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Geometry of sequence working memory in macaque
prefrontal cortex
Yang Xie1†, Peiyao Hu1†, Junru Li1, Jingwen Chen1, Weibin Song2, Xiao-Jing Wang3, Tianming Yang1,
Stanislas Dehaene4,5, Shiming Tang2,6*, Bin Min7*, Liping Wang1*

How the brain stores a sequence in memory remains largely unknown. We investigated the neural code
underlying sequence working memory using two-photon calcium imaging to record thousands of neurons
in the prefrontal cortex of macaque monkeys memorizing and then reproducing a sequence of locations
after a delay. We discovered a regular geometrical organization: The high-dimensional neural state space
during the delay could be decomposed into a sum of low-dimensional subspaces, each storing the spatial
location at a given ordinal rank, which could be generalized to novel sequences and explain monkey behavior.
The rank subspaces were distributed across large overlapping neural groups, and the integration of
ordinal and spatial information occurred at the collective level rather than within single neurons. Thus,
a simple representational geometry underlies sequence working memory.

E
pisodic experiences in the real or mental
world are, by their nature, a succession
of events. The ability to remember the
ordinal succession of items in a sequence
is crucial for various higher-level cogni-

tive functions, including language, episodic
memory, and spatial navigation (1). How-
ever, how a sequence is represented and stored
in memory remains largely unknown. There
could be two ways of encoding sequences.
First, there may be a repertoire of represen-
tations for every sequence encountered—in
other words, a separate representation for each
sequence. Alternatively, the representation could
be factorized, for instance with distinct mem-
ory slots for items at different ordinal ranks or
by separating the temporal structure from the
content items (2, 3).
Such factorized representation is also re-

ferred to as a form of disentangling (4). The
hypothesis posits that our brain benefits from
representing the underlying structure of the
world in a disentangledmanner because chang-
ing the properties in one part of the structure
would leave the representation of other parts
intact. Thus, disentangling temporal struc-
tures from particular events may lead to faster
generalization and novel inferences (3, 5, 6).

However, whether and how the neural repre-
sentations encode abstract temporal struc-
tures in sequence working memory (SWM)
remains unclear.
At the single-neuron level, it is often pro-

posed that our brain binds information from
multiple domains through multiplicative gain
modulation (7, 8). One popular hypothesis for
SWM is that abstract information about or-
dinal number could be conjoined with item-
specific sensory information through a gain-field
mechanism, such that individual prefrontal
neurons would be tuned to the product of
those two variables (2). Alternatively, the neu-
ral codes for sequences may be distributed
across a large neural population and bound
using matrix or tensor products (9). Recent
studies have suggested that abstract infor-
mationmay be represented in high-dimensional
neural state space (10, 11). The trajectories
within subregions (neural manifolds) of this
space can instantiate the hidden organizing
structures that underlie, for example, motor
movements in motor areas (12) or time and
abstract knowledge in the hippocampus and
prefrontal cortex (13–16).
To investigate the neural representations

of SWM at both the single-neuron and pop-
ulation levels, we asked the following questions:
(i) whether low-dimensional manifolds under-
lie the disentangled representation of temporal
structure in SWM, (ii) how neurons integrate
neural representations of temporal order and
sensory items in SWM, (iii) how single neu-
rons are organized anatomically and func-
tionally to contribute to these manifolds, and
(iv) whether we can provide a unified math-
ematical description of those computations
at the single-neuron and population levels.
To address these questions, we trained two
monkeys to perform a visuospatial delayed

sequence-reproduction task and used two-
photon calcium imaging to record neurons
in the lateral prefrontal cortex (LPFC).

