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First published March 20, 2003; 10.1152/jn.00242.2003. Limiting redun-
dancy in the real-world sensory inputs is of obvious benefit for
efficient neural coding, but little is known about how this may be
accomplished by biophysical neural mechanisms. One possible cellu-
lar mechanism is through adaptation to relatively constant inputs.
Recent investigations in primary visual (V1) cortical neurons have
demonstrated that adaptation to prolonged changes in stimulus con-
trast is mediated in part through intrinsic ionic currents, a Ca2�-
activated K� current (IKCa) and especially a Na�-activated K� cur-
rent (IKNa). The present study was designed to test the hypothesis that
the activation of adaptation ionic currents may provide a cellular
mechanism for temporal decorrelation in V1. A conductance-based
neuron model was simulated, which included an IKCa and an IKNa. We
show that the model neuron reproduces the adaptive behavior of V1
neurons in response to high contrast inputs. When the stimulus is
stochastic with 1/f 2 or 1/f-type temporal correlations, these autocor-
relations are greatly reduced in the output spike train of the model
neuron. The IKCa is effective at reducing positive temporal correla-
tions at approximately 100-ms time scale, while a slower adaptation
mediated by IKNa is effective in reducing temporal correlations over
the range of 1–20 s. Intracellular injection of stochastic currents into
layer 2/3 and 4 (pyramidal and stellate) neurons in ferret primary
visual cortical slices revealed neuronal responses that exhibited tem-
poral decorrelation in similarity with the model. Enhancing the slow
afterhyperpolarization resulted in a strengthening of the decorrelation
effect. These results demonstrate the intrinsic membrane properties
of neocortical neurons provide a mechanism for decorrelation of
sensory inputs.

I N T R O D U C T I O N

In natural environments, sensory inputs from the external
world to the brain are statistically redundant, characterized by
strong and long-range correlations in space (Ruderman 1994;
Ruderman and Bialek 1994) and in time (Doug and Atick
1995a; van Hateren and van der Schaaf 1996). For the brain to
encode sensory stimuli and detect changes efficiently, it is
desirable to reduce input redundancy through a decorrelation
operation (Atick 1992; Attneave 1954; Barlow 1961; Barlow
and Foldiak 1989; Field 1994; Srinivasan et al. 1982). In the
visual system, theoretical models, natural scene analysis, and
physiological studies have shown that decreases of redundancy

by decorrelation is key to the efficient neural encoding of
images (Bell and Sejnowski 1997; Dan et al. 1996; Dong and
Atick 1995b; Laughlin 1981; Olshausen and Field 1996; Vinji
and Gallant 2000. For a review, see Simoncelli and Olshausen
2001). Barlow (1961, 1990) suggested that decorrelation could
be subserved by neuronal adaptation in the neocortex. This
idea is supported by recent work demonstrating that neuronal
adaptation occurs over a wide range of time scales (Fairhall et
al. 2001) and that these adaptation dynamics can serve to
maximize information transmission (Baddeley et al. 1997;
Brenner et al. 2000; Wainwright 1999). It is thus of consider-
able interest to identify cellular and synaptic mechanisms of
adaptation and to investigate whether the same mechanisms
can also subserve decorrelation in the brain.

In the primary visual cortex (V1), a neuron’s response to a
low-contrast visual pattern is substantially reduced (adapted)
following a few seconds of stimulation (Ahmed et al. 1997;
Blackmore and Campbell 1969; Carandini et al. 1998; Dragoi
et al. 2000; Greenlee and Heitger 1988; Greenlee et al. 1991;
Maffei et al. 1973; Movshon and Lennie 1979; Nelson 1991;
Ohzawa et al. 1985; Sclar et al. 1985; Vidyasagar 1990). This
history-dependent adaptive gain control allows visual cortical
neurons to display a high sensitivity without being limited by
saturation or insensitivity. In addition, pattern adaptation pro-
vides a mechanism to reduce redundancy in the processing of
natural scenes—by removing temporally constant stimuli
while remaining responsive to more rapid changes. Several
mechanisms have been proposed for contrast adaptation of V1
neurons, including a slow form of synaptic depression (time
constant: 10 s) (Adorján et al. 1999; Chance et al. 1998;
Finlayson and Cynader 1995). Recent studies with intracellular
recordings of cat primary visual cortical neurons in vivo re-
vealed that prolonged (tens of seconds) presentation of optimal
high-contrast visual stimuli results in a hyperpolarization of the
recorded cell (Carandini and Ferster 1997; Sanchez-Vives et al.
2000a). This hyperpolarization correlates with the persistent
decrease in sensitivity following adaptation and appears to be
generated through ionic mechanisms intrinsic to single neu-
rons. For example, intracellular current injection into single
cortical cells could replicate the hyperpolarization induced by
high-contrast visual stimuli (Sanchez-Vives et al. 2000a). Ex-
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amination of similar hyperpolarizations generated in response
to prolonged action potential activity in vitro reveal that it is
generated by a Ca2�-activated K� current IKCa and especially
a Na�-activated K� current IKNa (Sanchez-Vives et al. 2000b).

Based on these data, we constructed a conductance-based
model of a visual cortical neuron endowed with IKCa and IKNa.
The model was calibrated by reproducing the adaptive neural
response to long-lasting sinusoidal currents (Sanchez-Vives et
al. 2000b). Using correlated stochastic inputs (with 2nd-order
statistics of natural scenes), we show that adaptation currents
endow the model neuron with the ability to remove long-range
temporal correlations in the input so that the output spike
discharges are decorrelated at long time scales. Applying the
same protocol of stochastic inputs to V1 cells in cortical slices,
we found that neurons of primary visual cortex can indeed
remove long-range temporal correlations in the stochastic in-
puts. Furthermore, an enhancement of the slow hyperpolariza-
tion in single cells increased the degree of decorrelation. These
results suggest that intrinsic adaptation ionic currents provide a
candidate cellular mechanism for temporal decorrelation in V1
neurons.

M E T H O D S

The model

We were primarily motivated by the observation that slow
membrane hyperpolarization resulting from repetitive activa-
tion of cortical neurons is largely produced by sodium/calcium-
dependent potassium currents (Sanchez-Vives et al. 2000a,b).
Here we implemented both types of adaptation currents in a
Hodgkin-Huxley-type conductance-based model (Hodgkin and
Huxley 1952). The model was modified from Wang (1998)
with the addition of a sodium-activated potassium current IKNa.
The model has two compartments, one representing the soma/
axonal initial segment (Vs), the other representing the dendrite
(Vd) (Pinsky and Rinzel 1994). The spike-generating Na� and
K� currents are located in the somatic compartment. High-
threshold Ca2� currents ICa are distributed in both compart-
ments and activate Ca2�-dependent K� currents IKCa. A slow
Na�-activated K� current IKNa is located in the somatic com-
partment.

