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Ramping neuronal activity refers to spiking activity with a rate that in-
creases quasi-linearly over time. It has been observed in multiple cortical
areas and is correlated with evidence accumulation processes or timing.
In this work, we investigated the downstream effect of ramping neuronal
activity through synapses that display short-term facilitation (STF) or de-
pression (STD). We obtained an analytical result for a synapse driven by
deterministic linear ramping input that exhibits pure STF or STD and
numerically investigated the general case when a synapse displays both
STF and STD. We show that the analytical deterministic solution gives an
accurate description of the averaging synaptic activation of many inputs
converging onto a postsynaptic neuron, even when fluctuations in the
ramping input are strong. Activation of a synapse with STF shows an ini-
tial cubical increase with time, followed by a linear ramping similar to a
synapse without STF. Activation of a synapse with STD grows in time to
a maximum before falling and reaching a plateau, and this steady state is
independent of the slope of the ramping input. For a synapse displaying
both STF and STD, an increase in the depression time constant from a
value much smaller than the facilitation time constant τF to a value much
larger than τF leads to a transition from facilitation dominance to depres-
sion dominance. Therefore, our work provides insights into the impact
of ramping neuronal activity on downstream neurons through synapses
that display short-term plasticity. In a perceptual decision-making pro-
cess, ramping activity has been observed in the parietal and prefrontal
cortices, with a slope that decreases with task difficulty. Our work pre-
dicts that neurons downstream from such a decision circuit could instead
display a firing plateau independent of the task difficulty, provided that
the synaptic connection is endowed with short-term depression.
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1 Introduction

Ramping neuronal activity has been observed in different cortical and
subcortical areas, such as lateral intraparietal cortex, frontal eye field, supe-
rior colliculus, thalamus, and presupplementary and supplementary motor
areas, and it provides a neuronal implementation of the evidence accumu-
lation process during perceptual decision making (Wang 2002, 2008; Gold &
Shadlen, 2007) and timing (Komura et al., 2001; Reutimann, Yakovlev, Fusi,
& Senn, 2004; Mita, Mushiake, Shima, Matsuzaka, & Tanji, 2009; Simen,
Balci, de Souza, Cohen, & Holmes, 2011; Merchant, Harrington, & Meck,
2013). A simple mathematical model for the ramping neuronal activities
is the drift-diffusion model (Hanes & Schall, 1996; Huk & Shadlen, 2005;
Ratcliff, Cherian, & Segraves, 2003). Neurons in the caudate nucleus (the
eye movement part of the striatum) have been observed to show a ramping
activity followed by a saturation before saccade initiation (Ding & Gold,
2010). The striatum receives direct projections from cortical areas that dis-
play ramping neuronal activity. The origin of the saturation of ramping
activity in the striatum is not yet well understood.

Short-term plasticity (STP) is a common feature of cortical synapses, and
both short-term facilitation (STF) and depression (STD) have been observed
in the cortex (Abbott & Regehr, 2004; Morrison, Diesmann, & Gerstner,
2008). In the phenomenological model of STP, depression is attributed to
a decrease of vesicle availability, while facilitation is attributed to an in-
crease of vesicle release probability (Tsodyks & Markram, 1997; Tsodyks,
Pawelzik, & Markram, 1998; Fuhrmann, Segev, Markram, & Tsodyks, 2002;
Hempel, Hartman, Wang, Turrigiano, & Nelson, 2000). For simplicity in
theoretical understanding of the role of synaptic plasticity, depression or
facilitation alone was often considered, although in general, both depres-
sion and facilitation coexist in a synapse. In experimental and theoretical
investigations, presynaptic input with a constant rate is usually applied.
In previous work, we proposed that the saturation of striatal ramping dur-
ing evidence accumulation could be explained by STD in the corticostriatal
synapses (Wei, Rubin, & Wang, 2015). In this work, we analytically char-
acterized the downstream effect of synapses displaying STF or STD driven
by fluctuating ramping presynaptic inputs described by the drift-diffusion
model. We also investigated the general case when both STF and STD co-
exist in a synapse numerically.

