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Wang, Xiao-Jing. Calcium coding and adaptive temporal com- while the Poisson input is totally uncorrelated in time. Possible
functional implications of these results are discussed.putation in cortical pyramidal neurons. J. Neurophysiol. 79:

1549–1566, 1998. In this work, we present a quantitative theory
of temporal spike-frequency adaptation in cortical pyramidal
cells. Our model pyramidal neuron has two-compartments (a I N T R O D U C T I O N
‘‘soma’’ and a ‘‘dendrite’’ ) with a voltage-gated Ca 2/ conduc- Cortical neurons display a large repertoire of voltage- and
tance (gCa ) and a Ca 2/ -dependent K/ conductance (gAHP ) located calcium-gated potassium ion channels with kinetic time con-at the dendrite or at both compartments. Its frequency-current

stants ranging from milliseconds to seconds (Llinás 1988;relations are comparable with data from cortical pyramidal cells,
Rudy 1988; Storm 1990). The diversity and richness of K/

and the properties of spike-evoked intracellular [Ca 2/ ] transients
conductances indicate that they likely contribute to neuronalare matched with recent dendritic [Ca 2/ ] imaging measurements.
input-output computation in ways more complex than sculp-Spike-frequency adaptation in response to a current pulse is char-
turing the waveform of action potentials or regulating theacterized by an adaptation time constant tadap and percentage

adaptation of spike frequency Fadap [% (peak 0 steady state) / overall membrane excitability. For example, slow K/ cur-
peak] . We show how tadap and Fadap can be derived in terms of rents, in interplay with Ca2/ and/or Na/ currents, can gener-
the biophysical parameters of the neural membrane and [Ca2/ ] ate rhythmic firing patterns intrinsic to single neurons (Lli-
dynamics. Two simple, experimentally testable, relations be- nás 1988; Wang and Rinzel 1995). Or a slowly inactivating
tween tadap and Fadap are predicted. The dependence of tadap and K/ current can integrate synaptic inputs in a temporal-his-
Fadap on current pulse intensity, electrotonic coupling between tory–dependent manner (Storm 1988; Turrigiano et al. 1996;the two compartments, gAHP as well the [Ca 2/] decay time con-

Wang 1993). Moreover, K/ channels at dendritic sites arestant tCa , is assessed quantitatively. In addition, we demonstrate
capable of modifying cable properties and may regulate syn-that the intracellular [Ca 2/ ] signal can encode the instantaneous
aptic transmission (Hoffman et al. 1997) and prevent inputneuronal firing rate and that the conductance-based model can
saturation (Bernander et al. 1994; Wilson 1995).be reduced to a simple calcium-model of neuronal activity that

Spike-frequency adaptation that depends on a Ca2/-gatedfaithfully predicts the neuronal firing output even when the input
varies relatively rapidly in time ( tens to hundreds of millisec- K/ conductance is a conspicuous neuronal firing characteris-
onds ) . Extensive simulations have been carried out for the model tic exhibited by a majority of (‘‘regular spiking’’) pyramidal
neuron with random excitatory synaptic inputs mimicked by a neurons in neocortex and hippocampus (Avoli et al. 1994;
Poisson process. Our findings include 1 ) the instantaneous firing Connors et al. 1982; Foehring et al. 1991; Gustafsson and
frequency (averaged over trials ) shows strong adaptation similar Wigström 1981; Lanthorn et al. 1984; Lorenzon and Foehr-
to the case with current pulses; 2 ) when the gAHP is blocked, the ing 1992; Mason and Larkman 1990; McCormick et al.dendritic gCa could produce a hysteresis phenomenon where the

1985). In response to a constant current pulse, the firingneuron is driven to switch randomly between a quiescent state
frequency of an adapting neuron is initially high then de-and a repetitive firing state. The firing pattern is very irregular
creases to a lower steady-state plateau level within hundredswith a large coefficient of variation of the interspike intervals
of milliseconds. This phenomenon has been studied inten-(ISI CV ú 1) . The ISI distribution shows a long tail but is not
sively in in vitro slice experiments (as is the case for allbimodal. 3 ) By contrast, in an intrinsically bursting regime (with
afore-cited references) . Recently, Ahmed et al. (1993; B.different parameter values ) , the model neuron displays a random