The model obeys the following seven differential equations

Cm

dVs

dt
� �IL � INa � IK � ICa,s � IKCa,s � IKNa � �gc /p��Vs � Vd� � I (1)

dh

dt
� �h��h�Vs��1 � h� � �h�Vs�h� (2)

dn

dt
� �n��n�Vs��1 � n� � �n�Vs�n� (3)

d�Ca2��s

dt
� ��Ca,sICa,s � �Ca2��s/�Ca,s (4)

d�Na��i

dt
� ��NaINa � 3Rpump��Na��Na��i� � �Na��Na��eq�� (5)

Cm

dVd

dt
� �IL � ICa,d � IKCa,d � �gc/�1 � p���Vd � Vs� (6)

d�Ca2��d

dt
� ��Ca,dICa,d � �Ca2��d/�Ca,d (7)

where Cm � 1 	F/cm2, I is the applied current, and the leak
current is IL � gL(V � VL). The coupling current between
soma and dendrite is proportional to (Vs � Vd), with coupling
conductance gc � 2 mS/cm2. The parameter p � (somatic
area/total area) � 0.5. Maximum conductances gL � 0.1,
gNa � 45, gK � 18, gCa,s � gCa,d � 1, gKCa,s � gKCa,d � 5,
gKNa � 5 in mS/cm2. The reversal potentials VL � �65, VNa �
�55, VK � �80, VCa � �120 in mV.

The voltage-dependent currents are described by the
Hodgkin-Huxley formalism (Hodgkin and Huxley 1952). The
dynamics of the gating variable x follows first-order kinetics

dx

dt
� �x��x�V��1 � x� � �x�V�x�]

� �x�x��V� � x�/�x�V� (8)

with x�(V) � �x(V)/[�x(V) � �x(V)] as the steady-state value
and �x(V) � 1/[�x(V) � �x(V)] as the time constant, and �x is
the temperature factor.

The sodium current in the somatic compartment is INa �
gNam�

3 (Vs)h(Vs � VNa). The fast activation variable m is re-
placed by its steady-state value m�(Vs) (given that �m is only a
fraction of a millisecond): m� � �m/[�m � �m] and �m(V) �
�0.1(V � 33)/{exp[�0.1(V � 33)] � 1} and �m(V) � 4
exp[�(V � 58)/12]. The inactivation variable h for INa is
described by �n(V) � 0.07 exp[�(V � 50)/10] and �h(V) �
1/{exp[�0.1(V � 20)] � 1}. The delayed rectifier is IK �
gKn4(Vs � VK), with the activation variable n described by
�n(V) � �0.01(V � 34)/{exp[�0.1(V � 34)] � 1} and
�n(V) � 0.125 	 exp[�(V � 44)/25]. The temperature factor
�h � �n � 4.

The high-threshold calcium current ICa � gCav�
2 (V)(V �

VCa), where the activation variable v is replaced by its steady-
state value v�(V) � 1/{1 � exp[�(V � 20)/9]} because of its
fast dynamics. The voltage-independent, calcium-activated po-
tassium current IKCa � gKCa([Ca2�]i/([Ca2�]i � KD))(V � VK),
with KD � 30 	M. The intracellular calcium concentration
[Ca2�]i is assumed to be governed by a linear equation with
�Ca proportional to the ratio of the membrane area and the
volume immediately beneath the membrane, �Ca � 0.002 	M
(ms	A)�1 cm2 in the dendrite compartment and 0.00067 	M
(ms	A)�1 cm2 in the somatic compartment. The various ex-
trusion and buffering mechanisms are described collectively by
a first-order decay process with a time constant �Ca � 80 ms in
the dendritic compartment and 240 ms in the somatic compart-
ment (Helmchen et al. 1996).

The Na�-activated K� current IKNa (Dryer 1994; Egan et al.
1992a,b; Kameyama et al. 1984; Schwindt et al. 1988, 1989) is
modeled according to a quantitative study of this ionic current
in dorsal root ganglion cells (Bischoff et al. 1998). The intra-
cellular [Na�]i concentration is incremented by Na� influx
through INa during action potentials. (In cortical neurons, Na�

influx could also be contributed by synaptic currents, which we
do not model here for the sake of simplicity.) The Na�-
dependent K� current IKNa � gKNa
�([Na�]i)(Vs � VK), with
the activation function 
�([Na�]i) given by (Bischoff et al.
1998)


���Na��i� �
Pmax

1 � �EC50/�Na��i�
nH

(9)
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where Pmax � 0.37 defines the maximum opening probability
of the channels. EC50 � 38.7 mM is the [Na�]i for half
activation and the Hill coefficient nH � 3.5. The influx of
[Na�]i is controlled by ��NaINa. We chose �Na � 0.0003 mM
(ms	A)�1 cm2 so that the influx of [Na�]i is 
100 	M per
action potential. This number is consistent with the measure-
ments using the Na�-sensitive dye SBFI from hippocampal
pyramidal neuron’s soma and dendrites (Jaffe et al. 1992; Rose
and Ransom 1997; Rose et al. 1999). Although SBFI imaging
gives only relative changes rather than absolute Na� concen-
tration, indirect estimates range from 50 to 300 	M/spike
(Rose et al. 1999; W. N. Ross, personal communication).

The extrusion of [Na�]i is assumed to be largely due to a
Na�/K� ionic pump, which extrudes three Na� ions for every
two K� ions brought into the cell (Fain 1999). Previous in vitro
studies (Sanchez-Vives et al. 2000a) show that the slow after-
hyperpolarization following prolonged discharge is mediated
largely by IKNa with a relatively small or latent contribution by
the Na�/K� pump. Therefore here we have focused on the
influence of IKNa on temporal decorrelation and for simplicity
have not included the current generated by the Na�/K� pump.
However, our conclusions would remain the same, if such a
current is taken into account, because it has the same time
course as IKNa.

The [Na�]i extrusion by the ion pump was modeled (Li et al.
1996) as �3Rpump (�Na([Na�]i) � �Na([Na�]eq) where
�Na(x) � x3/(x3 � Kp

3) with Kp � 15 mM. The cubic nonlin-
earity is related to the cooperative binding of three Na� ions to
the pump molecule in the early steps of Na� transport. Rpump �
0.0006 mM/ms. The sodium concentration at the resting state
is assumed to be [Na�]eq � 8 mM (Galvan et al. 1984; Grafe
et al. 1982). The equilibration of [Na�]i is a nonlinear process
and takes tens of seconds. The very slow kinetics of the
Na�/K� ionic pump is important for the model to reproduce
visual cortical neurons’ slow adaptation behavior.

Model simulations were carried out on a PC Pentium com-
puter, using the fourth-order Runge-Kutta integration method
and a time step of 0.05 ms.

Temporally correlated input

The spatial-temporal power spectrum S(k, f), where k 
 1/L
is the spatial frequency and f 
 1/T is the temporal frequency,
has been used to characterize the second-order statistics of
natural scenes. Typically, the spatial power spectrum of a
natural image behaves 
1/k2 (Ruderman 1994). The temporal
power spectrum scales like 1/f 2 when observed with a broad
visual field (at large L) and 1/f when observed with a narrow
visual field (small L) (Dong and Atick 1995a; van Hateren
1997). The characteristic relationship between power and fre-
quency reflect strong temporal-spatial correlations present in
natural scenes. Both 1/f 2 and 1/f type inputs were used in this
study.

