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SUMMARY

Decisionmaking involves dynamic interplay between
internal judgements and external perception, which
has been investigated in delayed match-to-category
(DMC) experiments. Our analysis of neural record-
ings shows that, duringDMC tasks, LIP andPFC neu-
rons demonstrate mixed, time-varying, and hetero-
geneous selectivity, but previous theoretical work
has not established the link between these neural
characteristics and population-level computations.
We trained a recurrent network model to perform
DMC tasks and found that the model can remarkably
reproduce key features of neuronal selectivity at the
single-neuron and population levels. Analysis of the
trained networks elucidates that robust transient tra-
jectories of the neural population are the key driver of
sequential categorical decisions. The directions of
trajectories are governed by network self-organized
connectivity, defining a ‘‘neural landscape’’ consist-
ing of a task-tailored arrangement of slow states
and dynamical tunnels. With this model, we can iden-
tify functionally relevant circuit motifs and generalize
the framework to solve other categorization tasks.

INTRODUCTION

Many human behaviors can be viewed as a series of category-

based computations (Roelfsema et al., 2003; Rabinovich and

Varona, 2011). For example, shopping requires determining cat-

egories of desired items, then using that category information to

guide our navigation of the store. Neurophysiological studies

have investigated the neural basis of such behavior using de-

layedmatch-to-category (DMC) tasks in whichmonkeys indicate

whether a test stimulus is a categorical match to a previously

presented sample stimulus. Previous work revealed that, in ani-

mals trained to perform DMC tasks, neural responses in the
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lateral intraparietal area (LIP) and prefrontal cortex (PFC) can

exhibit robust selectivity for the category of the sample stimulus

that persists across the memory delay period (Freedman et al.,

2001; Freedman and Assad, 2006; Swaminathan and Freedman,

2012).

Few computational models have addressed the neural mech-

anisms underlying sequential category computations as in the

DMC task. One class of models suggests that serial, categorical

decisions rely on an interplay between multiple subpopulations

that each encode specific task parameters, such as stimulus fea-

tures, categories, rules, and choices (Amit et al., 1994; Ardid and

Wang, 2013; Engel and Wang, 2011). These subpopulations are

endowed with strong mutual excitations among neurons that

prefer the same stimulus feature, driving a stable memory of

that feature (Wong andWang, 2006; Wang, 2001). Thesemodels

elucidated candidate mechanisms of delay-period-persistent

selectivity, but they are not designed to address the diversity

or temporal variability in neural responses that are apparent in

neural data. In particular, the majority of neurons are responsive

tomultiple task variables (Raposo et al., 2014; Rigotti et al., 2013;

Ibos and Freedman, 2014, 2016; Mante et al., 2013; Freedman

and Assad, 2016), and neural encoding often shows baffling

temporal variability (Brody et al., 2003a; Crowe et al., 2010;

Jun et al., 2010; Shafi et al., 2007). To address these phenom-

ena, recent studies considered an alternative hypothesis that

information is distributed randomly within the neural network

(Rigotti et al., 2010; Raposo et al., 2014). The idea can be imple-

mented with a network with random connectivity, and to

generate different behaviors, downstream circuits can read out

relevant information through optimized synaptic weights

(Jaeger, 2001; Maass et al., 2002; Rigotti et al., 2010). However,

random networks generally do not capture task-specific repre-

sentations, which can only be acquired through learning. In this

realm, we lack a unified framework that can recapitulate all these

diverse experimental findings.

To address this problem, we trained a recurrent network

model to solve DMC tasks and compared the dynamics of the

model network to LIP and PFC data from monkeys performing

the DMC task (Freedman and Assad, 2006; Swaminathan and

Freedman, 2012). We found that appropriately trained networks
c.
creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:xjwang@nyu.edu
http://dx.doi.org/10.1016/j.neuron.2017.03.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2017.03.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

B

Figure 1. Delayed Match-to-Category Task and Neurophysiological

Recordings
(A) Time course of a delayed match-to-category (DMC) experiment. A sample

stimulus is followed by a short delay and a test stimulus. To receive reward,

subjects must respond whether the sample and test stimuli belong to the same

(match) or different (non-match) categories.

(B) Sample and test stimuli are randomly drawn from a set of dot-motion stimuli

divided into two categories (red and blue arrows). We analyzed neural

recordings from two experiments. The first experiment used 12 motion

directions, and LIP neurons were recorded (denoted LIP1). The second

experiment used 6motion directions, and neurons from LIP (denoted LIP2) and

PFC were recorded.
reproduce key features of category-dependent responses in the

neural data that are not accounted for by previous models.

RESULTS

Delayed Match-to-Category Task and Model
Architecture
We analyzed neural recordings from the studies of Freedman

and Assad (2006) and Swaminathan and Freedman (2012), in

which Macaque monkeys were trained on DMC tasks. In each

DMC trial, the stimulus sequence consists of a fixation spot, a

sample stimulus, a delay period, and a test stimulus (Figure 1A).

Both sample and test stimuli were randomly drawn from a set of

random-dot-motion directions that were evenly spaced from

0+ to 360+ and divided arbitrarily into two categories (marked

by red and blue colors in Figure 1B). Subjects learned to report

whether the sample and test stimuli belong to the same category

(match) or different categories (non-match). The first and second

study used 12 and 6 evenly spaced motion directions (30+ and
60+ apart), respectively. For the first study, we have 156 lateral

intraparietal (LIP) neurons from two monkeys. For the second

study, we have 74 LIP and 380 prefrontal neurons (PFC) in two

other monkeys. We refer to the LIP populations from the first

and second experiments as the LIP1 and LIP2, respectively.

Previous studies showed that firing rates of LIP and PFC neu-

rons are markedly tuned to the learned stimulus categories,

although the strengths and latencies of categorical signals may

differ across areas (Freedman and Assad, 2006; Swaminathan

and Freedman, 2012; Swaminathan et al., 2013). The broad sim-

ilarity in category-related responses suggests that they play

overlapping roles in solving the DMC task (Goodwin et al.,

2012; Merchant et al., 2011). Instead of stressing the difference

between the two regions, this work focuses on understanding

the common response patterns observed in both areas.

We trained a recurrent neural network to solve the DMC task.

The recurrent network represents a cortical micro-circuit in either

the prefrontal or the parietal region; this micro-circuit receives

sensory information from visual areas and sends signals to

triggermovements inmotor areas (Andersen et al., 1990; Cromer

et al., 2011; Lewis and Van Essen, 2000; Miller et al., 2002). The

network is sparsely connected to noisy input neurons that

encode the direction of the sample and test stimuli, mimicking di-

rection-tuned activity in area MT (Figure 2B, top; Freedman and

Assad, 2006; Born and Bradley, 2005). A subset of the recurrent

population is connected to two action neuron pools, whose ac-

tivities reflect match or non-match decisions. All connections

(input, output, and recurrent) are trained with a supervised

method (a Hessian-free algorithm; Martens and Sutskever,

2011;Mante et al., 2013), which adjusts synaptic weights tomini-

mize the difference between the network outputs and specified

target responses (i.e., to minimize errors). We instructed the

match neuron to hold activity at zero from the beginning of the

trial through the delay period, then either to reach a value of

5 (in arbitrary units) at 200 ms after test stimulus onset on match

trials or to remain at zero throughout non-match trials. The anal-

ogous pattern holds for the non-match neurons. To determine

the model’s choice, the action neurons’ activity is passed

through a nonlinear threshold function (Figure 2B, bottom; see

also STAR Methods). The match (or non-match) choice is

selected when the function value of the match (or non-match)

neuron is higher than a threshold of 0.85. We added other output

neurons to help stabilize the networks during the resting and

post-choice periods (see Figures S1A and S1B).

There are many network configurations that can produce the

appropriate output given the specified sensory input (Mante

et al., 2013; Barak et al., 2013; Sussillo, 2014). We guide the al-

gorithm to find a subset of solutions that comply with biological

constraints by employing additional training strategies (see Fig-

ure S1 and STAR Methods). First, the activity of recurrent neu-

rons is restricted to positive values, as is true for neuronal firing

rates. Second, the network is trained not only to minimize errors

but also to attain sparse synaptic connections. This is achieved

by constraining the norm of synaptic weights and eliminating

weak synapses iteratively. The target probability of connection

is approximately 12%, which is comparable to measurements

frommammalian cortical circuits (Song et al., 2005). Third, single

neurons should exhibit low spontaneous firing rates when the
Neuron 93, 1504–1517, March 22, 2017 1505
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Figure 2. Model Structure and Training Protocol

(A) A set of recurrently connected neurons were trained to solve the DMC paradigm. The recurrent population is connected to direction-selective input units, and

approximately one-fifth of recurrent neurons (blue hatched circles) are connected to two output units representing match and non-match choices. All synapses

are updated with a supervised learning algorithm.