Paradigm and behavior

Two macaque monkeys were trained on a de-
layed spatial sequence-reproduction task (17).
On each trial, during the sample period, se-
quences of two or three spatial locations were
visually presented while the monkey fixated
on a dot at the center of the screen. Each se-
quence item was drawn without replacement
from one of six spatial locations on a ring.
Monkeys had to memorize the sequence over
a delay of 2.5 to 4 s and then reproduce it by
making sequential saccades to the appropriate
locations on screen (Fig. 1A).
Overall, the twomonkeys performed the task

well: At each rank, the mean percent correct
rate was significantly higher than chance (Fig.
1B; all P values <<0.001, two-tailed t test) with-
out any significant spatial bias (see fig. S1 for
detailed task performance). Recall accuracy
decreased with sequence length (Fig. 1B). Both
monkeys showed an advantage for items
presented at the start of the sequence (the
primacy effect). No recency effect was ob-
served. When an item was recalled at an in-
correct serial position, its recall spatial location
was likely to lie near the original location (Fig.
1C, left), and its recall order was likely to have
been swapped with the neighboring orders.
Such transposition errors increased with in-
creasing order (Fig. 1C, right).

Hypothesis: Disentangled representation
of SWM

The factorized model posits that the brain
finds the natural decomposition of sequences
comprising two generative factors: ordinal in-
formation (ranks 1 to 3) and spatial location
(six items). Thus, we tested whether the vector
space representing the sequence in memory
would be a concatenation of multiple inde-
pendent rank representations, each embed-
ding a representation of the corresponding
spatial item. For instance, to represent the
sequence [5 2 4], item 5 is bound to rank 1,
item 2 is bound to rank 2, and so on.
To measure the neural state, we injected

GCaMP6s virus into the LPFCs of the two
monkeys to enable two-photon calcium im-
aging of the LPFC (Fig. 1, D to F, and fig. S2)
[monkey 1, 3609 neurons from 20 fields of
view (FOVs); monkey 2, 1716 neurons from
13 FOVs]. We focused on neural activity during
the late delay period (1 s before the “fixation-
off” go signal) while the monkeys maintained
length-2 or -3 spatial sequences in memory.
Neurons exhibiting a conjunctive prefer-

ence for rank and location were immediately
apparent (Fig. 1G; see the proportion of con-
junctive neurons in different FOVs in fig.
S2). Such neurons responded selectively to
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particular spatial locations on the ring but
also to their ordinal rank in the sequence
(first, second, or third). We quantified the in-
fluence of spatial item and ordinal rank on the
neural responses of single neurons during the
late delay period using linear regression, in-

corporating spatial item and ordinal rank as
variables (6 items × 3 ranks = 18 combina-
tions) to fit the calcium signals of individual
neurons. We used the regression coefficients
to measure each neuron’s selectivity to either
item or rank variable (17).

Disentangled representation of SWM by the
LPFC neural population
To examine whether the high-dimensional
state of LPFC neuron activity reflected a dis-
entangled representation of SWM, we first
obtained vector representations in population
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Fig. 1. Two-photon calcium imaging of macaque LPFCs during a delayed
sequence-reproduction task. (A) Task structure (17). T1, target 1.
(B) Behavioral performance averaged across imaging sessions. Performance
is shown as a function of ordinal rank in length-2 sequences (blue) and
length-3 sequences (red). Error bars represent SEMs. (C) Spatial location (left)
and ordinal rank (right) error patterns, averaged across the two monkeys.
Location error pattern is shown as a function of spatial location, averaged across
different ranks. Rank error pattern is shown as a function of ordinal rank,

averaged across different spatial locations. Error bars represent SEMs.
(D) Illustration of two-photon calcium imaging of monkey LPFCs (17). AS,
arcuate sulcus; PS, principal sulcus. (E) An example FOV, indicated by the red
square (left), and its enlargement (right). (F) Normalized calcium traces of four
example neurons [yellow circles in (E)]. DF/F, normalized fluorescent intensity.
(G) Two example neurons exhibiting the property of conjunctive coding for
spatial location and ordinal rank. Traces were aligned to cue onset and pooled
across trials according to spatial location and ordinal rank.