A temporally correlated stochastic input with 1/f 2 type spec-
tral scaling can be generated by an Ornstein-Uhlenbeck process
as

dI

dt
� �I/�corr � ���t� (10)

where the decay time constant is �corr � 2000 ms, �(t) is a
Gaussian white-noise term, and � is the standard deviation of

the noise distribution. Note that the precise value of �corr is not
important as long as it is large enough so that the power
spectrum of the input has a reasonable range of 1/f 2 scaling
(see following text). The generated input I(t) is a correlated
stochastic process, its autocorrelation function is

�I�t�I�t � ��� � ��2�corr/2�exp���/�corr� (11)

which shows a positive correlation with characteristic correla-
tion range �corr. The power spectrum of I(t) is

SI �
�2


2 � �1/�corr�
2 (12)

Therefore SI 
 �2/
2 for 1/�corr  
. Therefore, a good range
of 1/f 2 scaling can be realized for a sufficiently long �corr. The
power reaches a plateau at very low frequencies 
  1/�corr, or
f � 
/2�  1/(2��corr) � 0.1 Hz.

There is no simple stochastic differential equation for gen-
erating 1/f-type inputs. Therefore we used another method,
derived from an explicit 1/f power spectrum through the in-
verse Fourier transform

I�t� �� �S�f� ��f�ei�tf��f�df (13)

where S(f) 
 1/f and �(f) is a Gaussian white-noise term with
a prescribed variance, and �f is a statistically independent
random phase. By this construction, the power spectrum of I(t)
is �(�S(f) �(f)ei�f)2� � S(f). Experimental evidence indicates
that the early stage of visual signal processing (such as a
photoreceptor) acts as a low-pass filter and the power for
frequencies �20–30 Hz is filtered out (van Hateren 1997). To
mimic this in our model, we introduced a cutoff of [S(f) � 0 for
f � 20 Hz].

Temporal correlation of the neuronal activity

A spike train is a point process described by a sequence of
delta functions in time s(t) � ¥i�(t � ti). One could calculate
directly the autocorrelation function of this point process (Gab-
biani and Koch 1998). However, to assess the decorrelation
effect, we need to compare the time correlation of the output
with that of the signal, which is an analog quantity. For this
reason, we converted the discrete spike train into a continuous
instantaneous rate function r(t) � 1/(ti�1 � ti) for ti  t  ti�1.
The autocorrelation function for r(t) is calculated, with nor-
malization, as follows

���� �
���

�� r�t�r�t � ��dt � ����
�� r�t�dt�2

���
�� r�t�2dt � ����

�� r�t�dt�2 (14)

with �(��) � �(�), �1 � �(�) � 1 and �(� � 0) � 1. The
same formula is used to compute the autocorrelation function
of the input current I(t). Because both are normalized to 1 at
� � 0, the input and output autocorrelations can be compared
directly on the same graph.

The power spectrum density is calculated directly from long
time series (time duration T � 50 s if fmin � 1/T  0.02 Hz).
We normalized the power spectrum so that its integral (the total
power) is the same for the input and the output. This allowed
the relative power at different frequencies in the input and
output to be compared.
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In vitro experimental work

To test the theoretical predictions, intracellular recordings
were performed from layers 2/3 and 4 (pyramidal and spiny
stellate) neurons in primary visual cortex slices from the ferret.
Ferrets were cared for and used in accordance with all appro-
priate regulatory guidelines. For the preparation of slices, 2- to
4-month-old ferrets of either sex were deeply anesthetized with
pentobarbital sodium (40 mg/kg) and killed by decapitation.
The forebrain was rapidly removed, and the hemispheres were
separated with a midline incision. Four-hundred-micrometers-
thick coronal slices of the primary visual cortex were cut on a
vibratome (DSK Microslicer; Ted Pella, Redding, CA). A
modification of the technique developed by Aghajanian and
Rasmussen (1989) was used to increase tissue viability. During
preparation of slices, the tissue was placed in a solution in
which NaCl was replaced with sucrose while maintaining an
osmolarity of 307 mosM. After preparation, slices were placed
in an interface style recording chamber (Fine Sciences Tools,
Foster City, CA). Cortical slices were superfused for the first
10 min with an equal mixture by volume of the normal bathing
medium and the sucrose-substituted solution. Following this,
normal bathing medium was switched into the chamber
throughout the experiment. Bath temperature was maintained
at 34–35°C.

Intracellular recordings were initiated following 2 h of re-
covery. The normal bathing medium contained (in mM) 124
NaCl, 2.5 KCl, 2 MgSO4, 1.25 NaHPO4, 2 CaCl2, 26 NaHCO3,
and 10 dextrose and was aerated with 95% O2-5% CO2 to a
final pH of 7.4. Block of transmembrane Ca2� currents was
achieved by replacing CaCl2 with either MnCl2 or CoCl2 while
sodium phosphate was omitted from the bathing medium to
avoid precipitation.

Sharp intracellular recording electrodes were formed on a
Sutter Instruments (Novato, CA) P-80 micropipette puller from
medium-walled glass (1BF100, WPI Sarasota, FL) and beveled
on a Sutter Instruments beveller to final resistances of 50–100
M�. Micropipettes were filled with 2 M Kacetate. Only those
cells that maintained a stable resting membrane potential and
responded to depolarizing current injection with the generation
of trains of action potentials were included for analysis. In
addition to square current pulses and sinusoidal currents, cor-
related stochastic currents with either 1/f 2 or 1/f statistics—the
same inputs used in model simulations—were also injected
into the recorded cells. Clampex 6.0 (Axon Instruments) was
the software used to transform the numerical series into an
injected current. For the purpose of this study, the size of the
slow afterhyperpolarization in a cell was measured from re-
sponses to either current pulses or sinusoidal currents of long
duration. The temporal correlations in the output spike trains
were analyzed and compared with that of the injected wave-
form.

R E S U L T S

Adaptive response to high-low sinusoidal current input

We first calibrated our model by simulating intracellular data
from visual cortical neurons (Sanchez-Vives et al. 2000b). To
compare the model with data, we used the same low-high-low
intensity pattern of 2-Hz sinusoidal injected current in the
simulation as in the experiments (Fig. 1). The 2-Hz sinusoidal

current input in the model has a mean of 2 	A/cm2. The
low-intensity input (with an amplitude of 0.3 	A/cm2) is
applied before and after the high-intensity input (amplitude of
3 	A/cm2, duration of 20 s). The model cell generates two
spikes per cycle with the low-intensity input before the high-
intensity input. At the beginning of the high-intensity current,
as many as nine spikes are generated during the first cycle. The
steady state of four spikes per cycle is reached after slow
adaptation (Fig. 1B). Following the high-intensity sinusoidal
current, a prolonged slow afterhyperpolarization (sAHP) of

