.57 0.12 
Parental Education (in years) 

 
4.62 1.83 4.15 2.05 1.45 0.15 

Participant's education (in years) 
 

4.64 1.31 3.93 1.43 3.12* <.01 
Handedness (% right) 

 
93.00 

 
80.00 

 
1.91 0.06 

Signal-to-noise (SNR) 
 

213.38 79.79 199.47 93.62 0.97 0.33 
% Frames Flagged 

 
18.81 20.83 31.10 28.63 2.98* <.01 

Medication (CPZ equivalents) 
 

- - 372.53 304.82 - - 
PANSS Positive Symptoms 

 
- - 14.85 4.76 - - 

PANSS Negative Symptoms 
 

- - 14.52 4.86 - - 
PANSS General Psychopathology 

 
- - 29.15 8.38 - - 

PANSS Total Psychopathology   - - 58.52 13.76 - - 
 

Table S2. Replication Schizophrenia Sample Demographics. HCS, Healthy Comparison Subjects; SCZ; 
Patients diagnosed with Schizophrenia; PANSS, Positive and Negative Syndrome Scale; M, Mean; SD, 
Standard Deviation. Education level for the replication sample was determined based on the following scale: 
Grade 6 or less=1; Grade 7–11=2; high school graduate=3; attended college=4; graduated 2 years college=5; 
graduated 4 years college=6; attended graduate or professional school=7; Completed graduate or professional 
school=8. CPZ, Chlorpromazine equivalents were calculated according to latest validated approaches(11). * 
denotes a significant T statistic for the between-group t-test. 
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Table S3 | Clinical and Demographic Characteristics - Bipolar Sample     
Characteristic 

 
HCS (N=56) BD (N=73) Significance  

    M  S.D. M S.D. 
T Value / Chi-

Square P Value (two-tailed) 
Age (in years) 

 
31.25 10.35 32.00 11.27 0.39 0.70 

Gender (% male) 
 

38.71 
 

27.03 
 

1.84 0.07 
Paternal education (in years) 

 
12.98 3.87 14.83 3.59 2.79* 0.01 

Maternal education (in years) 
 

13.63 2.58 13.99 2.60 0.78 0.44 
Participant's education (in years) 

 
15.11 2.10 14.22 1.90 2.51* 0.01 

Signal-to-noise (SNR) 
 

215.45 58.98 216.80 52.03 0.89 0.14 
% Frames Flagged   9.74 10.44 11.24 9.78 0.41 0.84 

 
 

Table S3. Bipolar Disorder Sample Demographics. M, Mean; SD, Standard Deviation; age, education 
levels, and parental education are expressed in years. *denotes a significant T statistic for the between-group 
t-test. For complete clinical details and clinical measures used for the bipolar sample please see prior 
studies(7). 
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FreeSurfer Code Landmark 
Whole-brain Labels 

Left Right   
3 42 Cerebral Cortex - entire hemisphere 
8 47 Cerebellar Cortex - entire hemisphere 
10 49 Thalamus 
11 50 Caudate 
12 51 Putamen 
13 52 Pallidum 
17 53 Hippocampus 
18 54 Amygdala 
26 58 Accumbens 
28 60 Ventral DC 
16 16 Brainstem 

Prefrontal Cortex Labels 
Left Right   
1002 2002 Caudal Anterior Cingulate Cortex  
1003 2003 Caudal Middle Frontal Cortex  
1012 2012 Lateral Orbitofrontal Cortex  
1014 2014 Medial Orbitofrontal Cortex  
1018 2018 Inferior Frontal Cortex - Pars Opercularis  
1019 2019 Inferior Frontal Cortex - Pars Orbitalis  
1020 2020 Inferior Frontal Cortex - Pars Triangularis  
1026 2026 Rostral Anterior Cingulate Cortex  
1027 2027 Rostral Middle Frontal Cortex  
1028 2028 Superior Frontal Cortex  
1032 2032 Frontal Pole  