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at N

ew
 Y

ork U
niversity on February 11, 2022



states for the 18 location-rank combinations
by concatenating the regression coefficients
of all neurons from correct trials of monkey
1 (see fig. S3 for monkey 2). We then divided
these 18 vectors into three groups along rank
and, for each rank, performed a principal com-
ponents analysis to obtain the axes that cap-
tured the major response variance resulting
from item changes (fig. S3).
The analysis yielded a highly reliable state-

space portrait that captured both the relation-
ship among different rank subspaces and the
geometry of spatial representations within
each rank subspace (17). First, for length-3 se-
quences, we found three two-dimensional (2D)
subspaces, one for each rank (Fig. 2A). Those
subspaces were oriented in a near-orthogonal
manner in neural state space, as evident by the
large principal angles between them (Fig. 2B).
To further quantify the degree of alignment
across different rank subspaces, for any two
ranks—e.g., rank 1 and rank 2—we calculated
the variance accounted for (VAF) ratio by
projecting the data from the rank-1 subspace
to the rank-2 subspace and computing the
remaining data variance after the projection.

If the two rank subspaces are near orthogonal,
the projection from one subspace will capture
little of the data variance of the other sub-
space, which results in a low VAF ratio. The
result showed low VAF ratios for all cross-
subspace pairs. As a control, if the ranks were
shuffled while holding item location con-
stant, the orthogonality of the subspaces was
lost (fig. S4). Furthermore, neurophysiology
reflected behavior: VAF ratios for within-
subspace trial pairs, measuring the stability of
rank subspace estimation, were high on correct
trials (Fig. 2C) but were low for misremem-
bered locations, where rank-2 and -3 subspaces
became difficult to estimate (fig. S5).
Next, we explored the neural encoding of

location within each rank subspace. At each
rank, we found a common geometric ring struc-
ture, reminiscent of the ring shape of the
spatial items presented to the monkeys (Fig.
2A). This ring structure was not observed
during the baseline period when the visual
stimuli were not yet present (Fig. 2A; dots
located around [0, 0]). The size of the ring in
each subspace, reflecting the encoding strength
of location information, decreased with ordi-

nal rank. The ring size became smaller, and
ring structure was nearly undetectable on er-
ror trials (fig. S5).
We then quantified howwell a simplemath-

ematical model with three rank subspaces,
each relying on the same 2D spatial code with
a distinct modulation factor, could approxi-
mate the full 18-variable regression model at
the collective level (Fig. 2D and eqs. S1 and S2).
There was a high similarity between the data
and the model at each rank (score 0.95 for
rank 1, 0.99 for rank 2, and 0.98 for rank 3)
(17), which supports the hypothesis of a fac-
torized representation of spatial items at the
collective level (Fig. 2E) with an additive com-
bination of vectorial representations of loca-
tion at each ordinal rank. A similar geometry
was observed in the secondmonkey for length-2
sequences and, to a lesser extent, for length-3
sequences (fig. S3).

Disentangled rank subspaces at the
single-trial level in individual FOVs

The above state-space analysis pools neurons
recorded from different FOVs and averages
their responses over trials. We investigated
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Fig. 2. Disentangled neural
state space representation
of SWM. (A) The population
response for a given rank-
location combination projected
to the corresponding rank
subspace for monkey 1.
Responses were obtained
through linear regression of
averaged late delay activity
(1 s before fixation off). Loca-
tions are color coded. The
center points were data at the
beginning of the sample period.
rPC, rotated principal component.
(B) The principal angle
between different rank subspa-
ces (red). As a control, we
randomly split trials in half to
obtain two separate estima-
tions of each rank subspace
and computed their principal
angle (gray). deg, degree.
(C) The VAF ratio with respect
to different rank subspace
pairs. As a control, we randomly
split trials in half to obtain two
separate estimations of each
rank subspace and computed
their VAF ratio. (D) Gain modu-
lation approximation of the
projected value at difference rank
subspaces. These collective
variables can be well approxi-
mated by a gain modulation model parameterized by a shared spatial layout (right) and a rank modulation vector (left). dim, dimension. (E) A graphical summary of SWM
representation in neural state space. Three 2D rank subspaces are oriented in a nearly orthogonal manner in neural state space (left). The neural representation of a sequence can
be decomposed into a sum of component items in rank subspaces (right). q and Q, axes of subspace; l, rank modulation index.
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whether the disentangled representation of
sequence memory could be validated at the
single-trial level. We tested whether the rank
subspaces were abstract enough to general-
ize to different datasets, including untrained,
different-length, or error sequences.
Single-trial decoding methods were used to