(B) Activity of the input neurons encode directions of sample and test stimuli (top panel). x -axis, time; y -axis, input neurons labeled by preferred directions. Neural

activity is color-coded. After training, the model generates appropriate decision output. The match output unit (center) shows ramping activation during match

trials (green trace) and remains silent during non-match trials (brown trace). The opposite pattern holds in the non-match output unit (bottom). x -axis, time; y -axis,

neural activity; shaded areas, SD across trials. Red lines mark the activity threshold where behavioral choice is registered.

(C) The psychometric functions of animal subjects (left) compared to that of model networks (right). Error bars indicate SD across all recording sessions for

animals and across ten network realizations for model.
network is not performing the task. To satisfy this requirement,

we instructed the network to hold the sum of all neurons’ activity

to a small value for 1 s before the trial onset (mean activity =

0.01). Fourth, we employed a progressive training protocol

similar to that used to train monkeys on the DMC task (Freedman

and Assad, 2006; Swaminathan and Freedman, 2012), whereby

the network first started by learning the easiest version of the

DMC task with only two stimuli; then, intrinsic noise and more

stimuli are gradually introduced. Lastly, the delay durations var-

ied slightly from trial to trial during training (0:9--1:1 ms), resulting

in a model that can perform the task with a larger range of delays

(Barak et al., 2013; Figure S1C). These constraints andmodifica-

tions greatly enhanced success rate and the quality of training

outcomes.

Training was terminated when the accuracy of the model

matched the average performance of animal subjects

ð88:76%Þ. Both the model and monkeys are less accurate

when categorizing near-boundary stimuli (e.g., 15+ away from

the boundary; Figure 2C).

The resulting trained networks provide a candidate dynamical

mechanism for solving DMC tasks. To test whether the trained

network uses mechanisms similar to real neuronal networks,

the model activity must be compared to the recorded experi-

mental neural data.
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Heterogeneity in Temporal Profiles of Category
Selectivity
We compared the temporal profiles of category selectivity of LIP

and PFC neural recordings to those of trained model networks.

To quantify the temporal properties of category selectivity, we

tested whether the firing rates at each time window are signifi-

cantly modulated by stimulus categories (t tests, p< 0:05, Bon-

ferroni corrected). A ‘‘category selectivity phase’’ is defined as

a series of consecutive time windows where neural activity

shows significant modulation by stimulus categories. The neu-

ron’s category selectivity duration is the duration of its longest

selectivity phase. The strength of category encoding for each

time bin within selectivity phases was quantified by the sensi-

tivity index or d0 (see STAR Methods).

Figure 3A illustrates variability in the temporal profiles of cate-

gory-dependent firing rates for LIP and PFC neurons. Many neu-

rons showed persistent category-dependent responses during

the delay period (Figure 3A, far left). In the majority of neurons,

the category-selective firing rates undergo marked changes

through the delay period. For instance, the category-dependent

firing pattern may decay before the end of the delay (Figure 3A,

center left) or may commence in the middle of delay (Figure 3A,

center right). Furthermore, some neurons switch their category

preference in the middle of a trial (Figure 3A, far right). In
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Figure 3. Both Neural Recordings and Model Networks Demonstrate Heterogeneity in the Temporal Profiles of Category Selectivity
(A) Examples of different classes of category selectivity profiles from LIP and PFC populations. Average firing response as a function of time, color-coded by

stimulus directions from red to blue category. x -axis, time from sample onset; y -axis, average firing rate. The colored bar on top shows category-selective period.

Color (red or blue) indicates neurons’ category preference, while color intensity indicates category tuning strength.

(B) Average neural response of model units with same plotting convention as in (A). Overall, both neural data and model demonstrate heterogeneity in selectivity

time course, such as persistent, transient, and switching selectivity.

(C and D) Colored heatmaps showing category selectivity profiles of all neurons in the LIP2 dataset (N= 61, C) and of a trainedmodel (N= 122, D) with same color-

coding convention as colored bars in (A) and (B). Neurons with no selectivity phase are excluded. Across both neural data and model, neurons’ category

selectivity latencies and durations are highly variable. x -axis, time; y -axis, neurons sorted by category selectivity latency.
congruence to the neural data, the trainedmodel exhibits hetero-

geneity in category selectivity profiles, in which persistent, tran-

sient, and switching selectivity patterns are observed (Figure 3B).

We also quantified fractions of neuronswith persistent, transient,

and switching selectivity and found that neural data and model

show similar trends (Figure S2A).

To visualize the heterogeneity at the population level, we

plotted d0 of all neurons sorted by the onset of category selec-

tivity from earliest to latest (Figures 3C and 3D). All heatmaps

of neural data confirmed two important observations (LIP2 data-

set, Figure 3C; LIP1 and PFC datasets, Figures S2B and S2C).
First, neurons can become selective to categories at any time

point during the trial. The category selectivity phase does not

necessarily align with or overlap with the sample stimulus, which

originates the category memory. Second, we observed hetero-

geneity in the duration of category selectivity across the popula-

tion. The distribution of category selectivity durations shows a

long tail; most neurons exhibit selectivity over short durations,

but a small fraction of persistent neurons are consistently de-

tected in all datasets (Figures S2D–S2G). The pattern of category

selectivity in model populations reproduces all main features of

the neural data.
Neuron 93, 1504–1517, March 22, 2017 1507
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Figure 4. The Model Captures Essential

Features in Population Response Patterns

of LIP and PFC Neurons

(A–C) Neural response trajectories during sample

period from LIP1 (A), LIP2 (B), and PFC (C) data-

sets. During the sample period (left column), tra-

jectories begin at roughly the same location for all

stimulus directions (black dots correspond to the

onset of sample epoch), then fan out into elliptical

shapes encoding the directions of stimuli and

some category information. Colors of traces

encode stimulus identities by the same convention

as in Figure 3.

(E–G) Neural response trajectories during delay

period from LIP1 (E), LIP2 (F). and PFC (G). During

the delay (middle columns), population trajectories

have two main components encoding stimulus

categories in stable and time-varying manners,

respectively. x-axis, relative rate (principal

component score); y-axis, time relative to sample

onset.

(I–K) Neural response trajectories during test

period from LIP1 (I), LIP2 (J), and PFC (K). At the

beginning of test period (right column), trajectories

encode sample categories (black dots), then

neural traces diverge into four separate clusters

encoding the four possible sample-test category

combinations. BB (dark blue lines) corresponds to

blue sample category and blue test category

condition; similarly, RR (dark red) corresponds to red sample and red test, BR (purple) corresponds to blue sample and red test, and RB (orange) corresponds to

red sample and blue test. Finally, the traces for match conditions (BB and RR) unfold along the same direction; analogously, so do non-match conditions

(BR and RB).

(D, H, and L) Population trajectories of a representativemodel instance analyzed by the same procedures. Themodel reproduces population response patterns of

neural data in sample (D), delay (H), and test (L) epochs.
Furthermore, our trained networks reproduce mixed category

andmatch selectivity, which is evident in our neural data (Figures

S2H and S2I) and other studies (Ibos and Freedman, 2014, 2016;

Park et al., 2014; Rishel et al., 2013; Mante et al., 2013; Rigotti

et al., 2013). This suggests that a large portion of cortical neurons

and model neurons participate in more than one computation.

Population Response Trajectories
We investigated whether neural data and the model exhibit

similar patterns of population response trajectories. To this

end, we first analyzed the dynamics of neural population re-

sponses in LIP and PFC. A neural state is a point in high-dimen-

sional state space where each dimension corresponds to the

average firing rate of a neuron at a given time. As neural activity

changes over time, a sequence of neural states at consecutive

time points forms a population trajectory through state space.

For each population, we visualized neural trajectories in a low-

dimensional subspace that is most responsive to task conditions

using demixing principal component analysis (DPCA) (Machens,

2010; Brendel et al., 2011; Machens et al., 2010), which finds a

small set of orthogonal axes that not only captures themost vari-

ance in data (like standard PCA) but also segregates response

variability due to different task variables onto separate axes. In

our case, DPCA yields population response components ranging

from one that captures the most variance due to task conditions

to one that captures the most variance due to changes in time.

