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Wei Z, Wang XJ. Confidence estimation as a stochastic process in a
neurodynamical system of decision making. J Neurophysiol 114: 99–113,
2015. First published May 6, 2015; doi:10.1152/jn.00793.2014.—Evalua-
tion of confidence about one’s knowledge is key to the brain’s ability
to monitor cognition. To investigate the neural mechanism of confi-
dence assessment, we examined a biologically realistic spiking net-
work model and found that it reproduced salient behavioral observa-
tions and single-neuron activity data from a monkey experiment
designed to study confidence about a decision under uncertainty.
Interestingly, the model predicts that changes of mind can occur in a
mnemonic delay when confidence is low; the probability of changes
of mind increases (decreases) with task difficulty in correct (error)
trials. Furthermore, a so-called “hard-easy effect” observed in humans
naturally emerges, i.e., behavior shows underconfidence (underesti-
mation of correct rate) for easy or moderately difficult tasks and
overconfidence (overestimation of correct rate) for very difficult tasks.
Importantly, in the model, confidence is computed using a simple
neural signal in individual trials, without explicit representation of
probability functions. Therefore, even a concept of metacognition can
be explained by sampling a stochastic neural activity pattern.

decision confidence; lateral intraparietal cortex; line-attractor neural
model

A KEY TO MONITORING OF COGNITION (metacognition) is our ability
to evaluate the degree of confidence that we have about a
decision, a strategy to tackle the problem at hand, a newly
acquired piece of knowledge, etc. Confidence estimation has
been an important subject of research in cognitive and devel-
opmental psychology (Flavell 1979; Vickers 1979). In labora-
tory studies, confidence can be measured using postdecision
wagering (PDW), where subjects first perform a perceptual
decision and then make a high-low bet between a risky option
(associated with a high reward if the first-order choice is
correct, a loss otherwise) and a safe option (associated with a
low reward regardless of the first-order choice). Consequently,
if subjects have less confidence about their choice, they would
be more likely to bet on the low but certain reward option
(Dienes and Seth 2010; Fleming and Dolan 2010; Fleming et
al. 2010; Kepecs and Mainen 2012; Persaud et al. 2007).
Recently, researchers have begun to use PDW and other task
designs with behaving animals to explore the neural basis of

confidence estimation (Kepecs et al. 2008; Lak et al. 2014;
Middlebrooks and Sommer 2011, 2012; Smith et al. 2003).

In a monkey experiment, Kiani and Shadlen (2009) extended
a well-known discrimination task to examine neural signals
correlated with confidence. In this task, a subject is required to
decide between two possible directions (indicated by two
directional targets) of a random-dots motion stimulus. Specif-
ically, Kiani and Shadlen used a fixed-duration (FD) version of
the task (Shadlen and Newsome 2001), where the visual
motion stimulus is followed by a delay period, and monkeys
must indicate the decision at the end of the delay by a saccadic
response to one of the directional targets. In a random subset of
trials, they offered a third target (Ts) during the delay period,
and monkeys could opt to Ts for a certain but small amount of
reward. Interestingly, monkeys selected Ts more often when
motion strength was weaker or stimulus duration became
shorter, under which conditions the error rate was higher and
selecting Ts gave rise to an improvement of performance across
trials. The probability of choosing Ts (Psure) thus reflected a
degree of choice uncertainty. Importantly, Psure was found to
modulate single-neuron activity in lateral intraparietal (LIP)
area that was correlated with accumulating decision evidence
of a choice. This finding supports the intuitive idea that
confidence signal is an integral part of a decision process
(Vickers 1979) and reflected in a neural decision variable
(Gold and Shadlen 2007).

Computational schemes have been proposed for the study of
confidence (Kepecs and Mainen 2012; Kepecs et al. 2008;
Kiani and Shadlen 2009; Moreno-Bote 2010; Pleskac and
Busemeyer 2010; Ratcliff and Starns 2009; Rolls et al. 2010a,
2010b; Vickers 1979). In particular, with the use of drift
diffusion model (DDM) (Ratcliff and Smith 2004), confidence
has been defined in terms of the log posterior ratio for the two
choices given the decision variable at the time of behavioral
response (Kiani and Shadlen 2009). This DDM, nevertheless,
has some limitation to account for the complexity of confi-
dence (Van Zandt 2000), e.g., a decision variable that termi-
nates at a fixed threshold may not present a graded confidence
across trial (Kiani et al. 2014).

In this work, to uncover neural circuit mechanisms under-
lying confidence estimation, we took a different approach and
employed a biophysically realistic cortical network model of
spiking neurons, which was previously shown to successfully
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simulate the random-dots motion-direction discrimination ex-
periment (Furman and Wang 2008). We investigated whether
the same model could accurately reproduce the salient findings
from Kiani and Shadlen (2009). The model is endowed with a
continuous network of neurons that can represent any direc-
tion; therefore, it can be readily extended to incorporate the
presentation of a sure target (Ts) during a delay period. Nota-
bly, such a model of decision-making and memory processes
was not originally designed for the Kiani-Shadlen experiment
to account for confidence estimation. It is thus surprising that
the model can capture both a range of behavioral performance
data and physiological observations from LIP single neurons.
We noted that neurons selective for Ts win the competition
(thus Ts was chosen) when the differential activity of neurons
selective for the two alternative choices is small. Quantita-
tively, we found that confidence could be estimated, at any
time, as a sigmoid function of the differential firing activity of
the two competing neural pools selective for the alternative
choices. Therefore, choice confidence is computed simultane-
ously when a decision is made, and a trial-by-trial variation of

choice is generated by sampling of stochastic neural dynamics
(Wang 2008).

MATERIALS AND METHODS

Network model. We employed a spiking neural network model,
which has been previously used to simulate a categorical decision of
an analog feature, like motion direction (Furman and Wang 2008; Liu
and Wang 2008). This model consists of 2,048 pyramidal cells and
512 interneurons. Both pyramidal cells and interneurons are modeled
as integrate-and-firing neurons; excitatory postsynaptic currents from
pyramidal cells are mediated by �-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA)
receptors, whereas inhibitory postsynaptic currents from interneurons
are mediated by GABA receptors. Pyramidal cells are uniformly
placed on a ring according to their preferred motion directions and
continuously span 360° of possible motion directions (Fig. 1B), while
the interneurons constitute a nonselective neural pool. The recurrent
connectivity strength between two pyramidal cells is a Gaussian
function of the difference between their preferred motion directions,
whereas those from and onto the interneurons are broad and uniform
(Fig. 1B). All the cells receive a background noise mediated by

Fig. 1. Schematic description of the decision task and model architecture. A: procedure of a simulated fixed-duration discrimination task. Following a fixation
period, two targets (large red circles) appear, indicating the alternative choices. A random-dots motion stimulus is presented, followed by a delay period. A
saccade to one of the alternatives indicates the decision at the end of the delay. In some trials, a sure target (blue circle) is shown after the motion offset, and
choosing it leads to a certain but small amount of reward. Bottom: detailed task and input schemes. B: neural network structure. The network consists of excitatory
pyramidal cells (Exc) and inhibitory interneurons (Inh). The pyramidal cells are uniformly placed on a continuous ring, and each neuron is labeled by its preferred
motion direction (shown as the arrow in pyramidal cells). The excitatory-to-excitatory connections between pyramidal cells are structured as a Gaussian function
of the difference in their preferred directions (upper black curve), and the connections from and onto interneurons are broad. C: motion input (centered at 90°)
with different motion strengths, the integral of which is identical for all motion strengths. D: normalized input of 2 directional targets (namely TA at 90° and TB

at 270°) and a sure target (namely Ts at 180°).
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AMPA receptors, which is modeled as uncorrelated Poisson spike
train. We used the neuronal and synaptic parameters from Furman and
Wang (2008), which are fully specified therein, with a change of the
background noise rate to 2,200 Hz, which ensures a choice is gener-
ated even if the motion strength is weak and stimulus duration is short.
With these parameters, the network is endowed with winner-take-all
competition so that only one of the neural pools wins (reaching an
average population firing rate �50 Hz for at least 50 ms), and the
decision is maintained in the form of a bell-shaped persistent activity
pattern (“bump attractor”) in a delay period.