decode item locations at ranks 1, 2, and 3,
respectively (Fig. 3A) (17). Neurons in almost
all (30 of 33) FOVs contained item informa-
tion at rank 1, and neurons in 21 of 33 (64%)
FOVs contained item information at other
ranks (rank 2 or rank 3) (tables S1 and S2).
Figure 3B shows the decoding results for
the six items at rank 1, rank 2, and rank 3
from an example FOV located in the dor-
solateral prefrontal cortex (monkey 1, FOV4;
fig. S2A). At each rank, the corresponding
item could be decoded at above-chance lev-
els during the sample, delay, and reproduc-
tion periods. During the delay period, the
code for the item was stable, with the decoder
performing well even when the training and
testing times differed. However, the code
during the delay period did not generalize
to the sample and reproduction periods, which
indicates dynamic changes in the neural code.
Similar decoding profiles were found in other
FOVs in both monkeys (fig. S6, A and B). By
examining decoder error patterns during
the late delay period (Fig. 3C), we found that
most errors were confusions with the neigh-
boring spatial items.
We next visualized the dynamics of the neu-

ral code for location by projecting the pop-
ulation activities at each time bin of a trial
to the three decoder-based rank subspaces,
which were obtained using neural responses
during the late delay period (17). The six lo-
cations were well separated in the rank sub-
spaces, and, crucially, the ring structure was
preserved for all ranks (Fig. 3D). We also
investigated the relationships between the
three rank subspaces by examining the cross-
rank decoding performance and calculating
their cross-subspace VAF ratios. The results
confirmed the findings from the state-space
analysis and showed the minimal cross-rank
decoding performance (fig. S6C) and little
overlap between the three rank subspaces
(fig. S6D), which supports the disentangled
representation of sequence memory at the
single-trial level.
If sequences are disentangled into a rank-

location encoding, the neural subspaces of or-
dinal rank should generalize to other untrained
sequences. We tested this idea using three
generalization analyses. First, we used leave-
one-sequence-out cross-validation to confirm
that the rank subspaces revealed in Fig. 3B
remained stable for left-out sequences that
were not used during decoder training. The
neural subspaces of ordinal ranks (ranks 1 and
2) correctly and stably separated the six spatial

items in the left-out sequences during the de-
lay period (Fig. 3E). Second, we testedwhether
the rank subspaces transferred to sequences
of a different length. The rank-1 and -2 sub-
spaces trained on length-2 sequences suc-
cessfully generalized to length-3 sequences
(Fig. 3F) and vice versa (Fig. 3G). Finally, ac-
cording to the definition of disentangled rep-
resentation, rank subspaces are independent
and could therefore independently fail. We
thus tested whether the decoders, trained on
correct trials, generalized to error trials that
had a correct response at a given rank. For
example, when the response to the sequence
[1 3 6] is [2 3 5], the code for rank 2 could be
expected to transfer between the correct and
error trials, despite the errors at rank 1 and
rank 3. Figure 3H shows such successful gen-
eralization. However, because of the heteroge-
neous nature of the LPFC, not all FOVs passed
these generalization tests (see fig. S7 and tables
S3 to S5 for all FOVs).

The geometry of SWM explains
sequence behavior

Although SWM relies on disentangled repre-
sentations, the rank subspaces are not per-
fectly orthogonal. We therefore asked whether
the detailed characteristics of these repre-
sentations could explain classic sequence-
reproduction behaviors, such as the primacy
and length effects and the transposition gra-
dient shown in Fig. 1 and fig. S1. We first looked
at the relationship between ordinal ranks.
The VAF ratios between ranks demonstrate
a graded and compressive code (Fig. 2C) (18).
First, the neural overlap between ranks in-
creased with rank: The VAF ratio between
rank 2 and rank 3 was larger than that be-
tween rank 1 and rank 2. Second, the overlap
was larger for neighboring ranks: VAF ratios
between neighboring ranks (rank 1 versus
rank 2 and rank 2 versus rank 3) were larger
than VAF ratios between distant ranks (rank
1 versus rank 3).
We propose that such compressive coding in