temporal mixture of single action potentials and brief bursts of Ahmed, C. Anderson, R. J. Douglas; K.A.C. Martin, unpub-
spikes. Its ISI distribution is often bimodal and its power spec- lished results) observed and quantified spike-frequency ad-
trum has a peak. 4 ) The spike-adapting current IAHP , as delayed aptation of in vivo cortical neurons with intracellular re-
inhibition through intracellular Ca 2/ accumulation, generates a cordings from the primary visual cortex of the anesthetized
‘‘forward masking’’ effect, where a masking input dramatically cat. They found that when subjected to a injected current
reduces or completely suppresses the neuronal response to a pulse, the adaptation time course of cortical cells can be
subsequent test input. When two inputs are presented repetitively fitted empirically by an exponential time course (Ahmed etin time, this mechanism greatly enhances the ratio of the re-

al. 1993; unpublished results) , i.e., the instantaneous firingsponses to the stronger and weaker inputs, fulfilling a cellular
rate f ( t) Å fss / ( f0 0 fss ) exp(0t /tadap ) , where f0 is theform of lateral inhibition in time. 5 ) The [Ca 2/ ] -dependent IAHP
initial firing rate, fss is the steady-state firing rate, and tadapprovides a mechanism by which the neuron unceasingly adapts
is an adaptation time constant. Thus this time course isto the stochastic synaptic inputs, even in the stationary state
characterized by two quantities: tadap and the percentagefollowing the input onset. This creates strong negative correla-

tions between output ISIs in a frequency-dependent manner, adaptation of firing frequency Fadap Å ( f0 0 fss ) / f0 . Ahmed
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et al. (1993; unpublished results) found that tadap Å 10–50 suppressed. Furthermore, if the input consists of temporally
uncorrelated excitatory postsynaptic potentials (EPSPs) (ams and Fadap Å 50–70% with a significant difference be-

tween superficial and deep layer neurons. They also per- Poisson process) , spike-frequency adaptation leads to strong
anticorrelation between the consecutive interspike intervalsformed computer simulations that reproduced many of their

observations. of the output spike train. These results indicate that the adap-
tation mechanism is operative even in the stationary stateIn this modeling work, we present a quantitative study

of spike-frequency adaptation temporal dynamics, which, in after the input onset, and suggest a direct means to assess
its efficacy from extracellularly recorded spike trains.particular, yields analytical expressions for tadap and Fadap in

terms of the cellular biophysical parameters. We also explore
possible implications of this phenomenon in the real-time M E T H O D S
input-output computation of cortical neurons. Compared

Modelwith an early quantitative work modeling spike-frequency
adaptation in motoneurons by Baldsissera and Gustafsson The neuron model has two compartments, representing the den-
(1974), the present study benefitted from a number of recent drite and the soma plus axonal initial segment, respectively (Pinsky
experimental findings and quantitative data about the cellular and Rinzel 1994). Many of our results can be obtained with a
mechanisms underlying the spike-frequency adaptation phe- single compartment. However, we used a two-compartment model

for three reasons. 1) Ca2/ imaging measurements from pyramidalnomenon. First, it is well known that the spike-frequency
cells show spike-evoked [Ca2/] transient that is much larger atadaptation is produced mainly by a voltage-independent,
the dendrite than at the soma (Jaffe et al. 1994; Schiller et al.Ca2/-dependent K/ current, although other K/ currents
1995; Svoboda et al. 1997; Yuste et al. 1994), and the [Ca2/](such as the M current) also are involved to a lesser degree
influx is produced primarily by Ca2/ entry through voltage-gated(Madison and Nicoll 1984; Madison et al. 1987; McCormick channels (Miyakawa et al. 1992). In the present model, we focus

and Williamson 1989). This current is associated with the mainly on spike-frequency adaptation that is caused by a dendritic
slow after hyperpolarization (AHP) after a burst of spikes, [Ca2/]-dependent IAHP. 2) We wanted to see whether our theoreti-
hence is called the AHP current (IAHP) (Hotson and Prince cal analysis can be carried out even with two (or more) compart-
1980; Lancaster and Adams 1986; Schwindt et al. 1988). ments. When IAHP is present both at soma and dendrite, we show
Second, it has been demonstrated by photolytic manipulation that there are two ‘‘calcium modes’’ and the spike-frequency adap-

tation time course should be described as a sum of two exponen-of Ca2/ that the intrinsic gating of IAHP is rapid; its slow
tials. And 3) with an appropriate choice of parameters, the neuronactivation is thus attributable to the kinetics of the cyto-
model displays burst firing patterns that require weak electrotonicplasmic calcium concentration [Ca2/] (Lancaster and
interactions between the two compartments.Zucker 1994). Third, spike-evoked [Ca2/] transients now