Simulation protocol of FD discrimination-decision task. Our model
assumes that neurons in area LIP incorporate sensory evidence (Cook
and Maunsell 2002; Hanks et al. 2006; Roitman and Shadlen 2002)
and reward signals (Platt and Glimcher 1999; Sugrue et al. 2004;
Tobler et al. 2005). For simplicity, we assumed that the amount of
reward for each target (i.e., two directional targets and a sure target)
is associated with the instantaneous input strength of its current at the
moment of the target onset (Soltani and Wang 2006). That is to say,
the amplitude of the sure target input does not correspond to its
physical properties (like the luminance) in the experiment; instead it
is related to the behavioral significance of the sure target that a
monkey learned, i.e., the amount of reward it received by choosing the
sure target (Fig. 8).

In an FD version of the two-alternative direction-discrimination task
(Fig. 1A), two directional targets, TA (90°) and TB (270°), are first
presented to the network. A random-dot stimulus with net motion to TA

is presented at 500 ms after target onset. The difficulty of the task is
modulated by the stimulus duration (randomly chosen from 110, 130,
152, 178, 208, 244, 289, 348, 439, and 627 ms) and the percentage of
coherently moving dots (the motion strength). We modeled the external
input to pyramidal cell i (at �i) as a sum of two target signals, Itar

i(t) (tar
� {A, B}; Fig. 1D, black line), and the motion stimulus, Im

i(t) (Fig. 1C).
The target inputs to TA and TB are identical:

Itar
i(t) � Itar(t)exp[�(�i � �tar)

2/2�2
tar]

where �A � 90°; �B � 270°; �tar � 10°.

Itar(t) � I1 � I2exp[�(t � td � 200)/�d], td � 100 � t � tm � 80

Itar(t) � I3 � (I1 � I3)exp[�(t � tm � 80)/�ss], tm � 80 � t

where td � 400 ms and tm � 800 ms are the onset times of targets and
motion, respectively; �d � 500 ms and �ss � 15 ms are the time
constants of the adaption and suppression, respectively; I1 � 250 pA,
I2 � 50 pA, and I3 � 60 pA. Specially, the target (motion, respec-
tively) input onset time is 100 (200, respectively) ms after the target
(motion, respectively) onset time, and the target input is suppressed by
the motion stimulus with a latency of 80 ms (Roitman and Shadlen
2002); with the high intensities of the target inputs, winner-take-all
competition between the two targets does not take place before the
motion stimulus onset (Furman and Wang 2008; Liu and Wang 2008;
Wong et al. 2007).

In simulation, motion input is modeled to imitate the neural
response in the middle-temporal area (MT) to the random-dot stimuli.
We constructed such a population activity as a Gaussian function with
a tuning width independent of motion strength while motion presented
(tm � 200 � t � tmo, tmo is the moment of motion input offset)

Im(i) � m0 � coh {�m1 � m2exp[�(�i � �m)2/2�2
m]}

where the motion strength 0 � coh � 1; net direction �m � 90°; �m �
40°. We kept the activity normalized, i.e., �Im(i)� � m0 � 4 pA;
m1 � 4.93 pA; m2 � 25 pA.

In trials with Ts (�s � 180°), where there was the opt-out safe target
presented (Fig. 1D, red line), we modeled its time-dependent current,
Is(i), as:

Is(i) � Is(t)exp[�(�i � �s)
2/2�2

tar]

which is added to the external input. We used:

Is(t) � I3 � I4exp[�(t � ts � tmo)/�s]

for t � ts � tmo, where ts is Ts input onset time after the motion input
offset, tmo, with a latency of 100 ms to the network after Ts onset. In
simulations, we used ts � 575 ms; �s � 90 ms; I4 � 240 pA (see Fig.
8 for a discussion on the choice of I4), expect Fig. 5 (ts is equal to 575,
750, or 925 ms).

The network model is taken from Furman and Wang (2008), with
a few parameter changes, i.e., background noise that ensures a choice
is generated even if the motion strength is weak and stimulus duration
is short, and a different set of parameter values for the choice target
input, motion input, and sure target input that are adopted to the new
experimental protocol of the Kiani-Shadlen experiment. Although the
network was not originally designed for a confidence-estimation
experiment, unexpectedly it can reproduce the behavioral and neuro-
physiological observations that are similar to those in the Kiani-
Shadlen experiment [Figs. 1, B and C, and 2, A and B; Fig. 5, B and
C in Kiani-Shadlen study (2009)]: 1) neurons inside TA and TB display
firing activities with small differences when Ts is chosen, while their
firing activity is divergent when Ts is shown but waived [Fig. 2, B and
D, top, vs. Fig. 2, A and B, in Kiani and Shadlen (2009)]; 2) neurons
inside Ts response field have weak and uninformative spontaneous
activity before Ts onset and then exhibit a fast ramping followed by a
decay after Ts onset [Fig. 2D, bottom, vs. Fig. 5, B and C, in Kiani and
Shadlen (2009)]. In the model, we assumed that the input strength of
each target goes to the same level attributable to the adaptation. For
simplicity, we fixed I4, while adjusting �s to match a majority of points
on the performance curves of Psure from Kiani and Shadlen (2009)
[Fig. 3B, vs. Fig. 1, B and C, in Kiani and Shadlen (2009)].

We also studied the choice confidence in a reaction time (RT)
version of the task. In this task, a network can generate choice at any
time after the motion onset and, at the same time, report directly its
choice confidence. We followed the same simulation protocols as
those in the FD task without Ts, except that the motion input is
terminated when one of the activity bumps crosses the decision
threshold, 60 Hz for at least 50 ms. We measured the correspond-
ing time, tr, and calculated RT as tR � tr � tm � 80, where 80 ms
is the latency period for implementation of saccadic eye movement
(Roitman and Shadlen 2002). In the FD version of the task, an
initial choice is assumed to be made when one of the two compet-
ing neural pools reaches a decision threshold of 50 Hz for at least
50 ms after motion onset because the decision threshold of an FD
task was experimentally observed lower than that of an RT task
(Roitman and Shadlen 2002).

In FD tasks, we performed 1,500 trials at each motion strength and
stimulus duration level, where Ts was not presented, and 3,500 trials
at each motion strength and stimulus duration level, where Ts was
presented. In Fig. 5, we simulated 1,500 trials for each condition. In
RT task, we carried out 3,000 trials for each motion strength level. All
the simulated behavioral data reported were computed using all trials
for each simulation set. The integration method was a modified
second-order Runge-Kutta algorithm with firing-time interpolation
(Hansel et al. 1998) and a time step dt � 0.02 ms.

Measurements of activity trajectories. We calculated the average
response of the population of units associated with targets TA, TB, and
Ts, namely RA, RB, and Rs, as the average firing activity of the neurons
within 8.4° around each target with a time window of 100 ms
preceding the time point (e.g., the moment of decision and onset of Ts)
for RA, RB, and Rs in analysis, except for Figs. 2, B and D, and 7A. In
Figs. 2, B, D, E, F, G, and H, and 7A, each trajectory or point
represents the activity of a single neuron at each target. We applied a
100-ms Gaussian sliding window to smooth the peristimulus time
histograms for the temporal evolutions of the firing rates of RA, RB,
and Rs in Figs. 2, B, D, E, F, G, and H, and 7A.