 
Table S4. List of FreeSurfer Codes Used for Gray Matter, Thalamus and PFC-restricted rGBC Analyses. 
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Fig. S1. Power and Variance of All Gray Matter Signal in Schizophrenia and Bipolar Disorder. (A) Left: 
Power of the gray matter signal (Gm) in 90 schizophrenia (SCZ) patients (red) relative to 90 healthy control 
subjects (HCS) (see Table S1 for demographic details) extending cortex-specific effects (Fig. 1). (B) The bar 
graph shows the mean power across the entire frequency range for both groups before and after GSR, 
indicating an increase in SCZ [F(1,178)= 7.64, p<0.01]. As with the cortex analyses, the effect is significantly 
attenuated after the GSR processing step is used [F(1,178)= 5.9, p<0.02]. (C) Variance of the Gm replicated 
the power effects showing increases in SCZ [F(1,178)= 7.42, p<0.01] and also verified that GSR attenuates 
the finding [F(1,178)= 5.75, p<0.02]. (D-F) As with the cortical analyses, here we fully replicated the pattern of 
results using an independent sample collected at a different site and diagnosed independently (see Table S2 
for demographic details), again confirming the increase in Gm power [F(1,178)= 10.8, p<0.0015] and variance 
[F(1,143)=11.44, p<0.001] effects in SCZ. The replication sample also verified the attenuating impact of GSR 
preprocessing on power [F(1,143)= 8.34, p<0.01] and variance [F(1,143)= 8.99, p<0.01] metrics in SCZ vs. 
HCS. (G-I) The results for bipolar disorder (BD) patients (N=73) relative to demographically matched HCS (see 
Table S3 for BD demographic details) did not reveal the effect of GSR observed in the SCZ samples 
[F(1,127)=3.05, p=0.08, n.s.] and there was no evidence for increase in Gm power or variance for the BD 
patient sample. These results across all gray matter voxels follow the effects reported for the cortical gray 
matter analyses (see Fig. 1). Error bars mark +/- 1 standard error of the mean. 
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Fig. S2. Increased Power/Variance is Not Present in Ventricles. To examine whether the increase in 
variance was present in areas without any plausible neurobiological origin, we examined ventricle signal 
across the discovery and replication schizophrenia (SCZ) samples and the bipolar disorder (BD) sample. We 
also investigated if GSR has an effect on this non-neuronal signal. Unlike the results presented for cortex and 
total gray matter, here there was no main effect of diagnosis: (A-C) SCZ-Discovery: F(1,178)= 0.01, p=0.99; 
SCZ-Replication: F(1,143)= 1.65, p=0.2; BD: F(1,127)= 0.74, p=0.4] or diagnosis x preprocessing interaction 
across any of the samples [SCZ-Discovery: F(1,178)= 2.1, p=0.15; SCZ-Replication: F(1,143)= 3.24, p=0.08; 
BD: F(1,127)= 2.04, p=0.16]. All ventricle signal for these analyses was defined anatomically for each subject 
via automated FreeSurfer segmentation(20) and inspected for quality assurance by a trained rater (AA).  
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Fig. S3. Examining Confounding Variables: Smoking, Medication and Movement. (A-B) Power and 
variance of the cortical gray matter (CGm) signal is shown for healthy comparison subjects (HCS) who were 
not smokers (N=90), patients with schizophrenia who were not smokers (SCZ-NS, N=50) and patients with 
schizophrenia who were identified as smokers (SCZ-S, N=46) across both discovery and replication datasets. 
The power and the variance of the CGm were significantly increased for both SCZ-NS and SCZ-S relative to 
HSC prior to GSR (p<.01 for both measures), whereas there was no difference between SCZ-NS and SCZ-S 
[t(94)=.52, p=.61, NS], suggesting smoking status does not explain the increased CGm variance and power 
effects in SCZ. Of note, smoking related to lifetime smoking status (i.e. whether a patient was ever a smoker). 
Therefore, cumulative effects of smoking could not drive effects for non-smokers as they have never smoked.  
(C-D) The magnitude of CGm power and variance before and after GSR did not significantly relate to 
medication levels across subjects (all p-values >.4), calculated via CPZ equivalent conversion for the discovery 
sample(11) and did not differ between medicated versus unmedicated patients for the discovery sample (all p-
values >.2). The same pattern was present for the replication sample (all p-values >.25). (E-F) We identified 
N=100 HSC and N=100 SCZ evenly across the two samples that were explicitly matched on the amount of 
frames flagged for movement (19% frames for SCZ and 17.22% frames for HCS, p=.22, NS). The power and 
the variance of the CGm are significantly increased for SCZ relative to HSC prior to GSR (p<.04 for both 
measures) even when explicitly matched for number of flagged frames. Next, we identified N=73 SCZ and 