The dendritic compartment has a high-threshold calcium currentcan be measured by fluorescence imaging techniques (see (L type), ICa , and a calcium-dependent potassium current IAHP.
Yuste and Tank 1996 for a review). Recently, to overcome The somatic compartment contains spike generating currents (INathe problem that a [Ca2/] indicator dye like Fura-2 is also and IK) and possibly also ICa and IAHP. The somatic and dendritic
a [Ca2/] buffer, Helmchen et al. (1996) used increasingly membrane potentials Vs and Vd obey the following current-balance
low concentrations of Fura-2 and, by extrapolation to zero equations
dye concentration, obtained measurements of putatively in-

Cm
dVs

dt
Å 0IL 0 INa 0 IK 0 ICa 0 IAHP 0

gc

p
(Vs 0 Vd) / I (1)trinsic [Ca2/] transient signals. Their estimated spike-

evoked [Ca2/] transient from dendrites of cortical pyramidal
neurons are larger and faster than previously reported. In Cm

dVd

dt
Å 0IL 0 ICa 0 IAHP 0

gc

(1 0 p)
(Vd 0 Vs ) 0 Isyn (2)

the model pyramidal neuron of the present paper, the calcium
dynamics (spike-evoked influx and decay) is constrained by where Cm Å 1 mF/cm2 and IL Å gL (V 0 VL) is the leak current.
accurate measurements of Helmchen et al. (1996). Following Pinsky and Rinzel (1994), we express the current flows

Can calcium signaling perform interesting sensory compu- between the soma and dendrite [proportional to (Vs 0 Vd)] in
tation in cortical neurons? In previous computational models, microamperes per square centimeter, with the coupling conduc-
spike-frequency adaptation has been incorporated as a gain tance gc Å 2 mS/cm2, and the parameter p Å somatic area/ total

area Å 0.5. Other, voltage-gated currents are described below. Thecontrol mechanism for neuronal excitability (Barkai and
cell is either excited by an injected current I ( in mA/cm2) to theHasselmo 1994; Douglas et al. 1995). However, the adapta-
soma or by a random synaptic input Isyn of the a-amino-3-hydroxy-tion temporal dynamics, i.e., its role in moment-to-moment
5-methyl-4-isoxazolepropionic acid type to the dendrite. Isyn Åneural computation in response to time-varying inputs, has
gsyn s(V 0 Esyn ) ; the gating variable s obeys the equation ds /dt Ånot been emphasized. Through spike-frequency adaptation,
h( t) 0 s /ts , where h( t) is a Poisson point-process with a rate l,[Ca2/] dynamics produces a ‘‘forward masking’’ phenome- Esyn Å 0 mV, ts Å 0.5 ms, and gsyn Å 0.08 mS/cm2 (if present) .

non: the neuronal response to a stimulus may be masked The voltage-dependent currents are described by the Hodgkin-
due to another stimulus that precedes it in time as was dem- Huxley formalism (Hodgkin and Huxley 1952). Thus a gating
onstrated experimentally in the cricket auditory neurons (So- variable x satisfies a first-order kinetics
bel and Tank 1994). Results reported here suggest that such
an effect also exists in cortical pyramidal cells and may be dx

d t
Å fx[ax(V )(1 0 x) 0 bx(V)x] Å fx[x`(V) 0 x] /tx(V) (3)

used to selectively respond to temporal input patterns. In
particular, when two or several competing inputs are pre- The sodium current INa Å gNam 3

`(V )h(V 0 VNa) , where the fast
sented, the neuronal output is sharply ‘‘tuned’’ to the strong- activation variable is replaced by its steady state, m` Å am / (am /

bm) , am Å 00.1(V / 33)/ {exp[00.1(V / 33)] 0 1}, bm Åest input, and the responses to weaker inputs are greatly
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4 exp[0(V / 58)/12], ah Å 0.07 exp[0(V / 50)/10], and
bh Å 1/{exp[00.1(V / 20)] / 1}. The delayed rectifier IK Å
gKn 4(V 0 VK) , where an Å 00.01(V / 34)/ {exp[00.1(V /
34)] 0 1}, and bn Å 0.125 exp[0(V / 44)/25]. The temperature
factor fh Å fn Å 4.