We applied DPCA to the mean population response during the
1508 Neuron 93, 1504–1517, March 22, 2017
sample (�100--650 ms relative to sample onset), delay

(800--1;550 ms), and test (1;600--2;150 ms) epochs separately

(see STAR Methods). Note that task conditions were defined

by sample motion directions during the sample and delay pe-

riods and by sample categories and test directions during the

test period.

For the sample period, we applied DPCA, removed the most

time-sensitive component, and represented the remaining com-

ponents on a 2D axis by amultidimensional scaling analysis (Fig-

ures 4A–4C; see STARMethods). At the beginning of the sample

epoch, population trajectories originated at the same baseline

for all stimuli (black dots, Figures 4A–4C); they then fan out radi-

ally, discriminating different sample directions. At the end of

stimulus presentation (colored dots, Figures 4A–4C), neural

states for all stimulus directions appear in an elliptical configura-

tion, where the stimuli at the middle of both categories (dark blue

and red dots, Figures 4A–4C) elicit more distinct population re-

sponses than the stimuli close to category boundaries (light

blue and red dots, Figures 4A–4C). Overall, LIP and PFC popula-

tions show a mixed encoding of sample directions and cate-

gories, consistent with our earlier report in Engel et al. (2015).

For the delay epoch, we applied DPCA to delay responses

(800--1;550 ms) and projected responses of the whole trial

(�250--1;900 ms) onto DPCA axes (see STAR Methods). Here

we show two components that participate in the maintenance

of categorical working memory (Figures 4E–4G; see also Fig-

ure S3). Components in the first column capture the most
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Figure 5. Overall Dynamical Landscape of the Trained Network

(A) A conceptual schematic portraying the series of transitions between

behavioral epochs to solve the DMC task.

(B) Neural trajectories of themodel implementing the computational process in

(A). Neural states evolve serially from the resting state (gray cross) to states

associated with sample categories (red and blue dots), then category working

memory (red and blue stars), sample-test category combinations (dark blue,

dark red, orange, and purple lines), and finally match and non-match choices

(green and brown crosses, respectively). Task epoch labels (sample, delay,

test) indicate neural states at the beginning of the epoch. All crosses denote

stable states; stars denote slow or fixed points associated to workingmemory,

and dots denote transient states.
variance in the delay response due to changes in stimuli (35:5%,

66:3%, and 53:2% for LIP1, LIP2, and PFC, respectively), which

constitute a much larger proportion than the second largest

component (4:9%, 4:0%, and 10:2%). The components in the

first column depict strong and stable encoding of sample cate-

gories, representing the main mode of working memory (Figures

4E–4G, left side). The second column shows components with

the largest mixture of variance due to changes in time and stim-

uli, and the neural traces show time-varying category working

memory that switches categorical preferencemid-delay (Figures

4E–4G, right side). Notably, neural trajectories during the sample

and delay epochs show that LIP and PFC populations encode

categories by several independent components with different

temporal profiles.

For the test epoch, the procedure was similar to the sample

epoch except that the neural response was averaged across tri-

als that share the same sample category and test direction. The

neural trajectories are grouped into four conditions: BB (dark

blue color, Figures 4I–4K) corresponds to trials with blue sample

category and blue test category; RR (dark red, Figures 4I–4K)

corresponds to red sample and red test; BR (purple, Figures

4I–4K) corresponds to blue sample and red test; and RB (orange,

Figures 4I–4K) corresponds to red sample and blue test. At the
beginning of the test period, neural trajectories are clustered ac-

cording to the sample categories (black dots, Figures 4I–4K). As

the test period evolves, the neural traces diverge into four sepa-

rate clusters encoding sample and test category combinations

(BB, RR, BR, and RB conditions). Finally, the trajectories corre-

sponding to match conditions (BB and RR) travel toward the

same location, and analogously so, for non-match conditions

(BR and RB). Overall, the test-related trajectories encode sam-

ple-test category combinations and form states corresponding

to match and non-match decisions.

The population trajectories of the trained model networks

remarkably reproduce the main features of those from LIP and

PFC for all task epochswhen the same analyses are applied (Fig-

ures 4D, 4H, and 4L). Mixed-direction encoding and categorical

encoding are apparent during the sample period (Figure 4D). The

population dynamics during the delay encode categories in both

stable and time-varying manners (Figure 4H). Lastly, population

responses encode sample-test category conditions and

converge toward match or non-match states during the test

period (Figure 4L). Note that, although the model incorporates

a large amount of noise and heterogeneity, the neural data

tend to show more variability, especially variance due to

changes in time within the trial, which may reflect a timing signal

not incorporated in our model (Figure S3). Furthermore, the

model tends to be more category-selective than the data,

perhaps because the model is a smaller network that is exclu-

sively trained on DMC tasks.

Robust Transient Dynamics Underlie DMC
Computations
We characterized the dynamical mechanisms of the model,

focusing on two objectives. First, the existence and abundance

of mixed-selectivity neurons (Ibos and Freedman, 2014, 2016;

Mante et al., 2013; Park et al., 2014; Raposo et al., 2014; Rigotti

et al., 2013; Rishel et al, 2013) and the time-varying selectivity for

task-relevant variables at both single-neuron (Brody et al.,

2003a; Jun et al., 2010; Shafi et al., 2007) and population levels

(Machens, 2010; Crowe et al., 2010; Meyers et al., 2008; Wohrer

et al., 2013) have sparked a debate on the dynamical nature of

working memory (Druckmann and Chklovskii, 2012; Goldman,

2009; Sarma et al., 2016; Savin and Triesch, 2014; Singh and El-

iasmith, 2006). Since the model captures all these features, it is

possible now to pinpoint the working memory dynamics that

give rise to these patterns of selectivity. Second, we sought to

understand how the sequential categorical computations are

carried out—i.e., how the sample category information is en-

coded, maintained, and combined with the test category to

generate appropriate behavioral choices.

Figures 5A–5B illustrates the overall trajectories of the model

network during DMC tasks, visualized by plotting the largest

three principal components of the neural activity. The state

space contains key attracting fixed points or unstable saddle

points (at which neural activity has near-zero velocity). While per-

forming the task, the network undertakes slow and reliable tran-

sitions through these key regions. The directions of movement

are determined by the current state location and input. Neural

states evolve from the resting state (gray cross, Figures 5A and

5B) to states associated with sample categories (red and blue
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Figure 6. The Trained Network Forms a

Dynamical Landscape that Gives Rise to

Robust Trajectories and Executes Cate-

gory-Based Computations

(A) Neural trajectories during sample categoriza-

tion. At the beginning of a trial, neural states stay

within the basin of attraction of the resting state

fixed point (gray cross), even upon receiving

prolonged (1 s) noisy input (inset, three noisy tra-

jectories plotted in gray). Under the influence of

direction-tuned inputs (due to sample stimulus

presentation), a set of stable fixed points appear in

state space (red and blue crosses, colors denote

stimulus directions), propelling the states toward

areas associated to red or blue categories.

(B and C) Neural landscape associated to cate-

gory workingmemory. (B) Red and blue dots mark

possible locations of the neural states at the end

of the sample period (with noise). Red and blue

lines show noiseless trajectories during the delay

originating from these positions. Black arrows

mark flow directions. (C) The line shows an

example neural state path selected from the tra-

jectories in (B). Black dots mark the neural states

at different time points during the delay in 150 ms

increments. Arrows show a velocity vector field at

states nearby the trajectory (with norms scaled down for clarity). The working memory landscape resembles tunnels that force neural states to flow along two

possible routes (arrows in C show the movement flow within the tunnel), generating robust time-varying memory of sample categories. The neural state

movements slow down or stop at the end of delay (marked by shorter distance between dots near the end of delay in C).

(D and E) Neural trajectories duringmatch decisions. (D) Red and blue dots mark locations that neural states occupy at the end of the delay (with noise). When the

test stimuli appear, neural statesmove toward the same input-dependent fixed points as shown in (A). Since there are two possible starting regions (associated to

red or blue sample categories), trajectories diverge along four separate streams, encoding sample-test category conditions. (E) Continuing from (D), when test

stimuli are removed, neural states fall into the basins of attraction corresponding to match or non-match stable states.

Data plotted come from a representative model instance.
dots mark the end of sample period, Figures 5A and 5B), then

category working memory (red and blue stars mark the end of

delay period, Figures 5A and 5B), sample-test category combi-

nations (dark blue, dark red, orange, and purple dots and lines

in Figures 5A and 5B, respectively), and, finally, match or non-

match decision states (green and brown crosses, Figures 5A

and 5B). The whole series of state transitions solves the

DMC task.