10 s can be observed (Fig. 1A). These results are similar to
those obtained with recordings of visual cortical neurons in
vitro (Sanchez-Vives et al. 2000b). The effects of IKCa and IKNa
are clearly different in the model. Because the decay time
constant for [Ca2�]i is only 80 and 240 ms (in the dendritic and
somatic compartments) and each cycle is 500 ms long, [Ca2�]i
does not accumulate over cycles and IKCa is effective as a
feedback control mechanism only within a cycle (Fig. 1D). By
contrast, IKNa is much slower. During low-intensity sinusoidal
stimulation, intracellular [Na�]i has a steady state of 
14 mM
(Fig. 1C). During high-intensity stimulation, [Na�]i accumu-
lates slowly to a plateau level of 17.5 mM. The time course is
exponential with a time constant of �adap � 4 s. A qualitative
derivation of �adap is given in the APPENDIX (see also Liu and
Wang 2001; Wang 1998). The same exponential time course is
seen for the decreasing instantaneous firing rate associated with
adaptation (Fig. 1B), showing that the slow spike-frequency
adaptation is caused by the increase of [Na�]i, hence IKNa. The
slow afterhyperpolarization following the high-intensity stim-
ulation displays a similar time course as [Na�]i, and the decay
of IKNa controls the time course of the post-adaptation recovery
of neuronal excitability. The decay time constant of sAHP is
therefore governed by the slow kinetics of the Na�/K� pump.
When the [Na�]i is around [Na�]eq � 8 mM, its decay through
the ionic pump can be approximately linearized by �(Na) �
�(Naeq) � ��(Naeq)(Na � Naeq). The equation for [Na�]i

decay back to [Na�]eq is approximately given by

d�Na��i

dt
� �3Rpump����Na��eq��Na � Naeq� (15)

which yields the decay time constant �Na � 1/(3Rpump��
([Na�]eq)) � 13 s.

Decorrelation of 1/f 2-type inputs by intrinsic adaptation
mechanisms

In response to a long-lasting constant input, the model
neuron adapts over time and its firing activity is small in the
steady state. On the other hand, because the slow IKNa acts with
a delay, rapid changes in the input cannot be filtered out and
will be detected and encoded by vigorous transient neural
responses. Therefore adaptation ion channels could provide a
cellular mechanism to remove temporal redundancy in the
input. To test this hypothesis, we used stochastic current in-
jections with prescribed autocorrelation statistics (see METH-
ODS). For a stochastic current generated from an Ornstein-
Uhlenbeck process (decay time constant �corr � 2000 ms), the
power spectrum 
 1/
2 when 
 � (1/�corr) � 0.5 Hz and
reaches a plateau for small 
  (1/�corr) (Fig. 2). The cutoff
frequency for the plateau is given by 
 � 1/�corr, or f �
1/(2��corr) � 0.1 Hz.
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As shown in Fig. 2, in response to such a correlated sto-
chastic current, the model neuron’s spike activity is not a linear
transformation of the input (Fig. 2A). Compared to the input,
the output autocorrelation is suppressed at long time scales,
and is zero for � � 2 s (Fig. 2B). The power spectrum shows

a relative enhancement at high frequencies (�1 Hz). Concom-
itantly, there is a relative loss of power at low frequencies
(0.1 Hz), the plateau is reduced from 1.8 for the input to 0.5
for the output (Fig. 2C).

We noticed that decorrelation could occur even without

FIG. 1. Adaptation of the model neuron in response to a low-high-low sinusoidal current input. A: membrane potential.
Following the injection of high-amplitude sinusoidal current there is a slow hyperpolarization lasting for 
10 s (arrow). B: number
of spikes per cycle. C: intracellular [Na�]i accumulation mirrors the adaptation time course of the instantaneous firing rate during
the high-contrast input; whereas [Na�]i decay is correlated with the slow hyperpolarization and recovery during the 2nd
low-amplitude period. D: [Ca2�]i decays fast back to the baseline between cycles. E: 2-Hz sinusoidal injected current that varies
from low to high to low in amplitude. In this simulation, gKNa � 8 mS/cm2 and gCa,s � 0.
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adaptation currents if the model neuron fires at such a low rate
that the spike discharges before and after a long silent episode
could become statistically uncorrelated. We examined this
effect by removal of the adaptation currents from the model
cell. Replacing the adaptation currents with constant current
injection revealed that obtaining decorrelation effects similar to
those of the intact model (e.g., such as those illustrated in Fig.
2) required the average firing rate to be very low (r  1–2 Hz;
data not shown). Roughly speaking, to achieve significant
decorrelations, the average interspike interval (1/r) should be
comparable to, or longer than, the input correlation time (e.g.,
seconds in the present case). When the firing rate is reasonably
high (�10 Hz), this effect cannot produce significant decorre-
lation of input.

In the presence of the slow adaptation currents IKCa and
IKNa, the activation of IKNa occurs in response to action poten-
tial activity as a slow negative feedback (as opposed to the
constant injection of current) such that the occurrence of slow
modulations of the membrane potential are decreased, whereas
fast modulations are left intact. Thus the activation of adapta-
tion currents in response to activity is more effective in reduc-
ing slow temporal correlations without destroying the fast
responsiveness of the neuron (e.g., the membrane potential is
“recentered” during slow changes as opposed to just simply
constantly hyperpolarized). Maintained periods of depolariza-
tion and activity result in an increase in activation of the
adaptation current therefore a reduction in excitability, whereas
prolonged periods of hyperpolarization result in a de-activation
of the adaptation currents and consequently an increase in
neuronal responsiveness. Consequently, while without adapta-
tion, the neuron’s current threshold for spike discharges is 0.5
	A/cm2, in the presence of slow adaptation (e.g., during peri-
ods of sustained current injection), the neuron do not fire all the
time even though the average injected current ranges from 1 to
4 	A/cm2 (Fig. 2A).

Decorrelation of 1/f-type inputs by IKCa and IKNa at separate
time scales

In contrast to an 1/f 2-type input generated by an Ornstein-
Uhlenbeck process, an 1/f-type input displays temporal corre-
lations over arbitrarily long time scales: its autocorrelation is
large over many seconds, and its power spectrum increases as
1/f at low frequencies (Fig. 3, B and C). The input shows very
slow time modulations (Fig. 3A, top). Compared to Fig. 2,
there is also larger fluctuations at high frequencies because the
power decreases more slowly (1/f) than an 1/f 2 input. In the
absence of IKCa and IKNa, the model neuron transduces the
input faithfully, the autocorrelation function and power spec-
trum of its spike train output is identical to those of the input
(data not shown). Endowed with adaptation currents, the model
neuron shows transient activity (Fig. 3A, 3rd panel). The
autocorrelation quickly decays to zero within 500 ms (Fig. 3B).
Compared to the input, the output power spectrum shows a
strong suppression at low frequencies. In effect, the output
spectrum is flattened or “whitened” for f  0.1 Hz, in contrast
to the increases according to 1/f for the input (Fig. 3C). The
transient nature of the neural activity is not simply due to a
constant hyperpolarization but to time-dependent negative
feedback. Compare for instance the two time windows indi-
cated by horizontal bars, each lasting for 10 s (Fig. 3A, top).
The second marked time window has a lower average “ambi-
ent” input current I than the first one. However, the first time
window is preceded by a period of high activity and a large
[Na�]i plateau (hence a strong IKNa), whereas the second time
window follows a period of relative quiescence (Fig. 3A). As a
result, the effective current input I � IKNa is larger, and the
overall firing rate is actually slightly higher (8 Hz) during the
second time window than that (7.6 Hz) during the first time
window. Therefore, the slow changes in [Na�]i track the input
history over a period of seconds. The subsequent activation of
IKNa then acts as a negative feedback signal, the size of which

FIG. 2. Decorrelation of 1/f 2-type stochastic inputs. A: membrane po-
tential (top), instantaneous firing rate (middle), and input current (bottom).
B: the autocorrelation function of the output is reduced compared to that of
the input at all time scales and is essentially 0 for � � 2 s. C: power
spectrum analysis for both the output and the input. The relative power for
the output is reduced at low frequencies and enhanced at high frequencies.
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is proportional to the time-averaged input in the recent past.
The neuron becomes relatively insensitive to “ambient” input
levels, yet still responds vigorously to transient input changes
thanks to the lagged action of slow adaptation.