2 Phenomenological Model for STP

In the phenomenological model for STP, the activity of a synapse with pure
STF is described as

dF
dt

= α(1 − F)
∑

j

δ(t − t j) − F
τF

, (2.1)
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ds
dt

= F
∑

j

δ(t − t j) − s
τa

, (2.2)

where tj is the time of the jth presynaptic input spike, F represents the vesicle
release probability, and s is the gating variable. When a presynaptic spike
arrives, F first increases with an amount α(1 − F), and then decays with a
time constant τF during the intervals of input spikes. The gating variable
s is then updated following the update of F, with an increment of F. The
conductance to a postsynaptic neuron is given by the product of the gating
variable s and a constant synaptic efficacy.

The presynaptic spike train in equations 2.1 and 2.2 represents the in-
stantaneous input firing rate r(t), that is, r(t) � ∑

j δ(t − t j). Here we are
interested in the case when r(t) describes a ramping input rate as observed
for cortical neurons in multiple brain areas. The ramping input rate r(t) is
well described by the classical drift-diffusion model,

τ
dr
dt

=μ + σ
√

τη(t), (2.3)

where τ is the time constant for the drift-diffusion process, μ is the drift term,
η(t) is a gaussian white noise satisfying 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t − t′),
and σ is the noise strength. We will take τ = 10 ms, but all the results will
not depend on the exact value of τ . The synaptic dynamics are given by the
following equations,

dF
dt

= α(1 − F)r(t) − F
τF

, (2.4)

ds
dt

= Fr(t) − s
τa

. (2.5)

We will use τa = 2 ms, τF = 400 ms, and α = 0.25. The value for τa is charac-
teristic of the decay time constant for AMPAergic synapses. Different values
of τF and α (with τF � τa) will not qualitatively change the behavior of the
phenomenological model.

For a synapse with pure STD, the synaptic dynamics are described as

dD
dt

= −pD
∑

j

δ(t − t j) + 1 − D
τD

, (2.6)

ds
dt

= pD
∑

j

δ(t − t j) − s
τa

, (2.7)

where p is a constant vesicle release probability and D represents the fraction
of available vesicles. At the arrival of a presynaptic spike, D is first reduced
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by an amount pD and then recovered with a time constant τD during the
intervals of input spikes. The gating variable s is then updated following
the update of D, with an increment of pD.

Replacing the presynaptic spike train by the instantaneous input rate
r(t) described by equation 2.3, we have the following equations:

dD
dt

=−pr(t)D + 1 − D
τD

, (2.8)

ds
dt

= pr(t)D − s
τa

. (2.9)

We will use p = 0.45 and τD = 600 ms. Different values of p and τD (with
τD � τa) will not qualitatively change the behavior of the phenomenological
model.

We first study a deterministic linear ramping input (σ = 0 case) and
then consider a general fluctuating ramping input described by the drift-
diffusion model . The initial values of F, D, and s at t = 0 are denoted as F0,
D0, and s0. We will use F0 = 0, D0 = 1, and s0 = 0 unless stated otherwise.

3 Deterministic Linear Ramping Input

3.1 Synapse with STF. When σ = 0 in equation 2.3, the input rate ramps
up linearly with time (i.e., r = kt), where k ≡ μ/τ is the slope of ramping.
Equations 2.4 and 2.5 can be solved analytically,

F = 1 − exp
(

− 1
2
αkt2 − t

τF

)(
1 − F0 − 1

τF

√
2
αk

F
(

1

τF

√
2αk

))

− 1
τF

√
2
αk

F
(√

αk
2

t + 1

τF

√
2αk

)
(3.1)

s � kτaFt, (3.2)

where F (x) is the Dawson’s integral (Abramowitz & Stegun, 1970) as de-
fined in the appendix.