Choice confidence assessment. In the monkey experiment, as well
as in our model simulations, the introduction of a sure target only
serves as a probe examining the confidence of the system. That is to
say, with carefully choosing the ratio of sure target reward to that of
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choice targets (i.e., I4 in our simulation), one can access the choice
confidence across trials. In our simulation, the probability of opting
for the sure target is bounded (Fig. 3B); it thus represents a good
choice for estimating confidence. Furthermore, we will show later in

RESULTS that the probability of choosing the sure target, Psure, reflects
the uncertainty of a choice in an opt-out task. Here, we defined choice
confidence, cc, as the probability of waiving a sure target, i.e., cc �
1 � Psure, using the trials in which Ts is presented (binned by 0.5 Hz;

Fig. 2. Neuronal activity of sample trials at 0 motion strength. Spatiotemporal activity pattern of pyramidal cells in trials when the motion strength is 0. A: sample
trial where Ts was not presented (stimulus duration is 627 ms). Neural pools centered around the 2 directional targets eventually diverge from each other; that
near TA wins the competition, and its activity persists during the delay in the form of a bell-shaped “bump attractor.” B: average firing rate of the neural pools
at TA (black line) and TB (red line) of the trial in A. C: 2 sample trials where Ts was presented (stimulus duration is 627 ms). Top: sure target induced a transient
response that was suppressed because of feedback inhibition within the circuit, and the neural pool at TA preserves similar activity to that in A; therefore Ts was
waived. Bottom: neural pool around Ts fires at a sufficiently high rate that it overcomes the competition with the other neural pools, which in turn is suppressed
by feedback inhibition; therefore Ts was selected. Note that in this trial the neural activities of 2 competing bumps are indistinguishable before Ts onset and
gradually decay to a low level after Ts onset. D: neural activities at TA (black lines), TB (red lines), and Ts (blue lines) of the trials in C. Dashed curves: the trial
where Ts was selected; solid curves: the trial where Ts was waived. Note that the stimulus condition was identical for the 2 sample trials; whether the sure target
was chosen or waived was completely determined by network dynamics that fluctuated from trial to trial. E and F: average activities of RA, RB, and Rs across
different motion strengths (100 trials for each motion strength), which follow the same conventions as those in B and D. G and H: network dynamics underlying
a trial-by-trial variation of choice in a 3D (RA, RB, Rs) decision state space. G: neural activity trajectories of the 2 sampling trials in C from 150 ms after motion
onset, the starting (end, respectively) points of which are marked by circles (triangles, respectively); time sequence of the trial selecting Ts (black line, 1–2 steps)
follows that network walks around RA � RB before Ts onset (Step 1 in D; black circles) and then converges to Rs after Ts onset (Step 2 in D; black circles); time
sequence of the trial waiving Ts (red line, 1–4 steps) follows that network goes toward RA before Ts onset (Step 1 in D; red circles) and then walks along Rs

direction after Ts onset (Step 2 in D; red circles) and then converges back to RA again (Step 3–4 in D; red circles). H: neural activity trajectories of the other
18 sampling trials at the same stimulus condition. For the trials waiving Ts, the network first converges to a choice attractor TA (red lines) or TB (green lines)
preceding Ts onset; it then moves along the direction parallel to Rs axis because of the presentation of Ts and finally converges back to the initial choice attractor.
For the trials choosing Ts (gray lines), the network first walks around the diagonal line RA � RB (Rs � 0) and then converges to the sure attractor Ts after its
presentation. Neural dynamics therefore acts as a 3-way competition.

102 CONFIDENCE ESTIMATION IN A DECISION NEURAL CIRCUIT

J Neurophysiol • doi:10.1152/jn.00793.2014 • www.jn.org



Fig. 6A, black circles). We also assumed that this probability can be
predicted as a function of the differential activity |RA � RB|. We then
performed the fit of a logistic function between |RA � RB| and cc � 1
� Psure. At each differential activity level, i, cci � 1 � Psure is
computed as the mean of the decision result across the sample trials,
k, �si

k� for Ts. The decision result, s, is a binary variable, i.e., s �
1, if Ts is waived; s � 0, if Ts is chosen. To perform the fit, we used
the firing activity within a 100-ms time window before Ts onset in the
FD task (Fig. 6A) for RA and RB:

cci � 1 � Psure(|R
i
A � Ri

B|) � b1 � a[1 � exp(k|Ri
A � Ri

B| � b0)]�1

Using all trials in FD task, we obtained b0 � 2.22 Hz; b1 � 1.01;
a � �1.01; k � 0.089 (R2 � 0.98, Fig. 6A, red dashed line).
Importantly, a real result here is to quantify confidence as a function
of the neural activity. Confidence estimation is thus applicable to all
trials, even without sure target presentation. We then used these
estimated parameters to calculate cci for each sample trial in both FD
and RT tasks, where RA and RB are the average firing rates within a
100-ms time window before Ts onset in FD task (Figs. 6, 7A, and 8C)
and those before one of the bumps reaching a decision threshold in RT
task (Fig. 9).

RESULTS

We performed computer simulations of the Kiani-Shadlen task
(Fig. 1A), using a neuronal circuit model (Furman and Wang
2008). In this model, the pyramidal cells are selective for motion
direction as an analog stimulus feature and are uniformly distrib-

uted along a ring according to their preferred directions. Pyrami-
dal cells are endowed with strong recurrent excitation, which is
balanced by feedback inhibition mediated by interneurons (Fig.
1B). We assumed that the neural representation of motion stimu-
lus in MT exhibits normalization (Heeger 1992; Treue et al. 2000)
(Fig. 1C). The output from MT converges with other visual inputs
such as choice targets to the decision circuit. Without loss of
generality, we placed the choice targets TA at 90°, TB at 270°, and
Ts at 180° (Fig. 1D). In a short delay after the target onset, a
random-dots motion stimulus is presented, and, in our model, the
network integrates the motion signal gradually over time. If a
categorical choice is formed through attractor dynamics (Furman
and Wang 2008; Wang 2002, 2008; Wong and Wang 2006), that
choice is maintained in the form of a persistent activity pattern
during a delay period. Because the network dynamics is stochas-
tic, a decision may not be reached during stimulus presentation.
Network activity continues to evolve during the delay through
slow NMDA-mediated reverberation, and this process can be
altered in the event that Ts is presented and this third option
becomes available.

Network dynamics in an FD task with PDW at zero motion
strength. In experiments using single-unit recording, each neu-
ron was recorded at a time, and its selectivity and dynamics
were evaluated across trials, whereas, in our model, all neurons
are monitored simultaneously in a single trial. At the popula-

Fig. 3. Behavioral performance. A: model perfor-
mance (at a fixed stimulus duration of 627 ms).
Left: probability of choosing Ts (Psure) decreases
as a sigmoid function of the motion strength.
Right: accuracy in trials where Ts is not shown
(Pcorrect) increases as a sigmoid function of the
motion strength (dashed black curve), and it is
improved in trials when Ts was shown but waived
(solid black curve). B: at different stimulus dura-
tions, Psure decreases with motion strength and stim-
ulus duration; Pcorrect is higher in trials where Ts was
shown but waived (solid lines, filled circles) than
that where Ts was not shown (dashed lines, open
circles). C: behavioral data from Kiani and Shadlen
(2009) task using awake monkeys. Comparing B
with C, model reproduces salient behavioral obser-
vations from the monkey experiment. Experimental
data adapted with permission from Kiani and
Shadlen (2009).
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tion level, the ramping activity is demonstrated as the gradual
development of a bell-shaped activity pattern (bump) around
the direction of a selected target. The stimulated neural dy-
namics in Fig. 2 can be compared directly with single-neuron
data from area LIP for a neuron with the preferred direction at
TA; TA and TB are equivalent to Tin and Topp in the Kiani-
Shadlen experiment (2009).

Figure 2A shows the spatiotemporal spiking activity of the
network model in a trial without Ts presented. Although the
input is identical to all the pyramidal cells at zero motion
strength, the two activity bumps compete with each other
through shared inhibitory feedback and stochastic recurrent
dynamics. Eventually one bump ramps up, while the other one
decays, leading to a categorical choice (Furman and Wang
2008; Wang 2002; Wong et al. 2007). The ramping-up bump is
maintained by the persistent activity in delay (Compte et al.
2000). At the single-unit level, the firing activities of neurons
at TA and TB (RA and RB, respectively) diverge over time after
motion onset, leading to the choice of the network (TA). The
winning neural pool persists its firing activity until the end of
delay (Fig. 2B).