How large are the increases in membrane conductance that
mediate these effects? An increase of the internal Na� from 17
to 20 mM in the model leads to an increase of gKNa by 0.07
	S/cm2, resulting in an increase in total resting membrane
conductance of only 30%. Thus the temporal decorrelation
occurs largely through slow changes in membrane potential

(recentering) mediated by activation and de-activation of the
adaptation currents and not through a “shunting” of the mem-
brane.

We have examined the differential roles of IKCa and IKNa in
the reduction of input redundancy. Without adaptation by
either IKNa or IKCa, the output firing rate time course is nearly
identical to the time course of the inject current (Fig. 4A).
Addition of IKCa alone leads to a suppression of the slow
temporal modulation of the firing output compared to the input.
This effect is significant only at moderate frequencies that

FIG. 3. Decorrelation of 1/f-type stochastic input. A: from top to bot-
tom: input current, membrane potential, instantaneous firing rate, intracel-
lular Na� and Ca2�. Two time epoches (each lasting for 10 s) are indicated
by boxes for the instantaneous firing rate (3rd panel). The 1st time window
has a larger “baseline” input current I than the 2nd one (see - - -, top).
However, [Na�]i (hence IKNa) is larger during the 1st time window due to
a higher activity level that precedes the marked time window. As a result,
the effective input current is I � IKNa, and the average firing rate is actually
lower in the 1st time window than in the 2nd one. B: autocorrelation
functions for both the output and the input. The output is dramatically
decorrelated both at short and long time scales, its autocorrelation is zero
for � � 2 s. C: compared to the input, the power spectrum of the output is
flattened (whitened) at low frequencies (1 Hz).

FIG. 4. Decorrelation at low frequencies (long time scales) critically
depends on the IKNa. A and B: IKNa blockade. A: when both adaptation
currents are blocked (middle), the neural firing output shows a similar slow
time course as the input (bottom). IKCa reduces this low-frequency modu-
lation and enhances relative power of fluctuations at higher frequencies
(top). B: the power spectrum calculated from output rate with and without
IKCa are superimposed. The flattening of the power spectrum due to
temporal decorrelation by IKCa is only limited to higher frequency range

1–20 Hz. C: dependence of decorrelation on the speed of [Na�]i kinetics
(controlled by the parameter �Na). Faster [Na�]i kinetics abolishes the
autocorrelation at short temporal range (2 s) more effectively (left) and
whitens the power spectrum more strongly at 1 Hz (right).
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match the time scale of activation and deactivation of this
current. This appeared as a “flattening” of the power-frequency
relationship between 1 and 
10 Hz. At low (1 Hz) frequen-
cies, IKCa is not persistent enough to influence interspike in-
tervals, and therefore the power-frequency relationship has a
similar shape as without IKCa (see Fig. 4B). The relative power
at 1–20 Hz is enhanced (Fig. 4B). At higher frequencies (�20
Hz), the rate of activation of IKCa is too slow to have a
significant effect on the firing temporal fluctuations. In the
APPENDIX, we provide an analytical derivation to show that the
relative enhancement of power at 1–20 Hz is due to a high-pass
filtering of inputs by the adaptation current IKCa.

The addition of IKNa to the model results in a marked
flattening of the power-frequency relationship at frequencies
below 
1 Hz (Fig. 3). This effect is dependent upon the time
scale of the [Na�]i dynamics as demonstrated directly by
accelerating the [Na�]i kinetics with a scaling factor �Na (so
that both the influx and extrusion are faster)

d�Na��i

dt
� �Na���NaINa � 3Rpump��Na��Na��i� � �Na��Na��eq��� (16)

while all other parameters were maintained. As �Na is in-
creased from 1 to 2 and 4, the temporal decorrelation by IKNa
at relatively short temporal ranges (2 s) becomes more ef-
fective as shown in the autocorrelation function (Fig. 4C, left).
The power spectrum shows stronger flattening (whitening) in
the frequency range �1 Hz (Fig. 4C, right). The relative power
at higher frequencies, however, remains unaffected.

Temporal decorrelation in visual cortical neurons

To test whether real cortical neurons can indeed decorrelate
the inputs by intrinsic adaptation mechanisms, we used intra-
cellular recordings from layer 2/3 pyramidal and layer 4 stel-
late neurons (n � 32) in ferret primary visual cortical slices.
The injected stochastic currents are the same as those used in

model simulations and possessed a prescribed long temporal
correlations. Figure 5 shows an example with the 1/f 2 type
input (the Ornstein-Uhlenbeck process with a correlation time
�corr � 2000 ms). The baseline of the current was adjusted so
that the neuron had an average firing rate 
10 Hz throughout
each 60-s period of injected current. Although the recorded
output exhibits some similarity with the input pattern, it is
more transient in time (Fig. 5A). Temporal correlation analysis
revealed that correlations in the output spike trains were sig-
nificantly reduced with respect to the input and decayed to zero
for times �2 s (Fig. 5B). The power spectrum shows a reduced
relative power at low frequencies and is significantly flattened
between 0.1 and 1 Hz (Fig. 5C).

Similar decorrelation effects were observed with the 1/f-type
stochastic current injection (Fig. 6). The baseline of the current
was adjusted through the injection of constant current so that
each neuron had a firing rate of 
10 Hz throughout each 120-s
recording session. The 1/f-type input exhibits slow variations
over time scales of seconds (Fig. 6A, top). This slow modula-
tion is virtually absent in the neural firing output (Fig. 6A,
bottom). The output’s autocorrelation is dramatically sup-
pressed and is near zero for time scales �1 s (Fig. 6B). The
power spectrum is flattened (whitened) for frequencies 1 Hz
(Fig. 6C).