We characterized the network dynamics at each time epoch in

more detail. During rest and fixation periods, the network trajec-

tories are confined within the resting state’s basin of attraction

despite the noisy sensory signals the network receives (gray

traces, Figure 6A inset). When the system receives a stimulus-

selective input, stimuli in different categories propel neural states

to separate directions (Figure S4A) and, over time, out of the

resting state basin (Figures 6A and S4B). If the network inputs

stay on for a long period, the network would converge to stim-

ulus-dependent steady states (red and blue crosses, Figure 6A),

which are clustered based on stimulus categories. The arrange-

ment of input-dependent stable states (Rabinovich et al., 2001,

2008) results in directional neural trajectories that distinguish be-

tween stimulus categories.

At the end of the sample period, the network’s slow and tran-

sient states are distributed within two regions in state space (red

and blue dots, Figure 6B; variability in locations is a result of

noise, and network’s low velocity is shown in Figure S4C). Using

these states as initial conditions, we simulated network activity
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without input and noise. We observed that network states relax

along two narrowing tunnels, one for each sample category,

maintaining categorymemories in a dynamicmanner (Figure 6B).

The velocity vector field near one of the tunnel centers is plotted

in Figure 6C, where arrow lengths indicate relative velocity

magnitude. The plot shows that the neural state moves more

slowly as it approaches the end of the tunnel (see also Fig-

ure S4D), and arrow directions point toward the middle of the

tunnel, funneling the system’s state to a specific region near

the end of the delay. This dynamical analysis revealed that cate-

gorical working memory is maintained by robust trajectories,

which explains why we observed time-varying selectivity at

both single-neuron (Figure 3) and population (Figure 4) levels.

Note that states associated with stimuli near the category

boundary are closer to each other at the beginning of the delay

than states of stimuli further away from the boundary (pale red

and blue lines in Figures 6A and 6B). Misclassification occurs

when the end-of-sample states stray outside of the tunnel under

the influence of noise and end up either in the wrong categorical

tunnel or in the basins associated to rest state or choices (Fig-

ure S4E). This takes place more often for near-boundary stimuli,

leading to poorer performance, as shown in Figure 2C.

The end-of-delay regions are in the proximity of saddle or sta-

ble points (stability of this state varies across networks trained by

an identical protocol), leading to low network velocity and keep-

ing thememory of categories for an extended period. This allows

the networks to perform well even when delay durations vary



(accuracy >70% in the range of 0:7--1:3 s delay) (Figure S1C).

Note that if the delay is prolonged much longer than 1 s, our

simulation shows two possible outcomes. First, if stable states

associated to categorical working memory emerged during

training, neural states simply rest in stable states. We observe

that category-related fixed points are likely to emerge if the

network is trained with variable delay duration randomly drawn

from a larger range (0:8-- 2 s, Figure S5). Second, prolonged de-

lays may lead to a gradual decay of working memory whereby

the network collapses to fixed points associated to resting state

or random choices. The neural datasets we investigate cannot

distinguish between these two scenarios.

At the onset of the test period, neural states are distributed be-

tween two regions of state space associated to red and blue cat-

egories of working memory (red and blue dots in Figure 6D); vari-

ability in state locations is due to noise. When the test stimulus is

introduced, the direction-selective input shifts the landscape in

the same fashion as in the sample period (Figure 6A), directing

the network toward stimulus-dependent stable states. However,

since trajectories are launched from two possible initial locations

depending on the sample category, the neural paths split into

four separate streams encoding sample-test category combina-

tions (dark blue, dark red, purple, and orange lines in Figure 6D),

bringing neural states to four separate clusters of transient

states. This dynamical picture provides a concrete example of

state-dependent computations in which the same stimulus can

be interpreted differently or lead to different behavioral out-

comes depending on the prior experience of the network (Buo-

nomano and Maass, 2009).

Soon after the test stimulus appears, thematch (or non-match)

output neuron can read out from the recurrent neural states and

ramp up to response threshold during the match (or non-match)

trial. The response time is usually within a few hundred millisec-

onds after the test stimulus onset. Finally, after the response is

committed and test stimulus is removed, the network relaxes

along its natural landscape. The four regions in state space

(dots in Figure 6E) are mapped onto two steady states (crosses

in Figure 6E); RR and BB traces go to one point (match attractor),

while RB and BR traces go to a separate point (non-match at-

tractor). These stable states complete the sequence of DMC

computations.

The dynamics of the model reveal that a single cortical

network can carry out a series of computations by utilizing

different regions of state space to perform different computa-

tions. This idea is well supported by recent work investigating

sensory encoding (Rabinovich et al., 2001, 2008), decision pro-

cesses (Raposo et al., 2014; Mante et al., 2013; Murakami and

Mainen, 2015), and movement execution (Churchland et al.,

2012; Hennequin et al., 2014). To understand computational

mechanisms, one must consider the population dynamics as a

whole. Observing this network-level phenomenon through the

activity of a single neuron amounts to watching a moving object

in three-dimensional space through its one-dimensional projec-

tion. The projected image may miss salient information (such as

categorical discrimination) at some moments, or it may contain

information from more than one process. Therefore, mixed and

time-varying selectivity are expected and observed at the single

neuron level.
Structural and Functional Connectivity of Trained
Networks
We performed a series of analyses to understand the connec-

tivity structure that governs robust transient dynamics. We

compared our trained recurrent networks with randomly con-

nected networks (RCNs), which were previously investigated

as a source of mixed time-varying selectivity (Rigotti et al.,

2010; Barak et al., 2013). We found that, although RCNs encode

a mixture of stimulus- and time-dependent variability, they do

not exhibit the self-generated, categorical neuronal coding dur-

ing the sample and/or delay periods. In particular, in both neural

data and networks with trained recurrent connections, the ma-

jority of neurons with persistent selectivity are strong categorical

discriminators, whereas in RCNs, persistent representation is

not category-specific (Figures S6A–S6F). However, units in our

recurrent neural network do display mixed selectivity; therefore,

this work extends the work of Rigotti et al. (2010) to networks

with wiring structures that emerge from training to perform a

cognitive task.

In trained networks, the distribution of synaptic connections

is sparse and unimodal with mean weight equal to zero (Fig-

ure S6G), but exhibits a clear hierarchical structure not present

in RCNs. To reveal the hierarchy, we computed degree centrality,

defined as the total number of connections each neuron sends

(out-degree) and receives (in-degree). All trained connectivity ex-

hibits heavy-tailed degree distributions—i.e., few neurons are

connected to large numbers of neighbors acting as network

hubs (Figure 7A, mean kurtosis for all ten networks = 18:341,

p= 0:005). Furthermore, trained networks also exhibit a high

correlation between in-degree and out-degree (Figure 7B;

Spearman rank correlation, N= 150, r= 0:546, P< 10�7), sug-

gesting that hub neurons aggregate information from them and

broadcast it to largenumbers of neighbors.Neuronswith highde-

greealso tend to have larger positive incomingconnections (large

in-strength, Figure S6H) and larger average activity (Figure S6I)

than their low-degree counterparts, whichmeans that these neu-

rons have greater influence on neural state trajectories.

The robust dynamics underlying sequential decisions result

from ongoing competition and cooperation among neurons

within the circuit. We measured neural response similarity

ðrresponseÞ, defined as the covariance between synaptic currents

of neural pairs across task conditions (see STAR Methods),

and structural coupling, defined as the sum of synaptic connec-

tions from neuron i to j and from j to i: The rresponse is correlated

with structural coupling in all task epochs (Pearson correlation,

average r = 0:176, P< 10�4; see statistical test against null

models in Figure S6J), suggesting that neurons with similar cate-

gory or match selectivity tend to have strong positive synaptic

couplings, while neurons with opposite encoding have strong

negative couplings. This gives rise to competitive dynamics be-

tween subpopulations that encode different concepts (Wong

andWang, 2006; Wang, 2002). To further investigate neural cou-

plings, we divided the neural population into four groups based

on their noiseless activity at the end of the delay period: (1) neu-

rons that are active when a stimulus belongs to the red category

but silent for the blue category (denoted as R group, average

10:2% of population); (2) neurons that are active exclusively for

the blue category (B, 14:7%); (3) neurons that are responsive
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Figure 7. Structural and Functional Con-

nectivity that Supports Robust Transient

Dynamics

(A) Degree distribution (total number of connec-

tions) in a representative sample of a trained

network. All trained networks exhibit long-tail

degree distribution, showing existence of hub

neurons.