N=73 BD that were explicitly matched on the amount of frames flagged for movement (13.22% frames for SCZ 
and 11.24% frames for BD, p=.13, NS). Again, CGm power and variance were significantly increased for SCZ 
relative to BD prior to GSR (p<.045 for both measures), further establishing the diagnostic specificity of present 
effects. This analysis in particular guarantees that effects persist when, by definition, they cannot be 
confounded by movement. That is, head motion cannot confound effects in an analysis where the number of 
flagged frames is explicitly matched across groups, guaranteeing that the amount of movement is not different 
across samples. Error bars mark +/- 1 standard error of the mean.  
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Fig. S4. Relationship Between Schizophrenia Symptoms and Cortical Gray Matter (CGm) Variance. We 
extracted the average magnitude of the CGm variance for each subject across both samples for which we had 
available symptom ratings (N=153), as done for CGm power in Fig. 3. (A-F) All the effects remained 
unchanged for CGm variance. As with CGm power, all of the relationships with symptoms were again 
attenuated and no longer significant after GSR for overall positive symptoms as well as disorganization 
specifically. The shaded area marks the 95% confidence interval.  
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Fig. S5. Increased Voxel-wise Variability Across Gray Matter, White Matter and Ventricles Before GSR. 
We show voxel-wise map of between-group differences whereby each yellow-orange voxel indicates greater 
local variability for SCZ relative to matched healthy control subjects (HCS) (at Z>3, p<.0013 uncorrected). This 
pattern is shown for (A) gray matter, (B) white matter and (C) ventricles. Notably, the increase in voxel-wise 
variance was clearly evident in gray matter, but was also somewhat apparent across other tissue types. One 
possibility, despite the careful implementation of movement scrubbing(16),(41) is that these patterns 
(especially in white matter and ventricles) are in part influenced by sub-TR motion (i.e. micro-movements) that 
remain challenging to fully rule out in the present study, but may propagate as complex waveforms throughout 
the BOLD signal(16). More careful de-noising and movement correction strategies will be needed to 
comprehensively remove any possibility of movement-related artifacts contributing to these voxel-wise effects. 
In addition, using accelerated BOLD acquisition methods(42) could further attenuate the possible impact of 
motion. 
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Fig. S6. Thalamo-Cortical Variance & Covariance Alterations as Function of GSR in Schizophrenia and 
Bipolar Disorder. We found increased GS power/variance in schizophrenia (SCZ) but not bipolar disorder 
(BD). Given this large variance component in SCZ, we examined if the relationships between thalamo-cortical 
signals, known to be disrupted in SCZ(1), alter as a function of GSR. We also examined if this large variance 
component alters the correlation (as opposed to covariance) because correlations would normalize this large 
variance across groups(see (29) for a detailed discussion). (A) Covariance between cortical gray matter (CGm) 
signal and thalamic signal for the SCZ sample and matched HCS (top), the replication SCZ dataset (middle) as 
well as BD patients and their matched HCS (bottom). Both results are shown prior to and post GSR. There was 
a larger between-group difference in the covariance between CGm and thalamic signals seen prior to GSR in 
SCZ but not BD. (B) Variance of the CGm signal is shown. (C) Variance of the thalamic signal is shown. (D) 
The correlation between CGm and thalamic signal is shown. For illustrative purpose, figures are presented 
along with the equation on the bottom to highlight the importance of carefully de-composing the final correlation 
into variance and co-variance components, given that inference can change. Collectively, these analyses show 
that removal of GS reverses the sign of the between-group effects, but does not drastically alter the final 
inference (i.e. SCZ > HCS in thalamo-cortical coupling). However, SCZ is better distinguished from BD in 
variance comparisons than in correlation or covariance comparisons. Error bars mark +/- 1 standard error of 
the mean. 
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Fig. S7. Examining the Effect of GSR in Schizophrenia and Bipolar Disorder on Specific Thalamo-
Cortical Networks. Above we characterized thalamo-cortical signals across the entire cortical mantle (Fig. 
S5); however, we also tested whether GSR alters specific thalamo-cortical network inferences given the large 