The behavior of the recorded cortical neuron is strikingly
similar to that of the model endowed with IKCa and IKNa
(compare Fig. 6 with Fig. 3). We also compared the histograms
of the instantaneous firing rates (calculated as the inverse of the
ISIs) for the model and a cortical neuron (Fig. 7). The input
amplitude has a Gaussian distribution (Fig. 7A). The firing rate
histogram for the model neuron without any adaptation current
is almost Gaussian-shaped, like the input, except for an addi-
tional small peak near zero (corresponding to time periods of
relative quiescence; Fig. 7B). Adaptation by IKCa increases the
probability for low firing rates (peak near 0) and decreases the

FIG. 5. In vitro intracellular recording from a visual cortical neuron
(1/f 2 type input). A: top, injected current with 1/f 2 type power spectrum;
middle, recording of membrane potential; bottom, instantaneous firing rate.
B: autocorrelation function for the input and the output. The output is
significantly decorrelated at long time scales. C: power for the output is
reduced in the low frequency range.
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Gaussian-shaped peak at high rates (Fig. 7C). The addition of
IKNa further altered the firing rate histogram. The peak at high
rates virtually disappears, and the peak near zero becomes
dominant (Fig. 7D). In other words, although most of the time
the model neuron fires at low rates, it can occasionally fire
transiently at high rates (�100 Hz). The same characteristic
firing rate histogram was found for a real cortical neuron (Fig.
7E). The agreement between data and the model provide sup-
porting evidence that intrinsic membrane dynamics of a single

neuron in the visual cortex can decorrelate natural-scene-like
inputs with long-range temporal correlations.

Relationship between slow hyperpolarization and
decorrelation

Because decorrelation is observed with current injection in
our slice experiments, it is a single-cell phenomenon. What are
the specific membrane mechanisms underlying this decorrela-
tion effect? Evidence indicates that a [Na�]i-activated K�

current INaK plays a large role in the slow hyperpolarization
that contributes to adaptation of visual cortical neurons to
prolonged inputs (Sanchez-Vives et al. 2000a,b). We attempted
to establish a link between the decorrelation effect and slow
hyperpolarization, based on the previous observation that the
slow hyperpolarization (presumably produced by IKNa) is en-
hanced in zero calcium solution, compared to control with
[Ca2�]o � 2 mM (Sanchez-Vives et al. 2000b). The reason for
this enhancement is that under control condition there is a
calcium-activated inward current that counteracts IKNa. The
removal of calcium eliminates this inward current and unveils
a larger slow hyperpolarization (Sanchez-Vives et al. 2000b).
Our reasoning is that, if the same adaptation mechanism sub-
serves the decorrelation process, then a stronger decorrelation
effect should be observed in zero calcium. We tested this
prediction in n � 5 cells, with both current pulses and 1/f-type
stochastic currents. In some cells, we used more than one
sample stimuli per cell to increase the number of trials. Neu-
rons show pronounced afterhyperpolarizations (sAHP) follow-
ing a long (20 s) current injection that is either a single pulse
or a train of periodic pulses (at 2 Hz, period of 500 ms, 250 ms
on and 250 ms off; Fig. 8). The sAHP is longer lasting in 0
[Ca2�]o than in control (Fig. 8), consistent with the previous
results (Sanchez-Vives et al. 2000b). To quantify the size of
sAHP in zero [Ca2�]o and in control, we calculated the time
integral of sAHP divided by the total number of spikes during

FIG. 6. In vitro intracellular recording from a visual cortical neuron
(1/f-type input). A: neuronal response to a stochastic injected current with
1/f type power spectrum (total recording time is 120 s). Top: input current;
middle: membrane potential; bottom: instantaneous firing rate. B: autocor-
relation function shows that the output is greatly decorrelated compared to
the input, the autocorrelation function is 0 for time scales �1 s. C: power
spectrum is flattened for f  1 Hz.

FIG. 7. Distributions of the input intensity and the instantaneous firing
rates. The input intensity has a Gaussian distribution (A). The instantaneous
firing rate histogram of the model neuron without any adaptation current (B)
and with only IKCa (C) show a bimodal distribution. In the presence of both
IKNa and IKCa, the model neuron’s firing rate histogram shows an exponential
function at low rates and a small but broad peak at high rates (D). This is
similar to the firing-rate histogram from a visual cortical neuron (E; the same
cell as in Fig. 6).
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the current injection. As shown in Fig. 9A, the sAHP integral
per spike is larger in 0 [Ca2�]o compared to control for all five
cells.

When 1/f-type correlated stochastic inputs are applied, the
autocorrelation of the spiking output is further reduced (decor-
relation is more effective) in 0 [Ca2�]o compared to control.
The reduction is very dramatic in some cells (Fig. 8, B and C)
and modest in others (Fig. 8, A and D). To quantify the
decorrelation effect, we calculated the integral of the autocor-

relation functions of the input and the output (Ain and Aout), and
used �decorr � Aout/Ain as a decorrelation index. The smaller is
�decorr, the stronger is the decorrelation effect. In each of the
five cells, �decorr is substantially smaller in 0 [Ca2�]o than in
control, when the comparison was made with the same 1/f-type
sample input under the two conditions (Fig. 9C). It is important
to note that the average firing rate of the neural response to
1/f-type input either remains the same or is higher in 0 [Ca2�]o

than in control (Fig. 9B). Therefore the stronger decorrelation

FIG. 8. Increase of slow hyperpolarization and enhancement of decorrelation in 0 [Ca2�]o. A–D: 4 different cells are shown.
Top: autocorrelation function of input (red), output in control medium (blue), and in 0 [Ca2�]o (green). The autocorrelation is
smaller in 0 [Ca2�]o than in control. Bottom: neural response to a long (20 s) current pulse (A and B) or to a period train of current
pulses (C and D). Note the slow afterhyperpolarization after the input pulse. Slow hyperpolarization is substantially longer-lasting
in 0 [Ca2�]o (green) than in control (blue).
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effect cannot be simply attributed to a lower firing rate in 0
[Ca2�]o.

D I S C U S S I O N

Adaptation and gain control of neurons are well-known
phenomena and are the subject of many physiological studies
over the years. The main novelty of the present work is to
demonstrate, using combined computational and electrophysi-
ological methods, that intrinsic spike-frequency adaptation
mechanisms can temporally decorrelate inputs at the single
neuron level. Based on experimental evidence from V1 pyra-
midal cells (Sanchez-Vives et al. 2000a,b), we focused on the
role in neuronal adaptation of a Na�-activated K� current IKNa.
Our main results are: IKNa can dramatically suppress temporal
correlations (at time scales �1 s) in the neural firing output
when the input is strongly correlated (1/f 2 or 1/f type) such as
in natural-scene stimuli; visual cortical neurons in in vitro
slices decorrelate the inputs in the same way as the model; the

degree of decorrelation is enhanced at the same time as the size
and duration of slow afterhyperpolarization, consistent with the
notion that the same ionic channels (e.g., IKNa) underlying slow
hyperpolarizations can subserve the decorrelation dynamics of
single neurons in the primary visual cortex.