In Figure 1, the synaptic dynamics for ramping input with two different
slopes and constant input (see Figure 1A) are illustrated and are compared
with the control case when there is no STP (see Figure 1B). The activities of
F and s for a synapse with STF are shown in Figures 1C and 1D. When t is
small, we have

F � 1
2
αkt2, (3.3)

s � 1
2
ατak2t3. (3.4)
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Figure 1: Activation level of a synapse with pure STF or STD. (A) The input
rate ramps up linearly, with slope k = 30 (green) and 50 (blue) (in sec−2). The
black curve represents a constant input with rate 30 Hz. (B) The activation level
of the gating variable s in the control case when there is no STP. (C,D) The
facilitation factor F (C) and the activation level s (D) for a synapse with pure
STF. (E,F) The depression factor D (E) and activation level s (F) for a synapse
with pure STD. The gray shaded areas (with width τF) highlight the different
activity of s for a synapse with and without STP. Parameters used: τa = 2 ms,
τF = 400 ms, α = 0.25, τD = 600 ms, p = 0.45.

When t is large, we have

F � 1 − 1
ατFkt + 1

→ 1, (3.5)

s � ατaτFk2t2

ατFkt + 1
→ τakt. (3.6)

Therefore, when t is large, the facilitation factor F will saturate hyperbol-
ically for a ramping input, while for a constant input, it will reach its
stationary state exponentially (see Figure 1C and the appendix). The gating
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variable s will increase cubically at the initial period (gray region in Figure
1D, with width τF), then is followed by a linear increase similar to the con-
trol case (see Figure 1B). Note that for a constant input rate, s will saturate
when t is large in the timescale τF for a synapse with STF (see Figure 1D,
black curve), while in the control case, s will saturate to its steady state in
the much shorter timescale τa (see Figure 1B, black curve).

3.2 Synapse with STD. For r = kt and σ = 0, from equations 2.8 and
2.9, we have

D = 1
τD

√
2
kp

F
(√

kp
2

t + 1

τD

√
2kp

)

+
(

D0 − 1
τD

√
2
kp

F
(

1

τD

√
2kp

))
exp

(
−

(
1
2

pkt2 + t
τD

))
, (3.7)

s � pkτaDt. (3.8)

When t is large,

D � 1
τD

√
2
kp

1

2(

√
kp
2 t + 1

τD

√
2kp

)

= 1
kpτDt + 1

→ 1
kpτDt

, (3.9)

s → τa

τD
. (3.10)

We see that for the ramping input, D decays hyperbolically for large t, which
is slower than that for a constant input rate that decays exponentially to its
steady state (see Figure 1E). The gating variable s will reach a steady state,
which is independent of the ramping slope k and release probability p (see
Figure 1F). Note that the steady state for a ramping input is the same as that
for a constant input when the constant rate is large enough, as given in the
appendix.

Before reaching its steady state, the gating variable s for a synapse with
STD will develop a maximum when receiving ramping input (see Figure
1F). Although the steady state of s is independent of the ramping slope k
and the release probability p, the maximal value of s depends on both k and
p. For small t and applying equation A.3,

D � 1
τD

√
2
kp

(√
kp
2

t + 1

τD

√
2kp

)
+

(
1 − 1

kpτ 2
D

) (
1 − t

τD
− 1

2
kpt2

)

= 1 + t
kpτ 3

D

− 1
2

kpt2
(

1 − 1
kpτ 2

D

)
, (3.11)
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Figure 2: The maximal activation level and the time for reaching the maximum
for a synapse with only STD as a function of ramping slope. (A) The time for
reaching the maximum of s as a function of the ramping slope k. (B) The maximal
value of s as a function of the ramping slope k. The dashed lines in panels A
and B are approximations from equations 3.14 and 3.15, respectively.

where 1
kpτ 2

D
(∼ 0.1) is small, so we have

D � 1 − 1
2

kpt2. (3.12)

By comparing equation 3.12 with equation A.9 in the appendix, we see the
different small time behaviors of D for ramping and constant input rates
(see Figure 1 E). Therefore, when t is small (but t > τa),

s � pkτat
(

1 − 1
2

pkt2
)

, (3.13)

which has a maximal value at time tmax given by

tmax =
√

2
3

1√
pk

, (3.14)

smax =
√

8
27

√
pk τa. (3.15)

Figures 2A and 2B compare the approximate and real values of tmax and smax
as a function of k, respectively. We see that equations 3.14 and 3.15 provide
qualitative information about the location and value of the maximum of s: a
ramping input with a higher slope k will have a larger maximum developed
within a shorter time.