(B) Scatterplot shows the number of incoming

connections (in-degree, x axis) versus outgo-

ing connections (out-degree, y axis) for all

neural units in a trained network. Strong

correlations between in-degree and out-

degree are observed in trained networks,

which is unexpected if their connectivities are

random (Pearson correlation, N= 150, r = 0:482,

P< 10�7).

(C) Average synaptic weights between neuron

groups that are active only for red stimuli

(R group), only for blue (B group), for both red

and blue (BOTH group), and not responsive

(NR group). Colors indicate average synaptic

connection (purple, inhibitory connections;

green, excitatory connections) from a pre-

synaptic group (x axis) to a post-synaptic

group (y axis). R and B groups exhibit within-

group excitation and across-group inhibition, while the BOTH group receives excitatory connections from itself and from R and B groups. The NR group

receives inhibitory connections from all groups.

(D) Average noise correlation (rnoise, y axis) of neuron pairs grouped by percentile ranks of their average category selectivity durations. The x axis is the

center of each rank bin (bin width = 10 percent). Neurons with persistent category-selective activity tend to form large functional connections (high rnoise).

All ten network realizations demonstrate similar features; data plotted come from a representative sample. Error bars indicate SEM of rnoise across neurons

in the same bin.
for both red and blue (BOTH, 14:5%); and (4) neurons that are not

responsive at all (NR, 60:6%). Then we assessed average con-

nections within and between these subclasses. We found strong

within-group excitation and between-group mutual inhibition for

R and B groups (Figure 7C), mediating competition between the

two categories. Furthermore, we found that neurons in the BOTH

group have high degrees and activity but are less sensitive to

categories than R and B groups (Figures S7A–S7C). The BOTH

group receives net excitatory connections from itself as well as

from R and B groups (Figure 7C). The activity of BOTH neurons

tends to increase over the delay, while that of R and B neurons

tends to decrease (Figure S7D). BOTH neurons’ activity drives

correlations between neural states associated to red and blue

categories, which is apparent in both the neural data and model

(Figures S7E and S7F). Overall, these findings show the cooper-

ation between two categories of neural pools through BOTH

neurons. This co-activation is likely responsible for the temporal

dynamics that bring neural states to the end-of-delay regions,

where match and non-match decisions can be made separately

from the categorical decision.

Lastly, the model yields a testable prediction that functional

and structural coupling among neurons with persistent selec-

tivity that prefer the same category tend to be larger relative to

all connections in the network. For a given pair of neurons with

the same category preference, we measured the average cate-

gory selectivity duration (CSD, see STAR Methods) and noise

correlation (rnoise)—i.e., the correlation coefficient between a

neuron pair’s rate fluctuations averaged across all task condi-

tions. Neural pairs that contain non-selective neurons are
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removed from the analysis. We found that persistent neurons

in the model tend to have far larger functional couplings than

do non-persistent neurons (Figure 7D), whereas neural pairs

with average CSD larger than 90 th percentile have a larger

average noise correlation (m1 = 0:237) than other pairs

(m2 = 0:031, t test, p< 10�7). This result holds for any time win-

dow at which rnoise is measured. The effect remains significant

when the same analysis is performed on synaptic coupling

instead of on rnoise (m1 = 0:234, m2 = 0:031 p< 10�7) and when

controlled for average neural activity (ANCOVA, F = 326:69,

p< 10�7, see STAR Methods).

Neuronal Representation during Flexible Categorization
with Multiple Rules
Recent studies have shown that single neurons in LIP (Fitzgerald

et al., 2011) and PFC (Cromer et al., 2010) are multitaskers, as

they encode categorical information for different sets of stimuli

(e.g., differentiating between dogs versus cats for animal classi-

fication task and sports versus sedans in car classification).

These studies found that (1) multitasking neurons were the stron-

gest category discriminators (Cromer et al., 2010) and (2) neu-

rons’ tuning strengths for different stimulus sets were correlated

(Fitzgerald et al., 2011).We refer to these tasks as ‘‘independent-

input’’ paradigms, as the two categorical schemes involve inde-

pendent stimulus sets with likely non-overlapping sensory repre-

sentations. In contrast, another set of studies employed a

different paradigm in which subjects were instructed to catego-

rize the same set of stimuli under two different schemes (e.g.,

categorizing the same images of animals into dogs versus cats



or big versus small depending on the active rule) (Roy et al.,

2010; Goodwin et al., 2012). We refer to these tasks as

‘‘shared-input’’ paradigms because both categorical schemes

share the same sensory representation. These experiments

show that (1) rule-dependent responses emerged as soon as

the rule cue was presented (Goodwin et al., 2012) and (2) multi-

tasking neurons were more commonly observed, whereas

specialized neurons (i.e., neurons that encoded categories

exclusively for one scheme) were less common in the indepen-

dent-input paradigm than in the shared-input paradigm (Roy

et al., 2010; Cromer et al., 2010).

We asked the following questions: do different task paradigms

elicit different dynamical landscapes, and does the discrepancy

in dynamical structures alone account for these experimental

observations?

To investigate this question, we trained recurrent neural net-

works, using the same protocol we used for the standard DMC

task, to solve either independent-input or shared-input categori-

zation tasks (see STAR Methods). For the independent-input

paradigm, one input neuron group encodes motion directions

(Figure 8A, scheme A, red and blue categories), while another

group encodes spatial locations of a circle stimulus (Figure 8A,

scheme B, pink and green categories). The network’s task is to

categorize stimuli according to the boundary associated with

each stimulus set (dashed black lines in Figure 8A). For the

shared-input paradigm, the model learned to categorize motion

directions by two different boundaries (Figure 8D). Prior to the

fixation epoch, the model received a 500 ms input pulse from

two separate input neurons (colored squares in Figure 8D), signi-

fying whether the horizontal (Figure 8D, scheme A) or vertical

boundary (Figure 8D, scheme B) is in effect.

The two task paradigms result in markedly different land-

scapes. In the independent-input case, the trained networks

form two working memory tunnels during the delay, similarly to

those in Figure 6B, but these tunnels are shared between the

two categorical schemes (Figure 8B). In particular, one tunnel

corresponds to the red category of scheme A and the green

category of scheme B while another tunnel corresponds to the

blue and pink categories. Note that the opposite configuration

(red/pink and blue/green) is also possible. Only two tunnels are

required to solve the independent-input task, since the en-

trances of the tunnels can be mapped onto appropriate stimuli

by modifying separate sets of input weights from different sen-

sory neuron groups (Figure S8A) and the ends of the tunnels

are mapped onto appropriate choices by a similar mechanism

(Figure S8B). Hence, the two categorical schemes can share

the same categorical discrimination machinery via appropriate

mapping. Neurons that participate in driving trajectories along

the tunnels must be active in both schemes, leading to strong

correlation between the category tuning indices (CTIs) of the

two schemes (Figure 8C; Pearson correlation, N= 150, r = 0:85,

P< 10�7). Furthermore, neurons with persistent contribution to

tunnel trajectories tend to be thosewith the strongest categorical

selectivity (Figures S6C and S6D); therefore, multitasking neu-

rons are the most robust category discriminators (Figure 8C;

see statistical test in Figure S8C).

Tunnel sharing is only possible when sensory inputs contain

rule information—i.e., motion direction stimuli entail a horizontal
boundary and dot location stimuli entail a vertical boundary. In

such case, the recurrent network does not need to memorize

the categorization rule through the delay to map the content of

working memory to the appropriate choices during the test

period. This strategy would fail in the shared-input paradigm,

where the same set of stimuli must be mapped to different

choices during the test period depending on the active rule.

Instead, we observed that neural trajectories diverge to encode

categorization rules after the rule cue is displayed through the

fixation period (Figure 8E), resembling rule representations

observed in PFC (Wallis et al., 2001; Goodwin et al., 2012).

When the sample stimulus is presented, the dynamic represen-

tations encode both rules and categories, which persist through

the delay (Figure 8F). Since the two category schemes no longer

share the same tunnels, the correlation between category tuning

strengths reduces or vanishes (Figure S8D). The overall effects

from ten instances of networks trained with either paradigm

show that the shared-input paradigm leads to lower correlation

in category tuning strengths between the two schemes (Fig-

ure 8G; Pearson correlation, N= 5 realizations of network; inde-

pendent input, average r = 0:76, P< 10�6 in all networks; Shared

input, average r = 0:08, only one out of five realizations has signif-

icant correlation, P< 0:01). Consequently, we observed a signif-

icantly smaller number of multitasking neurons and a larger

number of specialized neurons than in the independent-input

paradigm, in accordance with experimental findings (Figure 8H;

t test, N= 5, P= 0:001). Collectively, this comparison between

independent-input and shared-input paradigms illustrates how

dynamical landscapes can adapt to various categorical struc-

tures, and the difference in landscapes alone can explain a lot

of experimental findings.