GS power/variance in schizophrenia (SCZ). For this purpose we conducted a focused re-analysis of our 
previously published effects(1), where we identified both reductions and increases in thalamo-cortical 
connectivity in SCZ (panel A adapted with permission from (1)). (A) Regions showing reduced (blue, top panel) 
and increased (red, bottom panel) thalamic connectivity in individuals with SCZ relative to HCS, which we 
identified in our prior work(1). Because these robust effects were replicated by three independent research 
groups(1, 31, 43) they provide a basis for investigating the effect of GSR in SCZ, motivated by our primary 
findings. Here we show results, specifically within the identified areas showing increased (left, panels B,D,F) 
versus reduced (right, panels C,E,D) thalamic connectivity. Each effect is presented with and without GSR. We 
conducted this analysis for the original SCZ discovery sample (B-C), for the SCZ replication sample (D-E) and 
the bipolar disorder (BD) sample (F-G). Collectively, the results illustrate that, irrespective of GSR, the pattern 
of between-group inferences is not altered and overall findings do not change sign after GSR. Error bars mark 
+/- 1 standard error of the mean. 
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Fig. S8. GSR Induces Uniform Transform of PFC rGBC Between-group Effects. The data-driven rGBC 
results (Fig. 5) suggest that GSR may induce a non-uniform transformation of between-group differences by 
‘shifting’ some connectivity values differentially for schizophrenia (SCZ) vs. healthy comparison subjects 
(HCS). Here we tested whether results are consistent with this possibility, or whether they are more indicative 
of a uniform transformation (see Fig. 5E-F for a schematic illustration). (A) The between-group PFC rGBC 
difference map is shown for only 20% of the top ranked vs. 20% of the bottom ranked voxels. Dark blue and 
orange voxels highlight the results with GSR performed, whereas the light blue and yellow voxels highlight the 
results without GSR performed. As indicated by this qualitative map, the overlap was generally quite high for 
both positive and negative connection ranges (white arrows highlight two example areas with high overlap). 
This overlap map is not supportive of a non-uniform transformation. (B) To verify this observation statistically  
we quantified the statistical similarity for the PFC rGBC between-group difference maps before and after GSR 
using r and eta2 metrics (we used both measures to provide convergent validity via complementary measures, 
see SI Experimental Procedures for details)(28). Both metrics showed highly significant levels of similarity 
(both >.8). This robust level of similarity pre and post GSR is inconsistent with the GSR introducing a strictly 
non-uniform transform (as the similarity would be around chance or approaching 0). (C) We also examined the 
resulting voxel overlap without a threshold applied before and after GSR. We did so across four different peak 
levels (1%, 5%, 10% and 20% top and bottom ranked voxels showing between-group differences). Again, if 
GSR fundamentally altered the structure of between-group differences then we would expect the overlap to be 
quite low across these peak levels. In contrast, we observed that, irrespective of the peak level used, the maps 
before and after GSR showed a highly significant level of overlap (binomial test for proportions, all p<.0001, 
chance marked with horizontal lines). Collectivity, these analyses are inconsistent with the hypothesis that 
GSR induces a non-uniform transform. 
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Fig. S9. Permutations of the Structural Connectivity Matrix Does Not Alter the Net Effect Across 
Parameters.  We tested whether the specific configuration of the structural connectivity matrix(35) affected the 
net pattern of the modeling results. That is, it is important to establish that the predominant effect is an 
increase in global and local variance as function of G, w and sigma (noise parameter in the model), as 
opposed to a decrease. To this end, we re-permuted the connectivity matrix randomly (n=100) and re-ran all 
modeling simulation. (A-C) We computed the average node variance (top panels in red) and the global signal 
(GS) variance across all nodes (bottom panels in green) as a function of G, w and sigma parameters. Next, we 
computed the slope of the effect for each of the permutations (either positive slope or negative slope). By 
chance alone we would expect 50% of the modeling simulations to show a positive versus negative slope. 
However, for each parameter, irrespective of the structural connectivity matrix configuration, we observed a 