In trials when Ts is presented (Fig. 2, C and D), again the
attractor dynamics dictates the choice behavior of the network,
and we identified a choice of Ts by the firing activity of neurons
at Ts (Rs); the network selects Ts (Fig. 2D, dashed blue line) if
Rs persists at a high rate, and it waives Ts (Fig. 2D, solid blue
line) if Rs decays to a low rate. In the trial where Ts is waived,
we observed the same divergence and persistent activity of RA
(choice) and RB as that without Ts presented (Fig. 2, C, top, and
D, solid lines); however, if the network selects Ts, RA and RB
are indistinguishable at some intermediate rates without sig-
nificant divergence (Fig. 2C, bottom, and D, dashed lines;
RA � 32.5 Hz, RB � 33.6 Hz at Ts input onset), and then both
decay to low rates as neurons around Ts win the competition.
The average firing activities of RA, RB, and Rs across different
motion strengths (100 trials for each condition) are shown in
Fig. 2, E and F, which follow the same conventions as those in
Fig. 2, B and D. All these are similar to the observed LIP
neuronal data (Kiani and Shadlen 2009) from motion input
onset time to the end of trial, which is crucial to capture the
neural dynamics of choosing or waiving Ts, although a differ-
ence of neuronal activities could exist before motion input
onset in our model compared to the experimental observations,
which is not important to predict a choice of TA, TB, or Ts.

We further studied the neural dynamics that underlies a
choice of the network among TA, TB, and Ts. Taking trials in
Fig. 2C, for example, we visualized the neural trajectories in a
3D decision space (RA, RB, Rs) following the sequences marked
in Fig. 2D. In the trial where Ts is waived (Fig. 2G, red line),
the network first converges to a choice attractor (TA), then
leaves away from and returns to it again after the presentation
of Ts; in the trial where Ts is selected (Fig. 2G, gray line), the
network wanders around the diagonal line (RA � RB, Rs � 0)
and then converges to the attractor Ts. These trajectories in
decision space imply that the presentation of Ts could induce a
sure attractor, which behaves similarly to choice attractors; the
network could thus act like a three-way competition after the
presentation of Ts. To test this, we visualized more sampling
trials at the same stimulus condition and explored the basin of
attraction for each attractor (Fig. 2H). We found that, for trials
choosing TA, TB, and Ts (Fig. 2H, red, green, and gray lines,

respectively), the networks converge to the choice attractors TA
(near the RA axis) and TB (near the RB axis) and the sure
attractor Ts (near the Rs axis), respectively. The whole decision
space is thereby separated into three attractor regions, and,
because of this structure of decision space, the location of each
neural trajectory at the moment of Ts onset (namely the initial
location) can potentially predict the choice of a network (Kiani
and Shadlen 2009). Particularly, if the initial location of a
network is close to a choice attractor, it would eventually
converge back to that choice attractor again after Ts onset,
whereas, if its initial location is around the diagonal line, it
more likely converges to a sure attractor. Notably, if the initial
location of a network is between the diagonal line and a choice
attractor, it could either continue converging to that choice
attractor or change its mind to Ts (discussed later in Fig. 7).
Therefore, our model demonstrates that a categorical choice of
a network in this task could be generated by a three-way
competition among attractors TA, TB, and Ts, which relies
internally on the stochastic neural dynamics (Wang 2008).

Behavioral performance. The performance of the model is
quantified by the fraction of trials corresponding to a particular
behavioral response. Figure 3 exhibits the probability of choos-
ing Ts (Psure) and accuracy (Pcorrect) for trials when Ts is not
presented or Ts is shown but waived. At a fixed stimulus
duration, our model shows that Psure decreases while Pcorrect
increases with the motion strength; Pcorrect improves in trials
where Ts was shown but waived (Fig. 3A). Moreover, Fig. 3B
shows that Psure decreases with the stimulus duration, where-
fore the network selects Ts more often for weaker motion
strength or shorter duration; Pcorrect increases monotonically
with stimulus duration for trials with or without Ts presented
(Fig. 3B, right, solid and dashed lines, respectively). For a
given motion strength and stimulus duration, Pcorrect is higher
for trials where Ts is shown but waived than those without Ts
presented, implying that Psure is a probe of uncertainty (Kepecs
and Mainen 2012; Whiteley and Sahani 2008). In conclusion,
the model successfully reproduces the salient behavioral ob-
servations in the monkey experiment (Kiani and Shadlen 2009)
(Fig. 3C).

Choice confidence as a logistic function of the differential
activity. Consistent with the neurophysiological observation
(Kiani and Shadlen 2009), RA and RB undergo brief decreases
after Ts onset in our model (Fig. 2C). This is because Ts
stimulates neurons selective for the sure target, and their
increased firing activity recruits more feedback inhibition that
reduces RA and RB in a three-way competition (Fig. 2H). We
therefore hypothesized that the network would opt to Ts if it
has not converged to a stable attractor for TA (RA �� RB) or TB
(RA �� RB); the differential activity |RA � RB| at Ts onset
determines Psure.

We first observed that RA and RB could diverge in the late
phase of delay. The long divergent time (�Ts onset) implies
that there is a quasistable state at RA � RB, around which the
network could wander, but eventually the network would
escape from it and converge to a stable attractor, generating a
choice. We next studied whether the network in a state around
RA � RB would opt to Ts (e.g., Fig. 2H, gray lines). For
individual sample trials, we visualized RA and RB against each
other on a decision space. Figure 4, A and B, shows that the
activity of the network falls down along a diagonal line and
then separates into three groups for choices of TA, TB, and Ts.
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In trials where Ts is waived, the network converges to one of
two stable attractors, TA or TB (Fig. 4, A and B, gray lines),
while, in those where Ts is selected, the network walks ran-
domly around the quasistable state at RA � RB � 35 Hz (Fig.
4, A and B, black lines). In summary, once the network
converges to a stable attractor before Ts onset, Ts is waived; if
it wanders around RA � RB, the network is likely to opt to Ts.

The studies of the similar attractor models (Wang 2002;
Wong and Wang 2006; Wong et al. 2007) showed that early
divergence of RA and RB (bias to one attractor) determines the
probability of choosing TA and TB as a function of the motion
strength and stimulus duration. One can thus expect that early
divergence would also result in a decrease of Psure as a function
of the motion strength and stimulus duration. To examine this,
we investigated the distributions of RA � RB with different
motion strengths at Ts input onset. Figure 4, C and D, shows
that the percentage of the trials around RA � RB decreases with
higher motion strength or longer stimulus duration, resulting in
a decrease of Psure.

Although the early divergence plays a dominant role in the
network dynamics, network continues to evolve via NMDA-
mediated reverberatory dynamics; the slow stochastic dynam-
ics could thus drive the network away from RA � RB in the
later phase of the delay. Consequently, Psure depends on Ts
onset time. Figure 5A displays the evolution of the distribution
of RA � RB at different times from motion offset, demonstrat-
ing that the slow stochastic dynamics also plays an essential
role in the behavior of the network. Across trials, our model
predicts that Psure decreases with longer Ts onset times (Fig.
5B) because more trials settle down to a stable attractor later in
the delay, i.e., the percentage of trials with RA � RB decreases
with Ts input onset time. Interestingly, we found that Pcorrect
was nearly constant with different Ts input onset times (Fig.
5C). This happens because Pcorrect � rAB/(1 � rAB), where rAB
is the ratio of the number of trials at attractor TA (choice) to that
at attractor TB at Ts onset and is saturated at 575 ms after
motion offset (Fig. 5A). In short, Psure is directly related to the
percentage of trials around RA � RB, whereas Pcorrect is

Fig. 4. Differential activity |RA � RB| determines whether
Ts is waived. A and B: single-trial dynamics of the
network in the decision state space, where the population
firing rates RA and RB are plotted against each other (the
starting point of each network trajectory is marked as a
red circle, and ending point is marked as an open circle).
Gray: trials when Ts was waived; black: trials when Ts

was selected. The dynamical trajectories are shown from
100 ms after motion onset to its offset (left), then to Ts

input onset (right), at different motion strengths (A:
3.2%; B: 12.8%; stimulus duration: 627 ms). At the onset
of motion stimulus, both RA and RB are high (�90 Hz),
near the diagonal line, because of the presentation of
directional targets. The population dynamics first decays
along the diagonal line, induced by a suppression of
target inputs after motion onset. In trials when Ts was
waived, the network trajectory converges to 1 of 2 target
attractors (where RA is high and RB is low, or vice versa),
whereas, in trials when Ts was selected, the population
dynamics continues to wander randomly around the di-
agonal line. The absolute value of differential activity at
Ts onset therefore determines whether Ts is waived. C and
D: distribution of RA � RB at Ts onset is a function of the
motion strength (C: 3.2%; D: 12.8%) and stimulus dura-
tion (presented in each column), where the percentage of
trials around 0 decreases with the motion strength and
stimulus duration. This explains why Psure decreases with
the motion strength and stimulus duration.
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associated with the number of trials at TA and TB at Ts onset. In
this sense, there is a dissociation of confidence estimation from
performance (Graziano and Sigman 2009; Graziano et al.
2010). Moreover, without Ts presented, the network continues
to converge to TA or TB via stochastic dynamics, and the
probability to one of them is biased and relies on RA � RB in
the early phase of delay (Fig. 5D). In conclusion, we found that
|RA � RB| at the moment of Ts input onset determines Psure
probabilistically and reflects a degree of the stability of a
choice: if a categorical choice is achieved but with small |RA �
RB|, it could be altered to Ts; whereas, if |RA � RB| is large, the
choice of the network would not be changed by Ts.