DISCUSSION

Our results contribute four important insights. First, our model

suggests that robust transient dynamics, equipped with stim-

ulus-dependent attracting states and robust trajectory tunnels,

underlie delayed associative computations in cortical circuits.

Second, we show that networks endowed with reproducible tra-

jectories capture statistics of the heterogeneous and time-vary-

ing category selectivity at both the single-neuron and population

levels, thus bridging the robust transience framework to neuro-

physiology of the primate fronto-parietal network. Third, we

reveal the features of structural and functional connectivity that

support robust transience and suggest a testable prediction

about the relationship between the temporal profiles of selec-

tivity and inter-neuronal correlations. Fourth, our model explains

observations from experiments that incorporatemultiple catego-

rization rules through the idea of shared state space landscape.

Much emphasis has been put on the reward-dependent

learning mechanism that explains the emergence of categorical

representation (Roelfsema and van Ooyen, 2005; Engel et al.,

2015; Rombouts et al., 2012; Savin and Triesch, 2014). Though

providing valuable insights on synaptic plasticity, many of these

studies have not focused on the temporal profiles of category

selectivity, and none have evaluated whether the end results of

training resemble the neural dynamics in the brain. Our study fo-

cuses on the dynamical properties of networks that successfully
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Figure 8. Robust Transience Framework Explains Neural Selectivity during Flexible Categorization involving Multiple Rules

(A)An independent-inputcategorizationparadigm.Networks learn tocategorize twoseparatesetsof stimuli (motiondirections, schemeA; stationarydotsatdifferent

spatial locations, scheme B). The two stimulus sets are represented by two separate groups of sensory neurons and are subject to different categorization rules.

(B) Noiseless trajectories during the delay from networks trained with independent-input paradigm (black dots mark the beginning of the delay epoch). Networks

form two working memory tunnels that are utilized by both stimulus sets to maintain category working memory.

(C) We calculated neurons’ category tuning index (CTI), whichmeasures the strength of categorical sensitivity to any preferred category. Tunnel sharing results in

a large correlation between CTIs for scheme A (x axis) versus scheme B (y axis) during the delay period (Pearson correlation, n=150; r = 0:85;P<10�7). Data

plotted in (B) and (C) come from a representative model instance.

(D) A shared-input categorization paradigm. Networks must categorize a single stimulus set by two different boundaries, signaled by colors of the rule cue.

(E) Noiseless trajectories during the rule cue and fixation periods for a network trained with a shared-input paradigm. Black and gray dots mark the beginnings of

the rule cue and the fixation period, respectively. Trajectories split into two streams corresponding to different rules.

(F) Network forms four separate tunnels to maintain category-rule combination. Categorization rules coded by dot colors. Data plotted in (E) and (F) come from a

representative model instance.

(G) Correlations between category tuning indices for scheme A and scheme B across five realizations of networks trained with an independent- or shared-input

paradigm. Error bars indicate minimum and maximum correlations within each group. Independent-input paradigm results in large positive correlations between

CTIs of the two schemes, while shared-input paradigm does not.

(H) The independent-input paradigm produces a significantly smaller number of specialized neurons but a larger number of multitasking neurons than the shared-

input paradigm (t test, n= 5, stars indicate P< 0:05). Error bars indicate SD of fractions across five network realizations.
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solve the task and exhibit similar response features to neuro-

physiological data. The accrued insights provide essential foun-

dations for future generative models. Note that this study

assumed that, although neuronswere recorded at different times

and in different animals, their activities represents sampled firing

rates from a single working population.

To the extent possible, our model parameters were calibrated

by experimental measurements, such as the sparse connectivity

of the trained networks (Song et al., 2005), the neural time con-

stant (Murray et al., 2014), and the width of sensory tuning (Al-

bright, 1984). Other parameters, such as the initial recurrent

network connections and noise in the networks, were set in the

same range as those in previous modeling studies (Mante

et al., 2013). The changes in these parameters do not affect

our overall findings, but can impact training. For example, a

longer neural time constant will make it easier to train networks

on longer delay epochs, and higher noise in the network will

reduce the chance of training success.

Importantly, our results suggest that time-varying patterns of

category working memory result from a slow dynamic transition

from one location in state space to another, mediated by a

dynamical tunnel that constrains the course of trajectories.

This is distinct from purely feedforward models (Goldman,

2009; Savin and Triesch, 2014) or models that utilize rapid tran-

sitions to stable states (Wong and Wang, 2006; Wang, 2002).

One accompanying feature of such a mechanism is the reliable

emergence of persistently selective neurons among other neu-

rons with heterogeneous temporal dependence. This gives rise

to the category-selective population code; its dominant mode

is stable, yet it also exhibits a time-varying secondary mode.

Similar population dynamics have been observed in other tasks

(Machens, 2010; Raposo et al., 2014) but have not been ac-

counted for by other models.

Despite their time-varying dynamics, networks utilizing robust

transience support and advance the central idea of strong rever-

beratory dynamics underlying working memory and decision

making (Goldman-Rakic, 1990; Wang, 2001, 2002; Wong and

Wang, 2006; Murray et al., 2017). The persistent neurons in our

model, albeit few in quantity, are the main drivers of delay dy-

namics, as they are among the strongest category discriminators

and form large connections among one another. The circuit mo-

tifs proposed in classical models, such as strong local excitation

and mutual inhibition among dominant neuron groups, are

apparent in the current framework, although they are embedded

in more heterogeneous circuits; this allows them to flexibly

partake in sequential computations and to generate mixed rep-

resentations in accordance with experimental evidence. The

presence of multiple stable states is also the key constituent of

robust dynamics in our model. Furthermore, structural organiza-

tion in local circuits may vary in a continuum from random net-

works to robust dynamics to stable attractors, depending on

the extent of training (Barak et al., 2013). In particular, our model

predicts that networks trained on protocols in which delay dura-

tions vary across trials tend to develop more temporally stable

persistent activity (see Figure S5). Future animal experiments

can test this hypothesis.

Our work contributes to a growing line of research on robust

transient dynamics and their role in complex neural computa-
tions. The principle has been proposed for spatiotemporal sen-

sory encoding (Rabinovich et al., 2001), movement generation

(Hennequin et al., 2014), and other cognitive processes (Rabino-

vich and Varona, 2011; Rabinovich et al., 2008, 2014), which

speaks to its prevalence in neural circuit processing across

brain regions and species. Most importantly, through detailed

comparison between neurophysiological data and model, our

contribution provides compelling evidence that robust tran-

sience governs sequential categorical decisions in primate

cortical circuitry.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All neural data were from Freedman and Assad (2006) and Swaminathan and Freedman (2012), where experimental protocol and

recording procedures were described in detail. In summary, four male monkeys (Macaca mulatta, weighing from 8.0–14 kg) were

trained to indicate whether a test stimulus was in the same category as a previously presented sample stimulus by releasing a lever.

Stimuli were high-contrast, 9:0+ diameter randomdotmovies, whichmoved at 12+ per s with 100%coherence. In the first experiment

(Freedman and Assad, 2006), the stimulus set comprised 12 motion directions (30+ apart) and neural responses were recorded from

156 lateral intraparietal (LIP) neurons in twomonkeys (Figure 1B, left panel). In the second study (Swaminathan and Freedman, 2012),

6 motion directions were used (60+ apart), and neural data were collected from 76 LIP and 447 prefrontal neurons (PFC) in two other

monkeys (Figure 1B, right). To avoid confusion, we refer to the LIP populations from the first and second experiments as the LIP1 and

LIP2 datasets respectively. In the first experiment, four test stimuli closest ð15+Þ to the category boundary were removed before

recording frommonkeyH. The second experiment incorporated stimuli at category boundary, whichwere removed from this analysis.

To combinedata from fourmonkeys, all stimulusdirectionswere rotated so that thecategoryboundary corresponds to0+ � 180+ axis.

