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A. Decision-making network of spiking neurons

The network architecture

The network model in Wang (2002) (see also (Brunel and Wang 2001))
consisted of three populations of pyramidal neurons (combined total NE =
1600) and one population of interneurons (NI = 400). Two of the excitatory
populations (each with fNE cells, f = 0.15) were each sensitive to a leftward
or rightward motion of the stimulus. The interneurons and the remaining
(1 − 2f)NE pyramidal cells were non-selective to any of the motion stimuli.
The inhibitory population acted not only to globally inhibit the excitatory
cells, but also to inhibit itself.

In addition to receiving inputs from all other cells (fully-connected net-
work), each neuron also received Poisson distributed noisy excitatory inputs
from neurons outside the local cortical module. Besides mimicking in vivo
conditions, the external input provided a main source of noise to the lo-
cal network. Moreover, the overall excitatory external input, together with
feedback inhibition that dominates the recurrent circuit, results in a low
spontaneous firing rate for the pyramidal cells (Amit and Brunel 1997).

Neurons

Single cells were represented by a leaky integrate-and-fire (LIF) model.
For each unit, the resting potential VL, firing threshold Vth, and reset poten-
tial Vreset were set respectively to −70mV, −50mV and −55mV. The mem-
brane leak conductance and membrane time constant for pyramidal cells were
gL = 25nS and τm = 20ms, and 20nS and 10ms for interneurons. Below Vth,
the membrane potential of the cell V (t) was governed by

Cm
dV (t)

dt
= −gL(V (t) − VL) − Isyn(t) .

When V (t) reached Vth the cell generated an action potential in the form
of a spike (a delta function). After that, the cell stayed in a short absolute
refractory period, where the membrane potential was clamped at Vreset, which
was 2ms for pyramidal cells and 1ms for interneurons.

1



Synapses

The total synaptic input current to a cell, Isyn, came from both external
(ext) inputs and recurrent (rec) synaptic connections. The recurrent inputs
included both excitatory and inhibitory currents. The excitatory inputs con-
sisted of AMPA and NMDA receptor-mediated synapses, while the inhibitory
input was GABAA receptor-mediated. Thus

Isyn(t) = Iext,AMPA(t) + Irec,AMPA(t) + Irec,NMDA(t) + Irec,GABA(t)

Iext,AMPA(t) = gext,AMPA(V (t) − VE)Sj,ext,AMPA(t)

Irec,AMPA(t) = grec,AMPA(V (t) − VE)

NE∑
j=1

wjSj,rec,AMPA(t)

Irec,NMDA(t) =
grec,NMDA(V (t) − VE)

(1 + [Mg2+]exp(−0.062V (t))/3.57)

NE∑
j=1

wjSj,NMDA(t)

Irec,GABA(t) = gGABA(V (t) − VI)

NI∑
j=1

Sj,GABA(t)

where g was the peak synaptic conductance, S the synaptic gating variable
(fraction of open channels), VE = 0 the reversal potential of excitatory con-
nectivity, and VI = −70mV the reversal potential for inhibitory synapses. w
was a dimensionless potentiation factor due to structured excitatory synapses
(to be explained later). The sum over j was a sum over presynaptic neurons.
The NMDA current was voltage-dependent and was controlled by extracel-
lular magnesium concentration [Mg2+] (Jahr and Stevens 1990), which was
set at 1mM. The peak conductances for excitatory synapses to pyramidal
cells, in units of μS, are here chosen to be grec,AMPA = 0.0005, gext,AMPA =
0.0021, gNMDA = 0.000165, and grec,AMPA = 0.00004, gext,AMPA = 0.00162,
gNMDA = 0.00013 to the interneurons. The peak conductances for in-
hibitory synapses to pyramidal cells and interneurons, gGABA, are 0.0013μS
and 0.001μS respectively. These peak conductance values are comparable to
experimental measurements (e.g. (Destexhe et al. 1998)). The dynamics for
the synaptic gating variables are
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dSj,AMPA(t)

dt
= −Sj,AMPA(t)

τAMPA
+

∑
k

δ(t − tkj )

dSj,GABA(t)

dt
= −Sj,GABA(t)

τGABA
+

∑
k

δ(t − tkj )

dSj,NMDA(t)

dt
= − Sj,NMDA(t)

τNMDA,decay
+ αxj(t)(1 − Sj,NMDA(t))

dxj(t)

dt
= − xj(t)

τNMDA,rise
+

∑
k

δ(t − tkj )

The summation of delta functions denoted the sum of spikes generated
from presynaptic neurons. The time constants were τAMPA = 2ms,
τNMDA,decay = 100ms, τNMDA,rise = 2ms (Hestrin et al. 1990; Spruston
et al. 1995), τGABA = 5ms, (Salin and Prince 1996; Xiang et al. 1998), and
α = 0.5ms−1. The rise time for AMPA and GABA (< 1ms) were assumed
to be instantaneous. Spikes from external of the network were assumed to
go through AMPA receptors. For simplicity, we did not incorporate synaptic
latency (0.5ms used in Wang (2002)).