Here we define choice confidence as a function of the
instantaneous differential activity |RA � RB| at sure target input
onset time for each trial i, i.e.,

cci � f(|Ri
A � Ri

B|).

In our model, |RA � RB| shows the position of a network in the
(RA,RB) plane (Fig. 2, G and H) related to choice attractors in
the decision space, i.e., the larger |RA � RB| is, the closer a
network is to a choice attractor TA or TB; f(·) is therefore
required to be an increasing function. In the previous studies
(Beck et al. 2008; Kepecs and Mainen 2012; Kepecs et al.
2008; Vickers 1979), functions f(·) were given in a variety of
ways. One can picture that, as long as f(·) is a monotonic
function, we can always equate f(·) from one model to another.
Of note, our definition of the confidence stems from the
structure of the attractor basin in decision space (Fig. 2, G and
H), i.e., if a choice is confident, then it is easily resistant to the
other external input such as a sure target, whereas confidence
estimations from models like Beck et al. (2008) and Kepecs
and Mainen (2012) are compared directly to log odds of a
choice in Bayesian framework. In the studies of Beck et al.
(2008), they found from both the experimental data and their
model that log odds of choice at A, namely confidence across

trials for choice A, is proportionate to �RA� � �RB�, where
�·� is the average across trials. However, such a read-out of
confidence would predict a strong correlation between confi-
dence and performance on single trials, which is somewhat
inconsistent with experimental observation of a broad perfor-
mance variation in different confidence categories (Graziano et
al. 2010; Juslin and Olsson 1997). Second, this “optimal
decoder” �RA� � �RB� relies explicitly on the equal vari-
ance hypothesis for likelihood (Kepecs and Mainen 2012) or
“left-right” symmetry of a linear decoder (Beck et al. 2008). It
remains unclear what the biologically plausible mechanisms
are to achieve such a fine-tuned neural circuit to compute
confidence signals in these models.

In our model, confidence is defined using a monotonic
increasing function of |RA � RB|. Particularly in an opt-out
task, confidence can be probed by the probability that a choice
stays in its attractor after presenting a sure target. If the choice
is confident at |RA � RB|, then this probability, 1 � Psure, is
low. Using this probe, we found that choice confidence in-
creases as a sigmoid function [i.e., function f(·)] of |RA � RB|
(Fig. 6A). Next, we asked whether, across trials, our definition
of confidence can also reflect probability of correct at each
|RA � RB| level as those defined in Bayesian framework (Beck
et al. 2008; Kepecs and Mainen 2012; Kepecs et al. 2008). This
seems possible as indicated from Fig. 5D. Moreover, a detailed
analysis should compare probability of correct choice and
confidence simultaneously. We performed this analysis using
trials without presenting Ts, where we computed both the
performance and the confidence at the end of decision averaged
across all stimulus conditions (Fig. 6B). Figure 6B demon-
strates that confidence in our model increases monotonically
with the performance. Importantly, our model indicates that
confidence can be computed as a function of the instantaneous
neural activities (like a population code; Beck et al. 2008) at

Fig. 5. Onset time of Ts determines the probability of choosing Ts but has little impact on accuracy. A: at a fixed motion strength and stimulus duration (12.8%
and 627 ms, respectively), RA � RB continues to change after motion offset (time presented in each column is relative to motion input offset time) and is settled
down only until the late phase of delay (�1,200 ms in simulation). B and C: Psure decreases as a function of Ts input onset time (575 ms: blue; 750 ms: green;
925 ms: red), while Pcorrect remains unaffected. D: probability of choosing TA (at the end of the delay) depends on the differential activity, |RA � RB|, at Ts input
onset time (filled circles: simulation data from B and C where coh � 12.8% and motion direction toward TA; dashed line: logistic function fit). When |RA � RB|
is large, the sign of RA � RB determines the choice at Ts onset, i.e., positive for TA and negative for TB. If |RA � RB| is small (RA � RB from �5 Hz to 5 Hz),
the probability of choosing TA increases with RA � RB. Data in this figure are composed of those at all Ts onset times.
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any time in a decision circuit without explicit use of elapsed
time for integration of the sample (Drugowitsch et al. 2012;
Kiani and Shadlen 2009; Kiani et al. 2014; Moreno-Bote
2010). Therefore, although confidence in our model is not
defined as a log odds function of the choice (Beck et al. 2008;
Drugowitsch et al. 2012; Kepecs and Mainen 2012; Kepecs et
al. 2008; Kiani and Shadlen 2009; Kiani et al. 2014), confi-
dence can be a good measurement of the subjective correct rate
across trials. Importantly, on single trials, choice confidence in
our model is dissociable from performance (Graziano et al.
2010), whereas Bayesian models would predict a strong
correlation.

Despite the similarity of f(·), choice confidence in our model
is, however, conceptually distinct from those from Bayesian
decision models because our definition of confidence funda-
mentally comes from the structure of the attractor basin in the
decision space. Therefore, our model predicts that confidence
would be different when estimated at the different times after
motion offsets (Fig. 5), and that would be nearly the same in a
Bayesian model (Beck et al. 2008; Drugowitsch et al. 2012;
Kiani and Shadlen 2009; Moreno-Bote 2010). To test this, we
estimated choice confidence using neural activities RA and RB
in trials without Ts presented at different times after motion
offsets. We first estimated the choice confidence at 575 ms
after motion input offset (Fig. 6C; compared directly with Fig.
3B, left), where the distribution of RA � RB is still evolving,
namely the confidence estimation after a short delay (Fig. 5A).
One can thus expect an increase of choice confidence in trials
with longer stimulus durations (Fig. 6C), according to the
variation of the bimodal distribution of RA � RB at different
stimulus durations (Fig. 4, C and D). We next estimated the
choice confidence at 1,550 ms after motion input onset, i.e., the
same time of a trial, where the internal noise is nearly identical
at different stimulus conditions and the strength of the input
dominates the choice confidence of the network. In this case,

one would expect that confidence should increase as a function
with the motion strength and stimulus duration for a noiseless
integrator (Beck et al. 2008), unless it is bounded (Drugowitsch
et al. 2012; Kiani and Shadlen 2009). While in our model, the
attractor dynamics implies that the bimodal distribution of
RA � RB depends dominantly on the early divergence (Fig. 4,
C and D). As a result, Fig. 6D shows that all confidences
saturate at stimulus duration �400 ms, suggesting that the
early evidence has the greatest effect on confidence estimation.
Of note, the saturation time prolongs with lower motion
strength.

Low confidence results in changes of mind to Ts. The whole
dynamic space, RA-over-RB decision space, can be divided into
three regions: choice attractor regions (RA �� RB or RA ��
RB) and an unstable region in between them (Wang 2008). In
the previous study, we focused on the trials along the diagonal
line (RA � RB), where a choice of network remains undecided
before the presentation of Ts. We then investigated the dynam-
ics of networks that are between the diagonal lines (RA � RB)
and a choice attractor (RA �� RB or RA �� RB) on RA-over-RB
decision space preceding the presentation of Ts, where a trial
could be still in the unstable region (and thus could go to the
sure attractor after Ts onset) or in a stable attractor region
(where the network trajectory would stay in the same choice
attractor even after Ts onset). For these trials, we could define
an initial choice of the network by its nearby choice attractor
TA (TB, respectively), where RA (RB, respectively) fires above a
decision threshold (�50 Hz). Particularly, we explored under
which condition the network would more likely continue con-
verging to the attractor of its initial choice, or shift to the sure
attractor, when Ts is offered.