the rank dimension is one of the hallmarks
of sequence representation in working mem-
ory and can explain the monkeys’ behavior
during sequence recall. First, the larger over-
lap between adjacent rank subspaces promotes
the confusion of locations at consecutive or-
dinal ranks, leading to the ordinal transpo-
sition gradient (Fig. 1C, right) whereby most
recall order errors are swaps with the neigh-
boring ranks. Furthermore, the increasing num-
ber of transposition errors with rank could
potentially arise from the smaller overlap of
orders at the beginning of the sequence, re-
sulting in high precision of item information
at this stage. Finally, the ring structure in
each rank subspace may also explain the
frequent confusion of nearby locations (Fig.
1C, left).

Distributed single-neuron basis
of rank subspaces
What is the implementation of rank subspaces
at the level of single neurons? Does a single
neuron contribute to multiple rank subspaces,
and, if so, does it exhibit the same preferred
locations across different ranks? For each
neuron, we projected the unit vector along
its axis onto the different rank subspaces
(Fig. 4A). The geometric relationship between
a single neuron axis and rank-r subspace was
characterized by Ar and φr, where Armeasures
the degree of alignment between single neu-
ron axis and rank-r subspace and φr specifies
the spatial item preference of a single neuron
in rank-r subspace. We could then ask what
proportion of neurons contribute to each
subspace, whether single neurons align with
multiple subspaces, and, if so, whether they
have the same preferred location φr at differ-
ent ranks.
The normalized participation ratio (PR) eval-

uates the fraction of neurons contributing to
each subspace (17). A value close to 1 indicates
that the corresponding rank subspace is dis-
tributed across the entire recorded population,
whereas a value close to 0 indicates that it is
localized to just a few neurons. Around 38% of
neurons contributed to rank 1 (34% for rank 2
and 32% for rank 3; Fig. 4B), which suggests
that rankmemory is broadly distributed in the
LPFC population. The three rank subspaces
recruited both overlapping and disjoint neu-
rons (fig. S8A).
Next, for neurons contributing to at least

two rank subspaces (see materials and meth-
ods for neuron selection criteria), we asked
whether their preferred spatial location was
the same at different ranks. The difference in
preferred location φr was broadly distributed
for all rank pairs and substantially removed
from a distribution concentrated around 0
(Fig. 4C and fig. S8B). Thus, the angle φr varied
with rank for many neurons. Figure 4D shows
two example neurons, one exhibiting identical
spatial tuning but different amplitudes across
the three ranks (classical gain modulation;
Fig. 4D, left) and the other showing a shift of
spatial tuning across the three ranks (tuning
to item 6 at rank 1, items 4 to 5 at rank 2, and
items 3 to 4 at rank 3; Fig. 4D, right). The an-
gle φr provided a good summary of the neu-
ron’s spatial preference at each rank because
the angular difference between ranks pre-
dicted the difference in spatial location pref-
erence (Fig. 4E; see the angle estimation in fig.
S9 and the tuning curves for the 35 neurons
that contribute most to each rank subspace in
fig. S10). Similar findings were obtained from
monkey 2 (figs. S8, S9, and S11).
These results reject a simple model where

gain modulation occurs at the level of single
neurons, with each neuron having a fixed
spatial tuning curve modulated by a different
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scalar at each rank (2). Rather, gain modu-
lation is a collective phenomenon that occurs
at the neural population level and is best de-
scribed by matrix rather than scalar multi-
plication (Fig. 2E and eq. S2). As a result, the
memorized content at each ordinal rank is
sent in a different direction of neural hyper-
space, and the underlying single-neuron tuning
curves, characterized by φr, may deviate greatly

from a simple gain modulation profile and
exhibit a tuning shift with rank.