Structure of recurrent excitatory synapses between pyramidal cells

Excitatory synapses within a selective population were chosen to be rela-
tively stronger than excitatory synapses to cells outside the selective popula-
tion. This particular structure was similar to the “Hebbian” rule where cells
that tend to fire together form stronger synapses. These relatively strong
synapses came in the form of a potentiation factor w = w+ > 1. To ensure
that all excitatory neurons maintain the same spontaneous mean firing rate,
compensation from the unpotentiated synapses were needed. This was done
by introducing a “depression” factor w = w− = 1−f(w+−1)/(1−f) < 1 for
the synapses between two different selective populations, and for synapses
between the nonselective population to selective ones (Amit and Brunel
1997). For all other connections, w = 1. Unless specified otherwise, we
used w+ = 1.7 (Wang 2002).
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B. Single-cell input-output relation
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Supplemental Figure 1. Input-output relation of a pyramidal cell (A), and
an interneuron (B). Bold lines are plotted using the first-passage time
formula of a LIF model (Eq. 1). Circles are fits using Eq. 2. Inset: close-up
of the input-output relation for an interneuron. Dashed line: linear
approximation using Eq. 9.

C. Average gating variable of NMDA receptors vs presy-
naptic firing rate
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Supplemental Figure 2. Average fraction of open channels of NMDA
receptor vs average presynaptic firing rate. The input, through the NMDA
receptor mediated conductance, consists of delta-like spikes with the
interspike interval described by a Poisson distribution. Bold curve: fit using
Eq. 8.
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D. Effective transfer functions

The single-cell input-output relation, ri = φ(Ii) (Eq. 2), where i = 1, 2,
is nonlinear and is a function of Ii(S1, S2, r1, r2) (Eqs. 14 and 15). It is non-
trivial to solve r1 and r2 as functions of only S1 and S2. A typical way to
approach this problem is to solve, at every time step self-consistently. This
is done by iteratively solving r1 and r2 with known values of S1 and S2.
However, the computation done this way is costly. Here, we shall follow a
different, less elegant but computationally faster approach. We want to solve
for φ as a function of each of its variable separately, and obtain a simplified
(but effectively similar) form which we label here as H .

Now we define two new variables

x1 = JN,11S1 − JN,12S2 + I0 + I1

x2 = JN,22S2 − JN,21S1 + I0 + I2 .

For any pair of x1, x2, we can numerically solve for r1, r2 and thus fit each
of the latter with an equivalent response function in terms of the two new
variables:

r1 = H1(x1, x2)

r2 = H2(x2, x1) .

By doing this, we avoid running into self-consistency calculations at every
time step. With the external input now implicitly contained in x1 and x2,
H1 and H2 should have the same form even when the inputs (e.g. stimulus
strength or coherence level) are varied. This fitting holds true even when
JN,11, JN,12, w+, and c′ are changed. We have neglected the fact that the
functions H1 and H2 can also depend on the couplings JA,11 = JA,22 and
JA,12 = JA,21 through AMPA synapses. For example, JA,11 generally increases
the gain of H1 (supplemental Fig. 3A) while JA,12, as with x2, shifts H1

laterally (supplemental Fig. 3B).
Thus, if H1 (H2) can be fitted by a function of JA,11 (JA,22) and JA,12

(JA,21), no matter how the network parameters (e.g. w+, synaptic conduc-
tances) are varied, the above equations will still hold true. These functions
are fitted with a similar form to their corresponding original input-output
relations (Eq. 2), but with the coefficients now as functions of JA,11 and
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JA,12:

r1 = HJA,11,JA,12
(x1, x2)

=
a(JA,11)x1 − fA(JA,12, x2) − b(JA,11)

1 − exp[−d(JA,11)(a(JA,11)x1 − fA(JA,12, x2) − b(JA,11))]

r2 = HJA,22,JA,21
(x2, x1)

=
a(JA,22)x2 − fA(JA,21, x1) − b(JA,22)

1 − exp[−d(JA,22)(a(JA,22)x2 − fA(JA,21, x1) − b(JA,22))]

where a, b, d are new parameters chosen to fit the numerical solutions. Be-
cause of inhibitory effects from J and x, the function fA, shifts the function
H laterally. For simplicity, we shall approximate the parameters a, b and d
to be linearly dependent on JA,11 or JA,22. For population 1,

a(JA,11) = 239400JA,11 + 270 ((VnC)−1)

b(JA,11) = 97000JA,11 + 108 (Hz)

d(JA,11) = −30JA,11 + 0.1540 (s) ,

The “shift” function fA due to AMPA can be approximated by a threshold-
linear function as follows:

fA(JA,12, x2) = JA,12(−276x2 + 106)θ(x2 − 0.4) Hz

where θ(x) is 0 if x < 0 and 1 if x ≥ 0. By symmetry, the same functional
forms apply to population 2.
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Supplemental Figure 3. Numerical fits for effective input-output relation of
cells in competiting population. (A). As JA,11 = JA,22 increases the gain
increases. Bold lines: numerical solutions for JA,11 = JA,22 = 0, 0.0005,
0.0010, 0.0015, 0.002nAHz−1. The larger JA,11 = JA,22 is, the higher the
gain. Circles: fits. (B). An increase of x2 or JA,12 = JA,21 shift the r1-vs-x1

curve laterally rightward. From left to right: JA,12 = JA,21 = 0, 0.00005,
0.00010, 0.00015nAHz−1.
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E. Condition for diffusion-like process of decision-making