Figure 7A compares the neural activity in trials with low-
and high-confidence initial choices, the analysis of which is on
single trials and is missing in Kiani and Shadlen (2009). In
low-confidence trials (Fig. 7A, top), only one of the activity

Fig. 6. The probability of waiving Ts reflects
choice confidence. A: confidence is defined as the
probability of waiving Ts at each |RA � RB|, i.e.
the differential activity of 2 competing bumps at
the moment of the sure target input onset, in
single trials. A logistic function fit (red dash line)
is performed on the data from all computer sim-
ulations with Ts presented. B: comparison of prob-
ability of correctness and confidence at each |RA

� RB| level in single trials. Both confidence and
probability of correctness at each |RA � RB| level
in single trials are computed at decision time of
trials without Ts presentation. Probability of cor-
rectness increases as a monotonic function of
confidence, which implies that confidence in our
model would also be a good measurement of the
subjective correct rate or log odds of choice. C:
confidence assessment at Ts input onset (the du-
ration from motion input offset to the time of
confidence estimation is fixed, i.e. 575 ms, top)
increases with the motion strength and stimulus
duration. D: confidence assessment at an identical
time after the motion input onset (the duration
from motion onset to confidence estimation is
fixed, i.e. 1,550 ms, top) saturates after a short
period of stimulus duration. In this case, early
evidence plays a dominant role in confidence
estimation.
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bumps fires above the decision threshold, but the other remains
similar (|RA � RB| is small). After Ts onset, both RA and RB

decay to a low level, while Rs grows to a high level and Ts is
chosen. By contrast, in high-confidence trials (Fig. 7A, bot-
tom), when one of the firing rates reaches a steady state, the
other is much smaller (|RA � RB| is large). Neurons activated
by Ts are suppressed, and Ts is waived. In the latter case, the
activity of the winning neural pool exhibits a brief dip upon Ts
input onset and then ramps up again to its steady state.

Across trials, the probability of changes of mind to Ts is
negatively correlated with choice confidence, i.e., the network
exhibits low confidence in trials at low motion strength (Fig.
6C) and high probability of changes of mind to Ts (Fig. 7B,
left). To further test whether the network bases the probability
of changes of mind to Ts on its performance and confidence, we
categorized the trials with initial choices, where either RA or RB
reaches a decision threshold, 50 Hz (if both of them do not
reach the decision threshold, we considered the choice remain-
ing undecided at Ts onset), into correct and error groups and
found that network changes its choice to Ts more often in error
trials. Furthermore, the probability of choosing Ts in correct
(error, respectively) choice decreases (increases, respectively)
with the motion strength (Fig. 7B, right). This finding is
reminiscent of the experimental observation that, in a decision
making task with a delayed reward, animals moved back to
self-restart port more often when the task became more diffi-
cult or the confidence was low (Kepecs et al. 2008).

In conclusion, we identified two possibilities for choosing
Ts; either an initial choice was not made (along the diagonal

line; Fig. 2), or it was made with a low confidence (between the
diagonal line and choice attractors; Fig. 7A, top). For the latter
case, |RA � RB| reveals the confidence about an initial choice;
low confidence of a choice is likely to result in changes of mind
to Ts.

A sure target as a probe about the confidence of the system.
The introduction of a sure target plays a role of probing the
confidence of the system. Specifically, in the monkey experi-
ment, the physical luminance of the sure target was the same as
the choice targets. Monkeys were trained to understand what
the sure target meant behaviorally, which depended on the
amount of reward by choosing it. Therefore, in our model, the
amplitude of the sure target input (I4 in our model) does not
correspond to its physical properties but is related to the
behavioral significance of the sure target that a monkey learned
as the amount of reward he receives by choosing the sure
target. One can imagine that, if choosing the sure target yields
a negligible (significant, respectively) amount of reward, mon-
keys would never (always, respectively) have learned to
choose it. To test this, we studied the effect of Ts input strength,
I4, on the behavioral performance at a fixed motion strength
level (i.e., 12.8%). We found that Psure increases as a function
of Ts input strength (Fig. 8A). When Ts input strength is low
(e.g., I4 � 192 pA), Ts is always waived; when Ts input
strength is high (I4 � 288 pA), Ts is mostly chosen, as stimulus
duration is short. Moreover, in the trials where Ts is shown but
waived, our simulation predicts an increase of correct rate at
high Ts input strength (Fig. 8B). At the network level, these
observations in Fig. 8, A and B, still follow a three-way

Fig. 7. Low confidence results in changes of mind to Ts. A:
trials with low confidence exhibit changes of mind to Ts

(motion strength: 6.4%; stimulus duration: 243 ms). Top:
sample trials with low confidence, small |RA � RB|. Even
though the network has reached 1 of the 2 choice attractors
[left: TA (black lines); right: TB (red lines)], upon the presen-
tation of Ts, the neural pool selective for Ts takes over (blue
lines), so there are changes of mind. Bottom: sample trials with
high confidence, large |RA � RB|. No changes of mind take
place. Choice confidence, cc, for each trial is estimated at the
time of Ts input onset and shown at the top of each panel. B,
left: across trials (averaged over different stimulus durations),
the probability of shifting to Ts decreases with the motion
strength. Right: in error (correct) trials, this probability in-
creases (decreases, respectively) with the motion strength.
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competition among RA, RB, and RS, e.g., when input of the sure
target is weak (strong, respectively), it always behaves like a
loser (winner, respectively). Last, we examined whether, in a
range of Ts input strengths (a selected range of amount of Ts

rewards), a sure target can serve as a probe about the confi-
dence of the system, when the network applies the attractor
dynamics. We assessed the choice confidence as a function of
|RA � RB| at the moment of Ts input onset for different choices
of Ts input strengths. Figure 8C shows that, on average, choice
confidence is identical for different Ts input strengths (and
increases as a function of stimulus durations), and Psure de-
creases as a linear function of choice confidence for a broad
range of Ts input strengths, i.e., in this range, 216 pA �I4 �
264 pA, a sure target in our model can be considered as a
probe about the confidence of the system. Therefore, a sure
target is only a probe, and the confidence measure is valid
even without it.

Assessment of choice confidence in an RT task. In our model,
confidence can be read out at any time and increases as a
function of stimulus duration in an FD task. One may thus
argue that the network would exhibit high confidence despite
the task difficulty if it freely controls the viewing duration of
the stimulus. However, classical literature about confidence in
cognitive psychology (Vickers 1979) emphasizes an inverse
relationship between confidence and response time, which can
be potentially tested in an RT version of discrimination task
[developed previously by Furman and Wang (2008)] with
direct assessment of choice confidence. This distinguishable
difference between confidence estimation in FD vs. RT task in
fact comes from two distinct processes; whereas longer view-
ing time in an FD task enables more integration of evidence
(confidence thus increases with motion viewing time), a longer
RT means a higher task difficulty in an RT task (confidence
thus decreases instead with motion viewing time). We thus
want to further test whether our model can nicely explain such
a contrasting observation. To do this, we designed an RT
version of discrimination task with direct assessment of choice
confidence (Fig. 9A); the network integrates the motion input
until the neurons selective for one of two alternatives fire above
a decision threshold and reports the confidence as the function
of the instantaneous |RA � RB| (Fig. 6A) at the moment of
choice [a similar human behavioral experiment is performed
and reported by Kiani et al. (2014) recently].