Biophysical mechanisms of slow (seconds) neuronal
adaptation

In the primary visual cortex, it has been proposed that
contrast adaptation operating at time scales of seconds can
arise from short-term depression of afferent synapses (Adorján
et al. 1999; Chance et al. 1998). Modeling studies also suggest
that short-term synaptic depression provides a candidate mech-
anism for decorrelation of correlated input spike trains (Gold-
man et al. 1999, 2002; Matveev and Wang 2000). This pro-
posal is consistent with some in vitro slice experiments (Abbott
et al. 1997; Finlayson and Cynader 1995; Tsodyks and
Markram 1997; Varela et al. 1997). In an in vivo study of the
somatosensory cortex, a rapid depression of thalamocortical
synapses (time constant of 0.25–0.32 s) was found to underlie
adaptation to whisker stimulation (Chung et al. 2002). How-
ever, evidence for slow (time constant of seconds) synaptic
depression in the intact brain is still lacking. Recently Sanchez-
Vives et al. (2000a,b) discovered that slow adaptation during
prolonged visual stimuli depends on the intrinsic activation of
ionic conductances, such as IKNa. These and other (Carandini
and Fester 1997) studies did not find a consistent decrease in
visually evoked synaptic barrages following adaptation; a find-
ing that is inconsistent with a strong role for synaptic depres-
sion in adaptation. In support of this view, we show here that
a cortical pyramidal cell model endowed only with IKNa and
IKCa can reproduce adaptation to high-amplitude sinusoidal
input mimicking a high-contrast visual stimulus (Fig. 1).

Further experiments are needed to quantitatively test our
model and the role of IKNa in adaptation. One possibility is to
use synthetic Na� buffers, which should prevent [Na�]i accu-
mulation and hence block IKNa activation (K. Svoboda, per-
sonal communication). Another critical issue is to determine
the [Na�]i dynamics in V1 pyramidal cells: what is the [Na�]i
influx per spike? To what level can [Na�]i accumulate during
a long-lasting stimulation? How fast is the Na�/K� exchange?
In the model, assuming that the baseline [Na�]i is 8 mM
(Galvan et al. 1984; Grafe et al. 1982), and that [Na�]i is
increased by 100 	M per spike, the [Na�]i level typically
reaches 15–20 mM after long-lasting (many tens of seconds)
neural discharges at an average rate of 20 Hz. In a recent
experiment, Rose et al. (1999) used Na� indicator dye SBFI
and two-photon imaging to measure intracellular Na� concen-
tration evoked by action potentials in dendrites and spines of
hippocampal CA1 pyramidal cells. They found that the [Na�]i
signal can integrate the spike activity, because it has slow
kinetics (time constant of several seconds). The spike-triggered
[Na�]i transients reached values of 1, 2, and 4 mM for a train
of 5, 10, and 20 spikes, respectively. Therefore the [Na�]i
transient is 
200 	M per action potential in the fine dendrites
and spines. Because this rate of accumulation is twice the value
used in our model, we expect that in pyramidal cell’s dendrites,
the [Na�]i can reach 15–20 mM after tens of seconds of neural
discharges at an average rate of 10 Hz. It would be interesting
to test directly our prediction by Na� imaging of visual cortical

FIG. 9. Increased slow hyperpolarization and enhanced decorrelation in 0
[Ca2�]o. A: time integral of afterhyperpolarization per spike is larger in 0
[Ca2�]o compared to control (n � 5, 7 input trials). B and C: in response to the
same sample stochastic 1/f-type input, the decorrelation effect is stronger,
whereas the overall firing rate is about the same or higher, in 0 [Ca2�]o than
in control (n � 5, 8 input trials).
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neurons during prolonged discharges as in the contrast adap-
tation experiments.

Moreover, it would be important to know the precise spatial
site of [Na�]i accumulation with respect to the location of IKNa.
For example, an increase in intracellular [Na�]i may be tightly
localized in the submembrane space and reach levels high
enough to activate IKNa (Koh et al. 1994). Moreover, due to the
difference in the surface/volume ratio, activity-induced [Na�]i
accumulation could vary widely at different somatic and den-
dritic compartments of a single neuron (Qian and Sejnowski
1989). Therefore the spatial distribution of IKNa across the
somatodendritic membrane is important to be determined ex-
perimentally. It is conceivable that hyperpolarizations of dif-
ferent portions of a neuron’s dendritic tree may result from
localized entry of Ca2� and Na� and activation of nearby IKCa
and IKNa channels. This may serve to temporally decorrelate
inputs to restricted dendritic segments, while leaving others
segments less affected.

Finally, it would also be interesting to explore additional or
alternative ionic mechanisms for neuronal adaptation in the
cortex and other brain structures. In retinal ganglion neurons,
slow adaptation (Baccus and Meister 2002; Chander and
Chichilnisky 2001; Shapley 1997; Shapley and Victor 1978;
Simirnakis et al. 1997) may be related to properties of Na�

channels in these cells (Kim and Rieke 2001, 2003), or/and
reflect cellular mechanisms upstream in bipolar neurons
(Brown and Masland 2001; Rieke 2001). It would be interest-
ing to test experimentally whether such adaptation mechanisms
also subserve input decorrelation in retinal neurons.

Decorrelation at the single-cell level

In our model, when driven by stochastic inputs with long-
range temporal correlations, IKCa and IKNa remove correlations
in the spiking output at different time scales (10–100 ms and
1–10 s, respectively). In the output power spectrum, at 1 Hz
the power is reduced to a plateau level (is whitened) by IKNa,
while IKCa results in a flattening of the power-frequency func-
tion at frequencies between 1 and 10 Hz. We noticed that when
the output firing rate is very low, decorrelation could be a
trivial consequence of the fact that most of the time the cell
membrane is subthreshold, the consecutive spikes are sepa-
rated by long times compared to the input correlation time, so
that most of the correlation information in the input is lost. This
happens when the output firing rate is roughly lower than the
inverse of the input correlation time (1–2 Hz with an input
correlation time of 2 s). For this reason, both for model
simulations and experimental studies, we always made sure to
depolarize the cell with a baseline current when injected with
correlated current, so that the cells fire spikes throughout the
stimulation with a relatively high mean firing rate (10–20 Hz
generally).

Interestingly, we found that visual cortical neurons in vitro
show similar decorrelation properties as the model (compare
Figs. 5 and 6 for data with Figs. 2 and 3 for the model). The
distribution of instantaneous firing rates is also similar for the
visual cortical cell and the model (Fig. 7): it is roughly expo-
nential at low rates, but there is a second broad peak at larger
firing rates (
50–80 Hz). We attempted to further establish
the link between the slow hyperpolarization and the decorre-
lation effect by comparing the neuronal behavior in zero-

calcium bath solution with that in control. We confirmed the
previous observation (Sanchez-Vives et al. 2000b) that for a
given cell, the slow hyperpolarization after spiking activity is
stronger and longer lasting in zero calcium than in control.
Furthermore in response to the exactly same sample of sto-
chastic correlated input, the decorrelation effect was stronger
in zero calcium than in control (Figs. 8 and 9). This result lends
support to the idea that the same ion channel mechanism
responsible for the slow hyperpolarization also underlies the
decorrelation process of temporally correlated stochastic in-
puts. However, our results only show that the two effects
increase in a correlated way, and we do not have direct proof
for the hypothesized role of IKNa in the observed decorrelation
phenomenon at the single-cell level.