The monkeys were implanted with a head post and recording chamber(s), at coordinates determined by magnetic resonance im-

aging. In the first experiment, the chamber was centered approximately at P3, L10 to allow access to both the intraparietal sulcus

(IPS) and superior temporal sulcus bymeans of a dorsal approach. The recording chamber was centered approximately 3.0mmpos-

terior to the intraural line, and 10.0 mm lateral from the midline. For the second experiment, PFC chambers were centered on the

principal sulcus and anterior to the arcuate sulcus at � 27:0 mm anterior to the intra-aural line, while LIP chambers were positioned

over the intraparietal sulcus (IPS) centered � 3:0 mm posterior to the intra-aural line. The first study was conducted at Harvard Uni-

versity and all experimental procedures followed Harvard Medical School and National Institutes of Health guidelines. The second

study was conducted at University of Chicago, where all procedures were in accordance with the University of Chicago’s Animal

Care and Use Committee and US National Institutes of Health guidelines.

METHOD DETAILS

Model Architecture and Training
We trained a recurrent network model to perform DMC task. The single-unit dynamics is governed by the following equation:

t _xðtÞ= � xðtÞ+WrrrðtÞ+WuruðtÞ+hðtÞ;
where xiðtÞ is a synaptic current variable of neuron i at time t and neural activity (firing rate, ri) is a rectified nonlinear function of

x: ri = tanh+ ðxiÞ. This constrained firing rates to be positive. The recurrent network has 150 units, and the connectivity matrix ðWrrÞ
is initialized to have 10% probability of connections, where non-zero weights are drawn from a normal distribution of zero mean

and SD = 0:28. The neural time constant ðtÞ is 100 ms. Each recurrent neuron receives an independent white noise input ðhðtÞÞ
with zero mean and the final sr = 0:6 (see progressive protocol below for sr value during training). The input to the network at a given

time ðuðtÞÞ is fed into the recurrent network through synaptic weight Wur, which is initialized similarly to Wrr. The model parameters

were set to be in the same range as those in Mante et al. (2013). The changes in these parameters do not affect our qualitative

findings.

There are 33 input units. The first 32 units have direction-tuned activity with equally spaced preferred directions from 0+ to 360+.

When a motion stimulus of direction f appears, the mean activity of input units depends of the unit’s preferred direction, q:

uðq;fÞ= a exp
�
� ðf� qÞ2

.
2s2

�
;
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with s= 43:2+ and a= 0:8. The last input unit signals the appearance of fixation dot with a mean activity = 0:05 during the fixation

period. At each time step, input units’ activity contain contribution from white noise with su = 0:6. A standard trial consists of

1 s resting period, followed by 500 ms fixation, 650 ms sample stimulus, 1 s delay, 250 ms test stimulus, and 1 s choice period.

The total trial duration T = 4:4 s. In the model, the duration of test stimulus was clipped to the approximate reaction time of the mon-

keys at 250ms (instead of 650ms in task protocol) tomimic the fact that visual stimulus was removed after monkeysmakemovement

response. Model dynamics are simulated using Euler update with Dt = 10 ms.

Five output units linearly read out the synaptic currents of the recurrent circuit:

y=Wrox:

To train the network, we specified the desired target activity for each output unit and iteratively adjusted all plastic synapses to

minimize the discrepancy between the readout activity and the target output. Figure S1 illustrates and explains the target outputs

of all five units. To assess the performance of the model, we passed activity of action units to a saturating nonlinear function:

~yi = 0:5 tanhðyi � 3:0Þ:
Reaction time is defined as the time window at which ~y passes a threshold of 0.85 (in arbitrary units). The network responds match

(or non-match) if ~y1 (or ~y2) passes the threshold within 1.2 s after the test stimulus onset and the activity of the opposite choice does

not pass the threshold.

All plastic synapses (input, recurrent, and output), as well as the initial conditions of the network activity, xðt = 0Þ, are updated with a

supervised training technique called Hessian-free (HF) algorithm (Martens and Sutskever, 2011; Mante et al., 2013), which is

designed to minimize the error defined as:

e=
XK
k = 1

XT
t = 0

XNo

i = 1

ðbyi � yiÞ2:

The error is effectively the square of the difference between target output, byi, and network output, yi, summed over all N recurrent

neurons from first time step t = 0 to the end of the trial t =T = 4:4 s and across allK trials in each training batch. HF belongs to the family

of truncated Newtonmethods, which identifies update directions using second-order curvature and combines geometric insight and

optimization heuristics to find solutionwith relatively lowcomputational resource. In addition to standard regularizations inHFmethod,

we imposed L1 regularization, which simultaneouslyminimize the L1 norm of parameters, a
Pn

j = 1

��wj

�� . This constrains the algorithm to

find sparse synaptic matrix solutions. a= 0:001 controls the contribution of the L1 regularization term on the objective function.

We employed a progressive training protocol, which started with the simplest version of DMC task and gradually increased task

difficulty as model’s performance passed criteria ðCÞ. This yielded an overall higher success rate and faster training. In the first step,

the task involved only two stimuli at the middle of categories (effectively a delayed-match-to-sample task) and individual neurons

receive no independent noise (the number of trials per batch, K, is 200; C= 99%). Second, noise is gradually added to the system.

We increased units’ noise, sr , by 0:05 at training batches where the network performance passed the criterion,C= 87%, until desired

level of noise is reached ðsr = 0:6Þ. Third, synapses with near-zero weight are gradually removed, whereby 5% of smallest synapses

are set to zeros and their future updates are set to zeros on training batches with performance larger than the criteria ðC= 87%Þ. Syn-
aptic clipping is repeated until the probability of connections in the recurrent weight matrix equals 12%. Finally, the number of stimuli

(as well as the number of training trials per iteration) was progressively increased, until the network can perform DMCwith 12 motion

directions (K = 2;160, C= 87%).

Model for Multi-scheme Categorization Tasks
The training method for multi-scheme categorization tasks is identical to the standard DMC task except for the structure of inputs. In

the independent-input paradigm, the input population consists of 65 units. One unit encodes the fixation dot and 32 units encode

motion directions as described for standard DMC. Another set of 32 units encode the angular locations of a dot stimulus, modeled

with periodic Gaussian current profiles as described in Model architecture and training. The outputs for match and non-match trials

are identical to the standard task, but provide appropriate match or non-match answers corresponding to the new task rule. In the

shared-input paradigm, another 500 ms task epoch was added before the fixation period to provide categorization rule signal. The

input population consists of 35 units. The first 33 units are identical to standard DMC. The two additional units represent the task rules

(horizontal or vertical categorization boundaries) by a pulse current with amagnitude = 0:3 when the corresponding rule is active and

a magnitude of zero otherwise.

Analysis of Model Dynamics and Connectivity
We trained 10 instances of the model and performed the same analyses on them. The results shown reflect behaviors observed

across all network realizations.

Noiseless trajectories are simulated by setting sr (noise in the firing rate) and su (noise in the input current) to zeros (see Model

Architecture and Training section for definition of sr and su). Neural states in Figures 5 and 6 are defined by the synaptic currents,

x, at each time point to allow both excitatory and inhibitory (subthreshold) dynamics to be observed; neural states defined by firing

rates yield a similar picture. The stable resting state is defined as the terminal steady state when network is simulated with the initial
Neuron 93, 1504–1517.e1–e4, March 22, 2017 e2



condition obtained from training, xðt = 0Þ, without noise and input. Stable states associated to choices are determined by running

dynamics to terminal states for match or non-match trials without noise or input. All stable states are confirmed to have zero velocity

and the eigendecomposition of linearized dynamics around these locations yields only negative eigenvalues, indicating attracting

states. Velocity vector fields were computed from the dynamic equation in Model Architecture and Training. The magnitude of ve-

locity is defined as the norm of velocity vectors, k _x k 2. All network trajectories and vector field plots reflect the first two to three largest

principal components of all the data in the graph, except in Figure 4 where the procedures mirror the analysis of neural data. The

locations of saddle points are determined by the optimization methods in Sussillo and Barak (2013) and Mante et al. (2013).

To compare the trained networks with random networks, we trained six randomly connected networks (RCNs) of N units, whose

N3N synaptic matrix has n non-zero elements per row on average. The non-zero synaptic weights are randomly drawn from a

Gaussian distribution of zero mean with variance 1=n (N= 1,500, n= 100) Barak et al., (2013). The input population (33 units) is struc-

tured as in the standard network. Approximately 30%of RCNunits receive currents from one of the input units. On each trial, the initial

synaptic variable, xi, was drawn independently from a Guassian distribution to generate variability in neural response. Firing rate is

defined as ri = tanhðxiÞ. We simulated approximately 17,000 trials of DMC task and collected average neural activity during the time

window of 250� 500 ms after the test stimulus onset. A support vector machine (SVM) is trained with least-squares method to

decode match decision from the RCN’s activity using half of the data. The model performance is defined as the accuracy of the

trained SVM on decoding another half of the data.