Our model exhibits the typical psychometric and chronomet-
ric curves of a two-alternative discrimination task (Churchland

et al. 2008; Roitman and Shadlen 2002), i.e., Pcorrect increases,
whereas RT decreases with the motion strength (Fig. 9, B and
C). Importantly, weaker motion strengths are associated with
longer RTs, where |RA � RB| will be less at longer RTs. Choice
confidence thus increases with the motion strength [Fig. 9D;
see also Fig. 5 in Beck et al. (2008)] and is positively correlated
with the behavioral performance across trials (Barthelmé and
Mamassian 2010) (data not explicitly shown). We also found
that choice confidence decreases as an inverse function of RT
(Fig. 9E), which agrees broadly with the human behavioral
observations (Vickers 1979). Although an erroneous choice
could be associated with high confidence (Graziano and Sig-
man 2009), the average |RA � RB| across trials is higher in
correct trials than that in error ones (Wang 2002). Therefore, in
our model, confidence increases (decreases, respectively) with
motion strength in correct (error, respectively) trials (Fig. 9F),
consistent with human studies (Pierrel and Murray 1963).

Moreover, we studied correlation between the choice confi-
dence and decision accuracy. Figure 9, B and D, implies that
choice confidence is positively correlated with behavioral per-
formance across trials. Although confidence in our model does
not directly represent a subjective estimation of performance
(like that in Beck et al. 2008; Drugowitsch et al. 2012; Kiani
and Shadlen 2009), one can estimate the subjective perfor-
mance from choice confidence using a monotonic function,
g(·), in Fig. 6B. We can thus compare directly our confidence
score with performance to study the “hard-easy” effect (Juslin
and Olsson 1997). Here we defined underconfidence score as
the difference between the choice confidence and accuracy,
cc � Pcorrect [one can also use g(cc) � Pcorrect], and a
hard-easy effect is the observation that the underconfidence
score decreases as a function of task difficulties, i.e., in the easy
(difficult, respectively) trials, the report is more likely to be
overconfident (underconfident, respectively) cc � Pcorrect � 0
(cc � Pcorrect � 0, respectively). Figure 9, G and H, shows the
variation of underconfidence scores as a function of choice
confidence for the FD task with a delay of 627 ms and RT task,
respectively; both display the hard-easy effect in the reports.
Of note, these results still hold true when comparing estimated
subjective performance from choice confidence with the be-
havioral performance using g(cc) � Pcorrect. Such a hard-easy
effect in our model mainly stems from sampling of stochastic
neural dynamics; sampling duration thus influences the under-
confidence score in our model. When the sampling duration is
short, the network behaves with more overconfidence. To test

Fig. 8. Effect of Ts input strength on the behavioral performance. In this simulation, the motion strength is fixed at coh � 12.8%, and Ts input strength at I4 �
240 pA (green circles and line) is the same as those used in Figures 2–7. A: Psure increases as a function of Ts input strength. Ts is usually waived (chosen,
respectively), when Ts input strength is weak (strong, respectively). B: correct rate in the trials, where Ts is waived, increases as a function of Ts input strength.
C: choice confidence is identical at the moment of Ts input onset (which increases as a function of stimulus duration). For a range of Ts input strength (216 pA
� I4 � 264 pA), Psure decreases as a linear function of choice confidence.
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this, we compared the scores in the FD and RT tasks, where the
average sampling durations in RT tasks are longer than those in
FD tasks at low motion strength (from 0 to 6.4%). Conse-
quently, the network exhibits overconfidence more often at low
motion strengths in FD task.

DISCUSSION

We have shown that a biologically plausible spiking network
model can account for salient physiological and behavioral
data from an experiment designed to study confidence (Kiani
and Shadlen 2009), and in our model internal stochasticity
plays an essential role of choice confidence (see also Whiteley
and Sahani 2008). Specifically, at the moment of choice, our
model simultaneously generates a neural signal for confidence.
Confidence can be estimated as a function of the differential
activity of the competing neural populations, |RA � RB|. Com-

pared with Bayesian inference models, in our model, there is
no explicit representation of probabilities such as likelihood or
posterior function. Indeed, all computations are carried out by
the fluctuating neural network dynamics. Therefore, confidence
estimation itself is simply a quantity that stochastically varies
over time and from trial to trial under the same stimulus
condition.

Our identification of a confidence signal, |RA � RB|, agrees
with the idea that, as a metacognitive process, confidence is
estimated directly on a decision process (Graziano and Sigman
2009; Graziano et al. 2010; Middlebrooks and Sommer 2011,
2012). At the same time, choice confidence is also dissociable
from whether the decision is correct or wrong in a single trial,
as illustrated by high-confidence error trials (Fig. 7A, bottom,
right). In line with our model, the EEG data from (Graziano et
al. 2010) showed that, at the neural level, choice confidence

Fig. 9. Choice confidence in a reaction time (RT) task. A: RT discrimination task with confidence rating. In task, a subject can indicate its choice at any time
after the motion onset simultaneously with a direct report of confidence. B: psychometric curves. C: chronometric curves. Pcorrect increases while RT decreases
with the motion strength. D–F: confidence reported as a post hoc feature of decision. D: choice confidence increases with motion strength (see also the result
in Fig. 5, Beck et al. 2008). E: confidence decreases as an inverse function of RT [cc � a/(t � b) � c; a � 91.24 ms, b � 1369.35 ms, c � 1.089 are parameters
to fit, R2 � 0.998; black line]. F: confidence increases (decreases) as a function of the motion strength in correct (error, respectively) trials. B and D imply that
choice confidence increases with Pcorrect. We found that, for difficult trials, the simulation exhibits overconfidence (confidence estimation is greater than correct
rate), whereas, for easy trials, it exhibits underconfidence (confidence estimation is lower than correct rate). G and H: variation of under-/overconfidence score
with the increase of confidence in the fixed-duration (FD) task with a delay of 627 ms and RT task, respectively. The network behaves with overconfidence (above
0) in very difficult trials (at 0, 3.2% and 6.4% motion strengths for FD task; at 0 and 1.6% motion strengths for RT task), but with underconfidence (below 0)
in easy and moderately difficult trials.
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could be dissociated from performance. Such dissociation is
naturally explained by attractor dynamics, which could yield
the same magnitude of the differential activity |RA � RB|, hence
the same confidence rating in correct and error trials. It is worth
noting that 1) RA and RB represent the choices of a decision
(not necessary to be a directional decision-making process); 2)
confidence estimation does not depend on a specific choice of
the decision (i.e., it does not exclusively rely on the activity of
the winner bump, or the losing bump) but a differential activity
between choices. In this case, one would expect that a sure
target is chosen when |RA � RB| is small or the downstream
neuronal activity is weak and that a nonsure target is chosen
when |RA � RB| is large or the downstream neuronal activity is
strong. This prediction from our model is consistent with the
observations in Komura et al. (2013), wherefore the finding of
pulvinar neuronal activity (Komura et al. 2013) could be an
example of |RA � RB| in the downstream read-out circuit of
confidence.

In our model, fast early divergence, i.e., the difference of
early buildup rates between RA and RB, has a predominant
effect on the choice and confidence. This is manifested in the
dependence of the choice confidence on the stimulus duration,
which saturates quickly for sufficiently long stimuli (Fig. 6D;
Wong et al. 2007). By contrast, in DDM, sensory evidence
contributes equally in time to confidence estimation. Future
experiments are needed to assess this different characteristic of
the attractor network model vs. DDM. Furthermore, the two
competing neural pools could also diverge slowly later in a
trial. In our model, persistent activity during the delay not only
maintains working memory but also continues to slowly inte-
grate signals from memory (Curtis and Lee 2010). This pro-
vides a neural mechanism for postdecision sampling (Resulaj
et al. 2009). For instance, Fig. 7B shows that the probability of
switching from an initial decision to Ts is higher in error trials,
in agreement with behavioral observation in a rat experiment
(Kepecs et al. 2008). This finding also sheds insights into the
phenomenon of changes of mind, which may result from the
instability (low confidence) of a choice (see also Albantakis
and Deco 2011).