positive slope (binomial test for proportions, p<.001 for each test). This suggests that the modeling results are 
generic properties of the model and are not necessarily highly sensitive to the particular configuration of 
structural connectivity patterns. 
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Fig. S10. Calculating Mean GS Values as a Function of w and G. (A) The model scheme is shown as in the 
main text. Here we extracted the mean value calculated for each node and the mean value of the model-
derived global signal (GS) (B-C) Simulations indicate increased mean of local BOLD signals originating from 
each node, in response to increased w or G. (D-E) The GS, computed as the spatial average across all nodes, 
also showed increased mean value by elevating w or G. Error bars represent the standard deviation at each 
value of w or G computed across 4 realizations of the background noise input, illustrating model stability. Here 
the error bars are not visible due to the small scale. 
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Fig. S11. Quantifying Effects of Simulated GSR.  In the main text we presented the effects of in silico GSR, 
juxtaposed next to the original model simulations (see Fig. 5). Here we present the full pattern of results 
following model-based GSR via the parameter-scape visualization. (A) The model scheme is shown as in the 
main text. (B) Two-dimensional parameter space following GSR. This simulation captures the decreased 
variance following GSR at the local node-wise level (squares, far right color bar), Implementing GSR reduces 
the GS to zero; this is not surprising as GSR effectively subtracts the GS component (circles in each square, 
the adjacent color bar). 
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Figure S12. Characterizing Specificity of the Increased Cortical Variance Effects in SCZ – Focus on 
Large Scale Networks. We discovered significantly elevated GS variability in SCZ (Fig. 1). However, it 
remains possible that this GS variability is preferentially localized to certain networks, especially given existing 
theoretical models in SCZ suggesting more profound neural disruptions in higher-order associative 
networks(44). To test this hypothesis, we formally quantified the pattern of elevated variability within specific a 
priori defined large-scale networks, which were characterized independently via resting-state in healthy adults 
(obtained with permission from Power and colleagues(45)). (A) Effects within the fronto-parietal control 
network. (B) SCZ results revealed a significant Group x Processing interaction [F(1,323)=26.74, p<4.09x107], 
indicating elevated variance in SCZ prior to GSR [t(323)=3.88,p<0.00015], but significantly reduced variance 
after GSR in SCZ. (C) No such effect was evident in BD [F(1,127)=0.21, p=0.65]. (D) Effects within the default-
mode network. (E) SCZ results revealed a significant Group x Processing interaction [F(1,323)=9.17, p<0.003], 
indicating elevated variance in SCZ prior to GSR [t(323)=2.55,p<.015], but significantly reduced variance after 
GSR in SCZ. (C) No such effect was evident in BD [F(1,127)=0.07, p=0.8]. (G-I) Although numerically higher 
for SCZ, variance effects within the visual network and (J-L) the sensory-motor network were not significant for 
any Group main effects or interactions. Also between-group t-tests prior to GSR were not significant (both p-
values >0.23). Note: Across the bar plot panels we highlight the pairwise effects (only significant for SCZ 
relative to HCS in panel B & E) as well as all the Group x Processing (only significant for SCZ vs. HCS in the 
higher-order associative networks, panels B & E). These preferential network effects further rule out movement 
concerns; it is highly unlikely that two separate patient samples collectivity move their fronto-parietal and 
default networks more than their visual-motor networks. 
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Figure S13. Characterizing Specificity of the Voxel-wise Effects in SCZ – Focus on Large Scale 
Networks. We discovered significantly elevated voxel-wise variability across distributed cortical and 
subcortical regions in SCZ (Fig. 3). The pattern appeared widespread and rather diffuse, but it raises the 
question of whether these effects co-localized preferentially within specific large-scale networks. To this end, 
we formally quantified the pattern of elevated voxel-wise variability with specific a priori defined networks, as 
done for the GS effects in Fig. S12. (A) To accomplish this, we used the sensory-motor network map defined 
independently via resting-state by Power and colleagues (2011) (obtained with permission from (45)). (B) 15% 