3.3 Synapse with Both STF and STD. In general, both STF and STD
are coexisting in a synapse, with the dynamics described by Tsodyks et al.
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(1998), Hempel et al. (2000), and Lindner, Gangloff, Longtin, and Lewis
(2009):

dF
dt

=αr(t)(1 − F) − F
τF

, (3.16)

dD
dt

=−r(t)FD + 1 − D
τD

, (3.17)

ds
dt

= r(t)FD − s
τa

. (3.18)

For a deterministic linear input rate, r = kt, the solution of equation 3.16
is given by equation 3.1. Since τa is much smaller than τF and τD, equation
3.18 is simplified to

s � kτaFDt. (3.19)

Equation 3.17, however, cannot be solved analytically. For large t, F → 1
(see equation 3.5). When τF � τD, the synapse is depression dominated,
and D → 1

kτDt (see equation 3.9, replacing p with F → 1). Therefore when
τF � τD, we have

s → τa

τD
, (3.20)

the same long time limit as that for a synapse with pure STD.
We solve equation 3.17 numerically and show the time evolution of fa-

cilitation factor F, depression factor D, and gating variable s in Figure 3
for different model parameters. The top row of Figure 3 shows the depen-
dence of synaptic dynamics on α. Note that here, we illustrate a depression-
dominated synapse. We see that with a larger α, the increase of F and the
decrease of D with time become faster, and s has a larger maximum and
reaches its maximum faster (see panels A1–A3 in Figure 3). Modulating α

does not qualitatively change the synaptic dynamics (the same conclusion
still holds for a facilitation-dominated synapse). We also see that the long
time limit of s does not depend on α (see panel A3 in Figure 3), as equation
3.20 suggests.

The dependence of synaptic dynamics on the facilitation time constant τF
for a facilitation-dominated synapse is shown in the middle row of Figure 3.
With a larger τF , the increase of F and s and the decrease of D become faster
(see panels B1–B3 in Figure 3). When τF � τD, D and s become insensitive to
the value of τF (see the blue and green curves in panels B2 and B3, Figure 3).
We see that after a period of rapid increase, the activation level of the gating
variable s for a facilitation-dominated synapse increases much more slowly



660 W. Wei and X.-J. Wang

Figure 3: Activation level of a synapse with both STF and STD. (A1–A3) The
time evolution of facilitating factor F (A1), depressing factor D (A2), and gating
variable s (A3) for different α (green, 0.4; blue, 0.25; black, 0.1). (B1–B3) The
time evolution of F (B1), D (B2), and s (B3) for different τF (green, 600 ms; blue,
300 ms; black, 100 ms). (C1–C3) The time evolution of F (C1), D (C2), and s (C3)
for different τD (green, 600 ms; blue, 300 ms; black, 100 ms). Parameters used:
k = 50 sec−2, τa = 2 ms. In A1 to A3, τF = 400 ms, τD = 600 ms. In panels B1 to
B3, τD = 100 ms, α = 0.25. In panels C1 to C3, τF = 400 ms, α = 0.25.

than that for a synapse with pure STF (compare the blue curves in Figure 1 D
and in panel B3, Figure 3). For a depression-dominated synapse, D and s
depend only weakly on τF (data not shown). The bottom row in Figure 3
shows the dependence of synaptic dynamics on the depression time con-
stant τD. We see that the facilitation factor F is independent of τD (see panel
C1 in Figure 3) by design (see equation 3.16), while the depression factor
D decreases faster with a larger τD (see panel C2 in Figure 3). Interestingly,
the gating variable s shows a transition from facilitation dominance to de-
pression dominance when τD increases from a value much smaller than τF
to a value much larger than τF (see the black and green curves in panel
C3, Figure 3). Therefore, the interaction of F and D determines whether the
synapse is facilitation or depression dominated.