Of note, in the monkey experiment, as well as in our model
simulations, the introduction of a sure target only serves as a
probe about the confidence of the system (Fig. 8). The proba-
bility of opting for the sure target is bounded (Figs. 3 and 8C),
so it represents a good choice for estimating confidence. The
real result, we emphasize here, is to quantify confidence as a
function of the neural activity |RA � RB|. Confidence thus
quantified should be applicable to all trials, even without sure
target presentation. Furthermore, in the analysis of Kiani and
Shadlen (2009), they also found that the probability of opting
for the sure target can be predicted using either f(|RA �
�RA�|) or f(|RB � �RB�|). Nevertheless, f(|RA � �RA�|) or
f(|RB � �RB�|) is not a good measure of confidence for an RT
task, for which either RA or RB is assumed to reach a fixed
threshold at the moment of the choice; therefore, f(|RA �
�RA�|) or f(|RB � �RB�|) would always be a fixed value
[f(|threshold � average|)] rather than a graded quantity that
varies from trial to trial (Kiani et al. 2014).

Comparison with existing models. Computational schemes
have been proposed for the study of confidence (Kepecs and
Mainen 2012; Kepecs et al. 2008; Kiani and Shadlen 2009;
Moreno-Bote 2010; Ratcliff and Starns 2009; Rolls et al.

2010a, 2010b; Vickers 1979). These models can be classified
into Bayesian inference models and neural network models.

In Bayesian inference models, one can either compute con-
fidence based on a single decision variable (Drugowitsch et al.
2012; Kiani and Shadlen 2009) or an optimal population code
(Beck et al. 2008). Kiani and Shadlen (2009) proposed that
confidence could be defined in terms of the log posterior ratio
for the two choices given the position of a decision variable
and elapsed time at decision, using DDM. This looks promis-
ing, yet it remains unclear what is a direct representation of a
decision variable exclusively for a choice. Moreover, for the
RT version of the task, this kind of model implies that the
position of a decision variable at decision time would be a
deterministic function of RT (either a constant or a time-
varying function like that in Drugowitsch et al. 2012); one can
thus find that confidence would also decrease deterministically
as a monotonic function of RT (Drugowitsch et al. 2012; Kiani
and Shadlen 2009; Volkmann 1934) on single trials. This idea,
however, failed to explain the widely overlapped RT distribu-
tions in different confidence categories (Ratcliff and Starns
2009). Such a strong correlation between confidence and RT or
performance can be eliminated through a two-stage DDM
(Pleskac and Busemeyer 2010), where additional process for
confidence is required. Nevertheless, in our model, perfor-
mance, RT, and confidence are naturally dissociated with each
other on single trials. Importantly, in a classic DDM model,
sensory evidence contributes equally in time to confidence
estimation, whereas, in our model, confidence estimation
would more be dominated by the early sensory evidence. Last,
in the Kiani and Shadlen model, choosing Ts uses a hard
thresholding process and has little to do with neural activity at
Ts response field, whereas, in our model, it generates from the
same sampling of stochastic neural dynamics as the other
choices (as indicated by data in Fig. 5, Kiani and Shadlen
2009).

On the other hand, the optimal population code model (Beck
et al. 2008) posits that confidence could be estimated as the
instantaneous differential activity, |RA � RB|, without explicit
use of RT as our model. A notable difference between our
model and theirs is that the optimal population code model
requires LIP neural circuit to be a fine-tuned noiseless integra-
tor. This can be easily tested experimentally because our model
predicts that confidence estimation would differ at different
times in the delay, whereas their model would expect that to be
constant. Generally, these Bayesian inference models (Beck et
al. 2008; Kiani and Shadlen 2009) assert that confidence must
be based on explicit neural representation of probability func-
tions, such as likelihood at any moment in time and in single
trials. Our model demonstrates an alternative perspective.
Whereas probability representations may be a perfectly valid
mathematical description of the aggregated statistics across
trials, they should not be confused with what actually happens
in single trials, which is stochastic neural dynamics.

Insabato et al. (2010) and Rolls et al. (2010a, 2010b)
extended the model of Wang (2002) to account for the confi-
dence estimation and its behavioral readout. Insabato et al.
(2010) argued that confidence can be read out as a function of
RA � RB, and Rolls et al. (2010a, 2010b) claimed that it can be
further approximated as a function of the neural activity of the
winning pool. All these models showed some consistencies
with the existing data. However, as discussed in our model,
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neither of them can exclusively demonstrate the position of a
neural trajectory related to the choice attractor and thus the
choice confidence at any time during a decision. These results
seem only true at the moment when a decision is made exactly
around a choice attractor in the decision space, where |RA � RB|
� |RA � RB| � max(RA,RB) because min(RA,RB) ��
max(RA,RB). Therefore, these models would fail to predict
confidence using a fixed decision boundary or capture the
relationship between neural activities in LIP with Psure or
high-confidence errors in single trials. Alternatively, our model
does not require a time-varying decision threshold, estimates
confidence simply as a function of instantaneous |RA � RB| at
the moment of choice on single trials, and can correctly
reproduce the salient behavioral relationships between confi-
dence, RT, and performance on single trials and those across
trials.

Confidence rating is important for monitoring cognition
when there is uncertainty, and two types of uncertainty should
be distinguished, namely Brunswikian (external) uncertainty
originating from incomplete states of knowledge (noisy or
ambiguous sensory data) and Thurstonian (internal) uncer-
tainty attributable to variations intrinsic to the brain (Juslin and
Olsson 1997). The noise level in a decision circuit has only
recently begun to be examined experimentally (Brunton et al.
2013). Our work provides a computational framework to detect
these two effects using a spiking-neuron circuit. Our model can
also be extended in several important ways. It still remains an
open question how confidence estimation, as a sigmoid func-
tion of the differential activity in downstream neural circuits,
can be read out for a direct report and to guide future behavior.
In fact, confidence is commonly assessed without a verbal
report using a two-stage PDW task; subjects perform a first-
order discrimination task and then make a high-low bet on the
outcome of the decision (Middlebrooks and Sommer 2011,
2012; Smith 2009) (see also Kiani et al. 2011), where the
probability for a high bet is considered as a readout of confi-
dence estimation. A plausible neural circuit for explicit repre-
sentation and memory of a confidence signal is needed for the
two-stage PDW (Komura et al. 2013; Middlebrooks and Som-
mer 2011, 2012) and should be examined in the future. A
biologically plausible neural circuit to computing |RA � RB|
involves neurons in pulvinar (Komura et al. 2013), where the
neurons fires highly in nonsure-target trials and low in sure-
target trials. Moreover, Kiani et al. (2014) recently found that
confidence could also decrease in error trials with the difficulty
of task, which poses a challenge to our model prediction (Fig.
9F). One possible direction in the future is to understand the
mechanism of error trial. Nevertheless, what is robust about the
prediction in our model compared with their observation is that
the difference of the confidence between correct and error
decreases with the difficulty of task (Lak et al. 2014). Second,
for the sake of simplicity, we assumed that the amount of Ts
reward is encoded as the onset strength of its target input,
which mimics the firing activity of midbrain dopamine neurons
in response to the targets with different amounts of reward
(Tobler et al. 2005). Our model predicts that both Psure and
Pcorrect increase with the reward of Ts (data not shown). This
then brings up two inquiries for future studies: 1) what a
reasonable amount of Ts reward used to measure confidence in
a PDW task would be (Dienes and Seth 2010; Fleming and
Dolan 2010; Persaud et al. 2007) and 2) how the amount of Ts

reward used is learned through neural dynamics and applied to
the decision circuit (Soltani and Wang 2006). Moreover, one
can extend our model to investigate confidence signals for
multiple-choice decision tasks and effects of microstimulation
on confidence (Fetsch et al. 2014). Specifically, one can incor-
porate known effects of microstimulation on MT inputs in our
model to perform the experiment of Fetsch et al. (2014) using
computer simulation and then test its effects on confidence.
Finally, confidence may be represented in a distributed net-
work in the brain (Del Cul et al. 2009); the dynamical nature
and computational principle remains to be elucidated in future
research. In conclusion, we found it remarkable that a previ-
ously established model of decision making (Furman and
Wang 2008) naturally accounts for all the salient behavioral
and neurophysiological observations of the Kiani-Shadlen ex-
periment (2009). Furthermore, it reproduces the observation
that confidence decreases with response time in an RT version
of the task. The model also offers testable predictions about the
changes of mind and, unexpectedly, the hard-easy effect ob-
served in human studies, which naturally emerges from the
model. Taken together, our work establishes that a dynamical
system of stochastic neural population can underlie even the
seemingly abstract metacognitive concept of confidence.
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