Anatomical organization of the compositional
code in the LPFC

Two-photon imaging provided us with the
opportunity to examine the spatial anatomical
organization of the neural codes and follow
it longitudinally across days. We calculated a

spatial clustering index for neurons contrib-
uting to each rank subspace (Fig. 5A), as as-
sessed by their alignment Ar, and compared
it with shuffled distributions obtained by
randomly permuting the positions of all neu-
rons (17). The rank code showed no signifi-
cant anatomical clustering at any spatial
scale ranging from ~10 to ~500 mm (Fig. 5B).
We examined whether neurons with similar
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0.65 [same for (E) to (H)]. (F) Cross-length decoding. Decoders trained with
trials of the length-3 sequence were tested in trials of length-2 sequence. All the
data used for training and testing were correct trials. (G) Cross-length decoding
from length-2 sequences to length-3 sequences [similar to (F)]. (H) Decoding location
match in error trials. Decoder trained with all the length-3 correct trials was tested in
error trials with the correct response at the rank where the decoder was trained.
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location tuning were anatomically located
closer to each other (Fig. 5C). The location
code displayed significant clusters at a scale of
<150 mm for ranks 1 and 2 (Fig. 5D). A similar
anatomical pattern was obtained from other
FOVs in both monkeys (fig. S12).
We also examined whether the code in

the population of neurons was stable across
different recording days. For the same re-
cording FOV, we trained the decoder using
data from one recording day and tested it
on data from a different day (Fig. 5E). The
disentangled rank subspaces generalized well
across days (Fig. 5F), indicating the long-
term stability of the code embedded in the
monkey’s LPFC.

Discussion

Using two-photon calcium imaging in the LPFC
of macaque monkeys performing a visuospa-
tial sequence-reproduction task, we revealed
the representational geometry of SWM in the
LPFC neural state space. Sequence memory
relied on a compositional neural code with
separate disentangled low-dimensional rank
subspaces for every rank, each of which was
broadly distributed across the neural popula-
tion. Rank and item variables were integrated
through multiplicative gain modulation at
the collective level, but not within single neu-
rons. Furthermore, the rank subspaces were
abstract and generalizable to novel and variable-
length sequences.

Disentangled rank representation
and gain modulation

How does the brain efficiently learn complex
cognitive tasks such as delayed sequence re-
production? One important strategy is to split
a complex whole into simpler parts that re-
flect the underlying structure of a task. In
the present study, we explicitly searched for
a neural representation with axes that aligned
with the generative factors of the model—i.e.,
the ordinal ranks. We found that the LPFC
neural population implements a decompo-
sition into three subspaces that reflect the
underlying structure of sequence memory—
i.e., three spatial rings, one for each rank (Fig.
2E). The simple 3-by-2 geometrical structure
that we observed reflected the 2D spatial
content memorized at each rank. Although
we showed generalization to left-out trials
and sequences (Fig. 3), future research should
examine generalization to untrained sequences
and new item types (e.g., letters and num-
bers). If the LPFC neural population geom-
etry is a ubiquitous feature of brain activity
that extends beyond the spatial domain, we
predict that orthogonal subspaces, one for
each ordinal rank, should continue to be ob-
served and may contribute to learning and
inference in any task that relies on the tem-
poral structure of ordinal knowledge.

Diverse cognitive functions, including coor-
dinate transformation, multimodal integration,
place anchoring, abstraction, and attention,
are performed through a canonical neural
computation of gain modulation (7, 8, 19–21).
Accordingly, a previous model had proposed
that sequences are encoded through the bind-
ing of ordinal and identity information in indi-
vidual prefrontal neurons tuned to the product
of these two variables (2). Our results are close
to this gain modulation model but depart from
it in a crucial way: In contrast to the predic-
tions of a single-neuron gain modulation, our
data suggest that neural gain modulation oc-
curs only at the collective level and is therefore
best described by matrix rather than scalar
multiplication. This aspect of our results is
compatible with models that show how re-
current neural networks can learn vectorial
representation of sequences (or even sen-
tences) by implicitly compiling them into
a sum of filler-role bindings using tensor
products (9). The present data suggest that
LPFC neural states implement vector symbolic
architectures and tensor-product representa-
tions for sequence memory—an idea with a
vast number of applications to artificial neural
networks.