We utilized two measures of functional connectivity, neural response similarity and noise correlation. Neural response similarity

ðrresponseÞ quantifies the similarity or difference in neural encoding during task performance. For example, neurons that strongly prefer

red category are very similar to each other ðrresponse > > 0Þ, but not similar to neurons that are weakly selective to categories

ðrresponse � 0Þ andmarkedly different from neurons that prefer blue category ðrresponse < < 0Þ. rresponse is defined by the covariance (un-

normalized measure of correlation) between synaptic currents of a neural pair under noiseless condition. Note that this is different

from rsignal in other literature, which is defined as a Pearson correlation between averaged firing rates of a neural pair across stimuli

(Cohen and Kohn, 2011). Noise correlation, rnoise, is the Pearson correlation between the rate fluctuations of a neuron pair, averaged

across all stimulus directions. Both rresponse and rnoise are functions of time. We calculated them at every 250 ms time window, from

the beginning of the sample epoch to the end of test period. Results shown generally hold for all time windows. The range of

rresponse reported are averaged across all time windows and across all model realizations.

For Figure 7D, we also calculated themean category selectivity duration (CSD) of each neural pair. Neuronswith no category tuning

(CSD = 0) were removed from the analysis. To investigate the dependence of rnoise on CSD, neural pairs were segregated into two

groups: one group with mean CSD above 90th percentile and another group with CSD below 90th percentile. Then we compared

rnoise between the two groups with t test. The same procedure was performed using the synaptic coupling, cij =wij +wji, between

two neurons instead of rnoise and the same results were obtained. Also, since rnoise and average neural activity are correlated and

this correlation can drive the result, we controlled for average neural activity using ANCOVA. The mean rnoise of the two groups is

adjusted based on the fitted correlation between rnoise and average neural activity across all task conditions before the difference

between groups is assessed.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analyzing Temporal Properties of Selectivity
Neurons with average firing rates less than 1 Hz in each and every epoch were removed from all analyses (leaving N= 156; 74;380

for LIP1, LIP2, and PFC, respectively).

Spike trains of individual trials were filtered with a sliding Gaussian kernel of 90 ms width and 30 ms time step. We focused our

analysis on the time period from the onset of the fixation epoch to 250ms after the test stimulus onset. Only correct trials are included

in the analysis.

To analyze selectivity time course, we combined different measures. First, for each timewindow, we tested whether neurons’ firing

rates are significantly modulated by stimulus categories (t tests, P< 0:05, Bonferroni corrected) and defined ‘‘a category selectivity

phase’’ as a series of consecutive timewindowswhere neurons are significantly selective to categories. Any selectivity phases shorter

than 150mswere removed from the analysis. The category selectivity duration (CSD) is defined as the duration of its longest category

selectivity phase.Categories selectivity phases are plotted in Figures 3A–3D, S2B, andS2C.CSDappears in Figure 7DandS2D–S2G.

In addition, we used ‘‘stimulus selectivity’’ measure that is very similar to ‘‘category selectivity’’ measure described above. The only

difference is for each time window we tested whether firing rates depend significantly on stimulus directions (one-way ANOVA,

P< 0:05, Bonferroni corrected) rather than stimulus categories. Then we defined ‘‘stimulus selectivity phase’’ as a series of consec-

utive timewindowswhere neurons are significantly selective to directions. Stimulus selectivity duration is plotted in Figures S6C–S6E.

For category selectivity, we also calculated category selectivity preferences and magnitude at each time window. To achieve this,

we assessed the strength of category tuning with a d0 measure for each time window in category selectivity phase, defined as:

d0 =
m1 � m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðs2

1 � s2
2Þ

q ;
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where mi and si is the mean and standard deviation of firing rates in response to stimuli in category i. d0 is unbounded and varies from

positive values (neuron preferring category blue) to negative values (preferring category red). d0 measure is color-coded in Figures

3A–3D.

Neurons are classified into three classes based on the properties of their category selectivity phases. (1) Persistent selectivity de-

scribes neurons that have only one selectivity phase, which overlaps sample, delay, and test epochs for at least 150 ms. (2) Partial

selectivity refers to neurons that are selective to only one category, but not included in the persistent selectivity group. (3) Switching

selectivity covers neurons that switch their category preference at least once during the trial. We calculated the proportion of neurons

in each group relative to the total number of category-selective neurons. This classification method is used in Figure S2A.

Another measure of category tuning strength we used is category tuning index (CTI). We identified groups of stimulus pairs with the

same distance (direction pairs of 30+, 60+, 90+, 120+ apart) and within each group split the pairs into two subgroups (same category

v.s. different categories). The CTI measured the difference in firing rate (averaged across all trials for each direction) for each neuron

between pairs of directions in different categories (a between category difference) and the difference in activity between pairs of di-

rections in the same category (a within category difference). The CTI was defined as the difference between the within category and

between category differences divided by their sum. Values of the index could vary from 1 (strong differences in activity to directions in

the two categories) to �1 (large activity differences between directions in the same category, no difference between categories).

A CTI value of 0 indicates the same difference in firing rate between and within categories.

Population Response Analysis
To extract population response patterns, we applied demixing principal component analysis (DPCA) to the firing rate traces averaged

by task conditions. The algorithmic details and mathematical justification are outlined in Brendel et al. (2011), Machens et al. (2005,

2010), and Machens (2010). In brief, DPCA computed marginalized covariance matrices, denoted Cf, that account for neural

response variance due to a subset of task variables, f ˛ ft; q; ft; qgg. Matrices Cf can be computed by first calculating the margin-

alized average:

yt = hrðt; qÞiq;
yq = hrðt; qÞit;
yt;q = rðt; qÞ � yt � yq;

and finding marginalized covariance through equation:

Cf =
D
yfy

T
f

E

The variance captured by any subset of weight vectors, W= ½w1; :::;wj; ::�, due to a variable subspace f is denoted by

v2fðWÞ= P
j

wT
j Cfwj. DPCA algorithm searches for a set of orthogonal weight vectors, W�, that maximizes the cost function,

L= ðPfv
2
f=
P

fvfÞ. Maximizing L will optimize the trade-off between two objectives: enlarging the numerator that represents the over-

all variance captured by W� and downsizing the denominator to ensure that each component only captures variance in a single

variable subspace (Brendel et al., 2011).

Average neural activity was divided into three portions based on the task epochs: sample (�100--650ms relative to sample onset),

delay (800--1;550 ms), and test (1;600--2;150 ms). For the model, the activity during test epoch came from a slightly wider time win-

dow (1;600--2;650 ms) to capture the convergence to match and non-match states, which occurs slightly slower in the model. DPCA

analysis was performed on simulated activity of the model in presence of noise, using comparable number of trials as in the data

(� 400 trials). We first denoised the neural responses by applying regular principal component analysis and focusing on the subspace

ofM largest components that explain 95% of variance in the data (Mmay vary from dataset to dataset). Then the activity was passed

through the DPCA algorithm, which yields M components ranging from the most stimulus-dependent component ðwqÞ, to the

component that captures most combined variance of stimulus and time ðwq;tÞ, to the most time-varying component ðwtÞ. For the
sample and test period, we removedwt from theW� matrix and derived two-dimensional representation of activity within the remain-

ing subspace using classical multi-dimensional scaling (MDS) (Borg and Groenen, 1997). Stimuli are represented as vectors in an

M� 1 dimensional space; each dimension corresponds to a principal component. The MDS algorithm searches for 2D coordinates

of stimuli that preserve their pairwise Euclidean distances. For the delay period, we projected activity during �250--2;000 ms onto

W�, zðtÞ=W�YðtÞ to visualize the overall neural activity within a subspace spanned by delay-related components. Figures 4E–4H

plotted projected activity on wq and wq;t.

Note that since we do not have neurophysiological recordings from one monkey for trials where test stimuli are 15+ away from the

boundary (see EXPERIMENTAL MODEL AND SUBJECT DETAILS), we need to remove all trials with test stimuli 15+ away from the

boundary to construct population trajectories shown in Figure 4I. This step was not applied to other analyses in this paper.

DATA AND SOFTWARE AVAILABILITY

Software for modeling and data analysis is written in MATLAB. Requests for source code and data should be directed to our Lead

Contact.
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