The high-threshold calcium current ICaÅ gCam`(V0 VCa) , where
m is replaced by its steady-state m`(V ) Å 1/{1 / exp[0(V /
20)]/9} (Kay and Wong 1987). The voltage-independent, cal-
cium-activated potassium current IAHP Å gAHP[[Ca2/] / ([Ca2/] /
KD)](V 0 VK) , with KD Å 30 mM. The intracellular calcium con-
centration [Ca2/] is assumed to be governed by a leaky-integrator
(Helmchen et al. 1996; Tank et al. 1995; Traub 1982)

d[Ca2/]
dt

Å 0aICa 0 [Ca2/] /tCa (4)

where a is proportional to S /V with S being the membrane area
and V the volume immediately beneath the membrane (Yamada et
al. 1989). We used a Å 0.002 [in mM (msmA)01cm2] so that the
[Ca2/] influx per spike is Ç200 nM (Helmchen et al. 1996).
The various extrusion and buffering mechanisms are described
collectively by a first-order decay process with a time constant
tCa Å 80 ms (Helmchen et al. 1996; Markram et al. 1995; Svoboda
et al. 1997).

The parameter values for the spike-generating currents and the
IAHP were chosen so that the model displayed the initial as well as
the adapted f-I curves similar to the data of McCormick et al.
(1985) and Mason and Larkman (1990): gL Å 0.1, gNa Å 45,
gK Å 18, dendritic gCa Å 1, and gAHP Å 5 (in mS/cm2); VL Å 065,
VNa Å /55, VK Å 080, VCa Å /120 (in mV). The somatic gCa and
gAHP are zero except for Fig. 7. The resting state (with I Å 0 and
gsyn Å 0) is at Vs Å 064.8 and Vd Å 064 mV.

The model was simulated on a Silicon Graphics Workstation,
using a fourth-order Runge-Kutta method, with time step dt Å
0.02–0.05 ms.

Statistical analysis

With Poisson synaptic inputs, each random output train of spike
times is converted into a sequence of interspike intervals { t1 , t2 ,
t3 , . . . , tN}. The interspike interval (ISI) histogram is tabulated,
with a mean m and a standard deviation s given by

m Å 1
N

∑
N

nÅ1

tn ; s Å
√

1
N

∑
N

nÅ1

( tn 0 m)2
FIG. 1. Spike-frequency adaptation characteristics. A : an example of

spike-frequency adaptation in response to a current pulse. Adaptation is
accompanied by a gradual increase of the fast spike afterhyperpolarization
(AHP; top, inset) . Each action potential generates a [Ca2/] influx of Ç200The ISI variability is quantified by the coefficient of variation
nM (bottom, inset) , and the adaptation time course follows that of [Ca2/](CV) (Softky and Koch 1993; Tuckwell 1988) (hence IAHP) accumulation. Slow AHP after the spike firing mirrors the
[Ca2/] decay process. B : 1st, 3rd, and 5th instantaneous firing rates andCV Å s /m (6)
the steady-state firing rate vs. the applied current intensity ( left) . Initial f-
I curves are nonlinear, but the steady-state f-I relation is essentially linear.The statistical interdependence between consecutive ISIs is mea-
Plateau [Ca2/] level is a linear function of the steady-state firing rate, withsured by the coefficient of correlation (CC) (Perkel et al. 1967;
a slope of Ç13 nM/Hz (right).Tuckwell 1988)

subroutine Spctrm.c from Numerical Recipes (Press et al. 1989),
CC Å »( t n/1 0 m)( t n 0 m) …

s 2
Å

1
N 0 1

(
N01

nÅ1
( tn/1 0 m)( tn 0 m)

s 2
(7) modified by Yinghui Liu.

which is between01 and/1. The CC can be interpreted as follows. R E S U L T S
Suppose that we have an ISI return map, where tn/1 is plotted

Time course of spike-frequency adaptationagainst tn . To assess how ISIs ( tn/1) depend on their preceding
values ( tn) , we calculate the conditional average of tn/1 for each

In response to a depolarizing current pulse, the modelgiven tn , » tn/1Étn … . If this function of tn is linear, then its slope
neuron initially fires at a high frequency, then adapts tois the same as the CC (see APPENDIX A for a derivation of this
a lower steady-state frequency (Fig. 1A) . Spike-frequencystatement) .
adaptation is accompanied by a gradual increase of the fastThe temporal correlations are further assessed by the power

spectrum of the spike train (with a time bin of 1 ms), using the spike AHP (from 053 to 057 mV, see Fig. 1A, inset) . This