Neural mechanisms of classical behavioral
effects in serial recall from working memory

Serial recall from working memory is charac-
terized by empirical findings from both be-
havioral and theoretical perspectives (22, 23),

including not only the quality and quantity of
item information maintained but also item-
order binding information (e.g., binding er-
rors). Yet, there has previously been no neural
evidence providing a mechanistic explanation
for most of those behavioral observations. The
neural code for SWM that we observed shows
that, although the rank subspaces are nearly
orthogonal, the sequence representation im-
plements a graded and compressive encoding
of rank information, with subspaces show-
ing increasing overlap as rank increases. This
neural response profile is consistent with pre-
vious findings from single-unit recordings in
macaque prefrontal and parietal areas, in
which ordinal numberswere representedwith
the characteristic signature of Weber’s law
(18). The code property we describe also pro-
vides insight into several influential mod-
els of sequence memory, such as the slot,
resource, and interference model, and can
thus explain many behavioral benchmarks
of working memory for serial order, includ-
ing the effects of list length and composition,
the primacy effect, the temporal transposition
errors, and potentially also working memory
capacity (24).

Converting temporally segregated sensory
inputs into spatially overlapping sustained
brain activity patterns

Previous mechanistic models of sequence
memory have mostly focused on a temporal
encoding of sequences supported either by
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response vector was projected onto the rank subspaces. (B) Quantification of the degree of localization
in neural state space for different rank subspaces for monkey 1. The histogram shows the empirical
distribution of normalized PR estimated by bootstrap. (C) Histograms of φr difference for different rank pairs.
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neuron axis and rank subspaces) and preference difference (based on preference of spatial location
extracted from the raw regression coefficients).

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at N

ew
 Y

ork U
niversity on February 11, 2022



synfire chains, neural oscillations, or rhythmic
fluctuations in neuronal excitability (5, 25–27).
All of these models posit that the order of items
in a sequence is represented by the timing of
neural activity, either by locking to the relative

phase of a lower-frequency oscillation (theta,
3 to 8 Hz) (28) or by the replay of a neural
trajectory (29, 30). However, it is also widely
accepted that attractor states of sustained
neural activity play a central role in working

memory (31, 32). Neurophysiological studies
in nonhuman primates have found that this
mechanism could apply to the memory for
sequences because the sustained activity of
prefrontal cortex neurons maintained both
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calculate the clustering index. Shaded areas represent 95% confidence intervals.
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The clustering index was based on the average Pearson correlation coefficient
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marked. (F) Cross-day decoding for rank-1 locations in correct, length-3
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were trained with all neurons and tested with the leave-one-trial-out method.
Colormap and contour are the same as in Fig. 3G.
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item and order information during a work-
ing memory delay (33–35). Our data support
such a sustained activity mechanism because
the geometry of disentangled representations
was stable during the delay period (Fig. 3B).
Our results suggest that the brain transforms
time into space by converting temporally seg-
regated sensory inputs into spatially overlap-
ping sustained brain activity patterns. They do
not, however, exclude the simultaneous pres-
ence, at a finer time scale, of a temporal code
involving phase synchrony or replay.
Seven decades ago, Karl Lashley (36) pos-

tulated that serial order is processed by cre-
ating and manipulating a spatial pattern of
neural activity. He speculated that to control
sequential actions, our brain needed to trans-
form temporally segregated sensory experi-
ences into a sustained spatial pattern of brain
activity. In agreement with this early intui-
tion, the simple geometrical organization of
SWM that we uncovered may provide a fun-
damental neural mechanism to bridge our
understanding of neural circuits and their
computational functions.
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How to remember a sequence of events
How is serial order mentally encoded and stored in memory? Xie et al. addressed this question using two-photon
calcium imaging to simultaneously record thousands of prefrontal neurons in monkeys performing a delayed
visuospatial sequence reproduction task. The animals saw a sequence of three locations and, after a delay,
made a saccade to the corresponding locations in the appropriate order. The data obtained using a mathematical
decomposition technique support a new and simple type of model: a static population code with distinct and near-
orthogonal subspaces for each rank in the sequence, all superimposed in the same overlapping groups of prefrontal
neurons. These results open an important and new perspective on understanding sequence representations in the
brain. —PRS
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