of all voxels belonging to sensory-motor networks defined a priori (black borders) overlapped with the elevated 
voxel-wise variance map (chance overlap = 24.6%). (C) In contrast, 42% of all voxels belonging to fronto-
parietal networks defined a priori (black borders) overlapped with the elevated voxel-wise variance map 
(chance overlap = 11% because there are less total fronto-parietal voxels). To confirm this statistically we ran a 
binomial test for difference in proportions: 42% versus 15% of spatial overlap between the two sets of networks 
significantly exceeded the proportion difference expected by chance alone (Z=35.51, p<0.000001, binomial test 
for difference between proportions). Importantly, the fronto-parietal overlap (panel C) was significantly higher 
than expected by chance alone (Z=65.94, p<0.000001, binomial test for proportions), whereas the sensory-
motor overlap was actually significantly lower than would have been expected by chance (as by chance alone 
we would expect approximately ~24.6% overlap (given the number of voxels in the sensory-motor networks 
defined here relative to all possible voxels belonging to the Power networks). Again, these preferential network 
effects further rule out movement concerns; it is highly unlikely that two separate patient samples collectively 
move their fronto-parietal and default networks more than their visual-motor networks. 
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Figure S14. Examining Effects of Long-term Antipsychotic Treatment on Cortical Gray Matter (CGm) 
Variance Effects. One concern regarding present cross-diagnostic results pertains to cumulative effects of 
antipsychotic treatment over extended periods of time, which may differ across diagnostic groups. The 
cumulative medication impact is very difficult to quantify accurately, particularly the precise level and exact 
duration of compounding medication effects on brain function in SCZ. Here we attempted a proxy analysis that 
adds confidence that the core clinical SCZ effects are not confounded by medication. Specifically, we identified 
N=25 bipolar patients who were treated in conjunction with anti-psychotic medication during their illness course 
(BD AP). Next, we explicitly compared the CGm (A) power and  (B) variance profiles between SCZ and bipolar 
patients that received long-term antipsychotic treatment (BD AP) as well as those bipolar patients that were not 
treated by antipsychotics (BD No AP). The core SCZ effects still remained evident across both comparisons for 
power (SCZ vs. BD-AP [t(206)=2.16, p<.035]; SCZ vs. BD-noAP [t(183)=1.99, p<.05]) as well as variance (SCZ 
vs. BD-AP [t(206)=2.17, p<.032]; SCZ vs. BD-noAP [t(183)=2.05, p<.045]) measures. Moreover, the effects 
indicated a marginally lower level of CGm power/variance for the BD AP patients. Put simply, those BD 
patients who received antipsychotic treatment exhibited marginally lower, not higher variance profiles – an 
effect that is inconsistent with the possibility that long-term anti-psychotic treatment alone is driving the core 
SCZ results. Nevertheless, longitudinal studies that carefully quantify the level of medication over time can 
further establish the impact of long-term medication dose/type on present effects. 
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Figure S15. Examining Percentage of in silico Global Signal Variance as a Function of Model 
Parameters. As noted, Deco and colleagues (2013) utilized different default w/G/sigma values and did not 
incorporate a common shared signal component. Here we found that the original parameter choices, without a 
common shared signal, produced results that were somewhat unrealistic given the known large contribution of 
GS in empirical data (see Fig. 1). For instance, in our empirical data, we found that ~90% of the variance of the 
healthy control BOLD signal was accounted for by the GS component (although this likely collapses neuronal 
and physiological signal present in vivo). Therefore, we implemented a common noise input into our model 
architecture. Here we show a full parameter sweep of w (x-axis), G (y-axis), and magnitude of shared noise (z-
axis) parameters and examine the percentage of signal variance that is attributed to the global signal (GS) 
component in the model. As the shared signal component increases (z-axis) we found that the percentage of 
signal variance attributable to the GS increased (color bar on the right; also marked as increasing circles). This 
was a generic property of the model irrespective of w/G parameter combinations; we selected a model regime 
where simulated neuronal GS accounted for 77% of the total simulated BOLD signal variance at default w/G 
values (cyan circle).  
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