4 Fluctuating Ramping Input

We now consider the case when the ramping input is noisy and is de-
scribed by equation 2.3, as neurons downstream from a decision circuit will
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Figure 4: Synaptic activation of a downstream neuron that receives inputs from
a population of presynaptic neurons showing ramping activity. (A–C) Fluctu-
ating ramping input described by the drift-diffusion model (A), the activa-
tion level s for synapses with pure STF (B), and for synapses with pure STD
(C). Blue: the average activity of r(t) (A) and s (B–C) over 300 realizations.
Green: illustrated trajectories for 10 realizations. In panels A to C, μ = 0.5 sec−1

(k = 50 sec−2) and σ = 0.5 sec−1. (D–F) Ensemble averaged ramping inputs 〈r〉
(D), activation level 〈s〉 = 1

N

∑
i si for synapses with pure STF (E), and pure STD

(F) for different noise levels with μ = 0.5, σ = 0, 0.5, and 1 (in sec−1). N is the
size of presynaptic population.

receive. Each downstream neuron receives a summation of inputs from
many presynaptic neurons. Since the synaptic efficacy scales with the num-
ber of presynaptic neurons, the conductance to a downstream neuron is
given by the average gating variables, denoted as 〈s〉. Here, the angu-
lar bracket represents averaging over presynaptic neuronal populations,
which is implemented in simulations by averaging different realizations of
the noise. The upper row of Figure 4 shows 10 different realizations of r(t)
(see panel A), gating variable s for synapses with pure STF (see panel B)
and with pure STD (see panel C), and the corresponding averaging values
over 300 realizations for μ = 0.5 Hz (i.e., k = 50 sec−2).

Figure 4 (lower row) shows the results for σ = 0, 0.5, and 1 Hz when
μ = 0.5 Hz. As one expects, the average ramping input r(t) follows the de-
terministic trajectory (see Figure 4D). Since equations 2.4 and 2.8 cannot be
solved analytically due to the interaction term between r(t) and F or D, we
hope the deterministic results obtained in the preceding section can give
a good approximation to the average synaptic activation in the low-noise
regime, that is, when σ is small. From Figures 4E and 4F, we see that the
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deterministic results give a very accurate approximation (R2 =
0.999 and 0.993 in Figure 4E for STF, R2 = 0.996 and 0.944 in Figure 4F,
when σ = 0.5 and 1 sec−1, respectively), even when the noise level is two
times the drift term. Therefore, the theoretical results for deterministic
ramping input provide a good description for the conductance of down-
stream neurons receiving ramping inputs described by the drift-diffusion
model.

5 Discussion

We investigated the downstream effect of ramping neuronal activity
through synapses showing STP. We first derived analytical results for de-
terministic linear ramping input through synapses displaying pure STF or
STD and showed the different synaptic dynamics in contrast to a steady in-
put rate. We obtained a simple approximation for the maximal value of the
activation level and the time taken to reach the maximum for a synapse with
pure STD. For the general case, when a synapse shows both STF and STD
effects, we found that it behaves as a synapse with pure STD when the facil-
itation time constant τF is much smaller than the depression time constant
τD. We further investigated the dependence of synaptic dynamics on model
parameters numerically in the general case. We found a transition from
facilitation dominance to depression dominance when τD increases from a
value much smaller than τF to a value much larger than τF . A downstream
neuron will receive an averaged input from the presynaptic population.
We then showed that the averaged synaptic activation level to the down-
stream neuron is well described by the deterministic solution even when the
fluctuation of the ramping input is strong. These results provide insights
for downstream impacts of ramping neuronal activity through synapses
showing STP.