It is worth noting that an adaptation mechanism removes
correlations most effectively at time scales comparable to its
intrinsic time constant. Therefore with IKNa and IKCa a neuron’s
output can still show large autocorrelations at time scales
shorter than a few hundreds of milliseconds. The adaptation
mechanism of redundancy reduction is thus compatible with
the fact that cortical neuronal spike trains do show autocorre-
lations at time scales ranging from one to hundreds of milli-
seconds (for a review, see Singer and Gray 1995).

We have not addressed the question of whether the filter
functions of cortical neurons are optimally designed. That is,
the kinetics and strength of adaptation ionic mechanisms might
have been optimized, through biological evolution, for redun-
dancy reduction of the kind of natural stimuli that the animal
encounters in daily life (Atick 1992). Specifically, one could
ask whether the calcium- and sodium-activated potassium cur-
rents decorrelate 1/f and 1/f 2 stimuli better than inputs with
other statistic properties. However, what it means to be “opti-
mal” remains to be clarified. Indeed, most likely, complete
whitening of stimulus by decorrelation is not desirable because
probability distributions of stimuli may themselves be used for
neural representation of the sensory world in the brain (Barlow
2001; Rao et al. 2002).

Adaptation and decorrelation in the V1 network

Computational theories suggest that in the mammalian vi-
sual system, natural inputs are decorrelated spatially at the
level of the retina (Atick 1992) and temporally in the lateral
geniculate nucleus (LGN) (Dong and Atick 1995b) so that
signals that arrive in the visual cortex are encoded in an
efficient form. In support of this proposal, physiological studies
show that in response to natural time-varying images (movies),
neurons in the cat LGN remove temporal correlations at the
time scales of 50–300 ms, and the output power spectrum is
whitened in the frequency range of 3–15 Hz (Dan et al. 1996).
The underlying biophysical mechanism could be, at least
partly, intrinsic membrane properties of the LGN relay cells.
Indeed these cells are known to display burst discharges due to
a T-type calcium ion current; this burst activity can remove
temporal correlations in an input at the time scale of 
100 ms
(Kepecs et al. 2002). However, LGN cells fire bursts only
under certain conditions (including sodium pentothal anesthe-
sia as in the experiment of Dan et al. 1996); their propensity of
burst discharge during waking states remains a matter of debate
(Sherman 2001). Therefore it is still unclear whether temporal
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decorrelation primarily takes place in the LGN during animal’s
natural behaviors.

Here we hypothesize that temporal decorrelation of inputs is
to a large extent accomplished in the primary visual cortex by
the same mechanisms responsible for the contrast adaptation.
Synaptic depression can temporally decorrelate inputs in a
synapse-specific manner and at the time scale of hundreds of
milliseconds (on a similar time scale as fast intrinsic adaptation
through IKCa); whereas intrinsic membrane dynamics mediated
by IKNa operate at a more global level of the neural activity and
at a slower time scale of seconds. To explore this proposal
computationally, it will be necessary to extend our investiga-
tion to pattern adaptation in a V1 network model, that takes
into account short-term synaptic depression (Adorján et al.
1999; Somers et al. 1998) and slow spike-frequency adaptation
by IKNa in single neurons. Network modeling would enable us
to investigate the mechanisms for pattern adaptation and
whether the same mechanisms can remove spatiotemporal cor-
relations in the natural-scene inputs thereby performing redun-
dancy reduction in both space and time. Experimentally, our
proposal could be tested by physiological studies of V1 neu-
rons in response to natural time-varying stimulations (such as
movies). Further experimental and theoretical studies will lead
to the elucidation of specific cellular mechanisms of adaptation
and redundancy reduction processes in the visual cortex.

A P P E N D I X : Q U A L I T A T I V E E X P L A N A T I O N O F

P O W E R S P E C T R U M W H I T E N I N G B Y A N

A D A P T A T I O N C U R R E N T

To understand whitening or flattening of the neural output power
spectrum within a frequency range, let us consider a linear model of
adaptation, Iadap � GadapX where X � [Ca2�]i or [Na�]i, if Iadap �
IKCa or IKNa, respectively. Furthermore, assume that X obeys a linear
kinetic equation

dX

dt
� � �

i
��t � ti� �

X

�X

� �r�t� � X/�X (A1)

where the spike train ¥i �(t � ti) is replaced by the instantaneous firing
rate, which is a valid approximation as long as �X is significantly
longer than a typical ISI. The parameter � is the X influx per spike,
and �X is the time constant (
100 ms for [Ca2�]i, and 
10 s for
[Na�]i). Note that although the Na� extrusion process is highly
nonlinear, the present discussion assuming a linear kinetics is never-
theless instructive.

Suppose that in response to a time-varying stochastic input current
I, the neuron’s output firing rate is given by r(t) � �Itot, where Itot �
I � Iadap, and the firing threshold Ith is absorbed in I. Therefore, r(t) �
�[I(t) � Iadap(t)]. Inserting this expression into Eq. A1 we have

dX

dt
� ��I�t� � ���Gadap � 1/�X�X � ��I(t)�X/�adap (A2)

where we define the adaptation time constant �adap as

1/�adap � ��Gadap � 1/�X (A3)

Due to the additional term ��Gadap, �adap is typically much shorter
than �X (see also Liu and Wang 2001; Wang 1998).

The solution of Eq. A2 yields

X�t� ��
0

t

��I�t��e��t�t��/�adapdt� � ��I � K (A4)

where the kernel of the convolution is

K�t� � � e�t/�adap if t � 0
0 otherwise

(A5)

The Fourier transforms of the kernel K, X, and r are as follows

F�K� �
�1

i
 �
1

�adap

(A6)

F�X� � ��F�I�F�K� (A7)

F�r� � ��F�I� � GadapF�X�� � �F�I��1 � Gadap��F�K�� (A8)

Therefore the output power spectrum SO � �F(r)�2 can be expressed
as a function of the input power SI � �F(I)�2

SO�
� � SI�
��2 
2 � �1/�X�
2


2 � �1/�adap�
2 (A9)

Without adaptation, it is easy to show that

SO�
� � �2SI�
� (A10)

Thus the presence of IX introduces a temporal kernel that convolves
with the input to produce the output. This leads to an additional
multiplicative factor for the output power spectrum


2 � �1/�X�2


2 � �1/�adap�
2 (A11)

where �adap is typically much smaller than �X. At low frequencies 
 
1/�X, the additional factor is 
(�adap/�X)2  1. (Note that at very low
frequencies, this analysis is no longer valid because the assumption
that the firing is faster than the X dynamics is no longer correct.) In
the frequency range 1/�X  
  1/�adap, this factor is 

2. At very
high frequencies, this factor is 1, reflecting the fact that the slow
adaptation current has no effect as expected. Thus spike-frequency
adaptation provides a high-pass filter in the intermediate frequency
range 1/�X  
  1/�adap. If I(t) is a temporally correlated input with
a power spectrum SI(
) 
 
�2, the output spike train is decorrelated;
the power spectrum is SO(
) 
 SI


2 
 const. Thus SO would be
almost flat (whitened) and behave like white noise for 1/�X  
 
1/�adap.
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