To simplify the calculations, we assume that (i) the recurrent synapses
have only NMDAR-mediated conductances; (ii) the inhibition and firing rates
are instantaneous as in our two-variable reduced model. Then the dynamical
equations for the system become:

dS1

dt
= G1(S1, S2) = −S1

τS

+ (1 − S1)γν1

dS2

dt
= G2(S2, S1) = −S2

τS

+ (1 − S2)γν2

where

ν1 = φ1(Isyn,1 = J11S1 − J12S2 + I0 + I1)

ν2 = φ2(Isyn,2 = J22S2 − J21S1 + I0 + I2)

where Jij is the usual recurrent synaptic couplings with J11 = J22, J12 = J21.

Assuming that (Ŝ1, Ŝ2) is the saddle steady-state, then a small perturba-
tion from this unstable steady-state to (Ŝ1 + ε1, Ŝ2 + ε2), gives

dε1

dt
= G1(Ŝ1, Ŝ2) +

∂G1

∂S1

∣∣∣
(Ŝ1,Ŝ2)

dε1 +
∂G1

∂S2

∣∣∣
(Ŝ1,Ŝ2)

dε2

= − ε1

τS
+ γε1

(
−ν̂1 + (1 − Ŝ1)J11∂φ̂1

)
− (1 − Ŝ1)J12γε2∂φ̂1

and similarly,

dε2

dt
= − ε2

τS
+ γε2

(
−ν̂2 + (1 − Ŝ2)J11∂φ̂2

)
− (1 − Ŝ2)J12γε1∂φ̂2

where ν̂’s, Ŝ’s and the partial derivatives are evaluated at the steady-state.
∂φ̂i is the abbreviation of ∂φi/∂Isyn,i at the steady-state.

By defining a new variable Δε, such that Δε ≡ ε1 − ε2, we can combine
the above two equations:

dΔε

dt
= −Δε

τS
+ (ω11 + ω12)Δε

7



where we have assumed I1 = I2, and thus ν̂1 = ν̂2 ≡ ν̂, Ŝ1 = Ŝ2 ≡ Ŝ,

∂φ̂1 = ∂φ̂2 ≡ ∂φ̂, ω11 ≡
(
−ν̂ + (1 − Ŝ)J11

)
γ∂φ̂ and ω22 ≡ (1 − Ŝ)J12γ∂φ̂.

The decision-making process can become a one-dimensional diffusion pro-
cess provided the following condition is satisfied:

1

τS
= ω11 + ω12 .

If the synapses do not saturate (e.g. at low activities), then it can be shown
that the above condition means a balance between the sum of recurrent
couplings and the decay term.

We shall now show that this condition is equivalent to the bifurcation of
the saddle steady-state (e.g. from the stable spontaneous steady-state). The
Jacobian matrix of the perturbed system about the saddle steady-state is:

Jε =

⎡
⎣

∂G1

∂S1

∂G1

∂S2

∂G2

∂S1

∂G2

∂S2

⎤
⎦

(Ŝ1,Ŝ2)

where the matrix entries, evaluated at the saddle steady-state, are found to
be

∂G1

∂S1

∣∣∣
(Ŝ1,Ŝ2)

= − 1

τS

+ ω11 =
∂G2

∂S2

∣∣∣
(Ŝ1,Ŝ2)

∂G1

∂S2

∣∣∣
(Ŝ1,Ŝ2)

= −ω12 =
∂G2

∂S1

∣∣∣
(Ŝ1,Ŝ2)

The two eigenvalues of this Jacobian matrix are

λ± = − 1

τS
+ (ω11 ± ω12)

where λ+ > 0 and λ− < 0 at a saddle steady-state. Close to the bifurcation
point, λ+ → 0+, i.e. 1

τS
≈ ω11 + ω12. Thus, we have shown that by bringing

the system near the bifurcation point, the model is mathematically equiva-
lent to having a one-dimensional diffusion process of making decisions. This
argument is strengthened if we can create fast dynamics along the stable
manifold since τstable = |λ−|−1 = (1/τS − ω11 + ω12)

−1. This can be achieved
if we have a smaller time constant for the dynamical equations (e.g. AMPA)
or stronger inhibition.
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F. Oscillations in the decision-making network
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Supplemental Figure 4. Oscillations occur in the two selective populations’
firing rate, r1 and r2, when the fraction of NMDA at the recurrent synapses
is low.
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