Cortical areas showing ramping neuronal activity project to other cortical
areas and also subcortical areas such as the striatum, thalamus, and superior
colliculus. The striatal activity has been observed to ramp up followed
by saturation during evidence accumulation when monkeys performed
perceptual decision making (Ding & Gold, 2010). Our work showed that
this observation could be explained by utilizing STD in the corticostriatal
synaptic projection. A direct measurement of EPSP/EPSC for synapses
receiving ramping input is not available yet. Our results could be directly
tested by intracellular recording in vitro (e.g., using cortical slices), in which
a synaptic input ramps over time with a slope that can be parametrically
varied. For synapses with STF, our results showed that the activation of
gating variable is slower and less sensitive to the ramping slope at the
early stage than the control case without STP, followed by the same linear
increase as in the control case since F → 1 for large t. For synapses with
STD, the ramping slope is encoded only at the initial period of evidence
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accumulation and the steady state is insensitive to it. This prediction can
be tested in the fixation time version of perceptual decision-making tasks.
Therefore, we showed the differential properties of synapses with STF and
STD in encoding the slope of ramping activity, which represents the bias of
stimulus in making decisions.

One future direction is to include the intrinsic synaptic noise in the de-
terministic model for STP and investigate its influence when the synapse
is driven by fluctuating ramping input. Depressing synapses with intrinsic
noise receiving a Poisson input with constant rate have been studied (Rosen-
baum, Rubin, & Doiron, 2012, 2013). Synapses displaying STD and stochas-
tic vesicle dynamics were shown to behave as a frequency-dependent filter
in signal transmission (Matveev & Wang, 2000; Rosenbaum et al., 2012), in
contrast to the broadband signal transmission for deterministic synapses
(Lindner et al., 2009), and also influence the transfer of neuronal correla-
tions (Rosenbaum et al., 2013). Extension of our work to include intrinsic
synaptic noise will provide further insights into the downstream impact of
ramping neuronal activity during perceptual decision making and timing.

Appendix

The Dawson’s integral F (x) is defined as (Abramowitz & Stegun, 1970)

F (x) = e−x2
∫ x

0
ey2

dy. (A.1)

F (x) has the following asymptotic expansion

F (x) � 1
2x

+ 1
4x3 + . . . (A.2)

when x is large, and the series expansion

F (x) � x − 2
3

x3 + 4
15

x5 + . . . (A.3)

when x is small (Abramowitz & Stegun, 1970).
For comparison, we present here results for a constant input rate, r(t) ≡ r.

For a synapse with pure STF, the solutions for equations 2.4 and 2.5 are given
by

F = αrτF

1 + αrτF
+

(
F0 − αrτF

1 + αrτF

)
exp

(
− (1 + αrτF )

t
τF

)
, (A.4)

s = rτaF. (A.5)
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For large t,

s → αr2τaτF

1 + αrτF
. (A.6)

For a synapse with pure STD, the solutions of equations 2.8 and 2.9 are
given by

D = 1
1 + τD pr

+
(

D0 − 1
1 + τD pr

)
exp

(
− (1 + τD pr)

t
τD

)
, (A.7)

s = prτaD. (A.8)

When t is small (but larger than τa),

D � 1 − prt. (A.9)

When t is large, D and s reach their steady states,

D → 1
1 + τD pr

, (A.10)

s → prτa

1 + τD pr
. (A.11)

When τD pr � 1, that is, r � 1
τD p = 1

0.6∗0.45 = 3.7 Hz, this steady state of s is
reduced to

s → τa

τD
, (A.12)

which is independent of the constant input rate r and release probability p
and has the same expression as the steady state for a deterministic linear
ramping input, equation 3.10.

As a control case, we consider a synapse without STP. Taking F = 1 in
equation 2.5, then the activation of the synapse is given by

s = kτat + kτ 2
a (e−t/τa − 1) + s0e−t/τa (A.13)

for a ramping input rate r = kt and

s = rτa(1 − e−t/τa ) + s0e−t/τa (A.14)

for a constant input rate r.
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