J564-7/ 9k26$$mr28 02-16-98 08:23:30 neupas LP-Neurophys



X.-J. WANG1552

firing pattern is in parallel with the time course of Ca2/

accumulation, at a rate ofá200 nM/spike [comparable with
the [Ca2/] imaging measurements from proximal apical
dendrites of cortical layer V pyramidal cells (Helmchen et
al. 1996)] . The IAHP increases with [Ca2/] , hence the cell
is gradually hyperpolarized and the firing frequency is de-
creased in time. In the steady state, an equilibrium is reached
in the [Ca2/] dynamics, when the spike-evoked [Ca2/] in-
flux rate is balanced with the [Ca2/] decay rate. After the
current pulse, there is a long-lasting AHP that mirrors the
Ca2/ (hence the IAHP) decay (Fig. 1A) .

Frequency-current f-I curves are shown in Fig. 1B ( left) ,
for the initial first, third, and fifth interspike intervals, as
well as the steady state. At the onset of repetitive firing
(rheobase I á 0.5) , the firing frequency starts at zero,
through a homoclinic bifurcation of the saddle-node type
(see also Crook et al. 1997). It is noticeable that the initial
f-I curves are quite nonlinear, but the steady-state f-I relation
is very close to linear, similar to regular spiking pyramidal
neurons (cf. Figs. 8–9 in Mason and Larkman 1990). Intu-
itively, the adapting AHP-current provides a delayed nega-
tive feedback to the cell. It is larger at higher firing frequen-
cies, thus the difference between the initial f0 and the final
fss increases with the current intensity. As a result, the steady-
state input-output relation is linearized by the IAHP. We also
computed the mean dendritic [Ca2/] as I was varied. Its
steady-state plateau level depends linearly on fss (Fig. 1B,
right) , with a slope á 17 nM/Hz (compared with the mea-
sured 16 nM/Hz from dendrites of layer V pyramidal cells)
(Helmchen et al. 1996). In this sense, the dendritic Ca2/

level encodes the neuronal firing activity (Helmchen et al.
1996; Johnston 1996).

For the spike train in Fig. 1, the instantaneous firing rate
f ( t) is defined as the reciprocal of ISIs (Fig. 2A, top) . Its
time course can be well fitted by a mono-exponential curve,
f ( t) Å A / B exp(0t /tadap ) , where A Å fss , and B Å f0 0 FIG. 2. Theoretical derivation of the spike-frequency adaptation time
fss . The empirical best fit is given by f ( t) Å 116 / 156 course. A : instantaneous firing rate [ f Å 1/interspike interval (ISI)] and

[Ca2/] as function of time. Red curves : linear theory predictions. Greenexp(0t /33) . Thus tadap Å 33 ms, and the percentage adapta-
curve : empirical best fit. Blue curve : computed using a square-root fit fortion Fadap Å ( f0 0 fss ) / f0 Å B / (A / B) Å 57%. The [Ca2/]
the f-vs.-[Ca2/] relation (see B) . B : neuronal firing rate as function ofalso follows an exponential time course with the same time [Ca2/] . ●, data obtained when [Ca2/] was varied as a parameter. h, data

constant tadap , the steady-state plateau is [Ca2/]ss Å 1.74 from A with f plotted against [Ca2/] averaged over each individual ISI.
Two data sets yield a same curve, demonstrating that the functional depen-mM. Note that tadap is much shorter than the decay time
dence of f on [Ca2/] can be obtained with [Ca2/] varied as a parameter.constant tCa Å 80 ms. We now show how this adaptation
Red curve : linear regression fit; blue curve : square-root fit. C : average ICatime course, given a constant current pulse, can be predicted as function of [Ca2/] , fitted by a straight line (red). In B and C , the dashed

quantitatively from the biophysics of the membrane dynam- vertical lines indicate the plateau [Ca2/] level in A .
ics Eqs. 1–4 . We shall see further that this description leads
to a calcium-coding model of neuronal output, even when mine the functional [Ca2/] dependence of the firing fre-
the input varies temporally. quency f ([Ca2/]) as well as other voltage-dependent quanti-

The fast-slow variable dissection method (Baer et al. ties like »ICa … , where »x … denotes an average of x over a
1995; Ermentrout 1994; Guckenheimer et al. 1997; Rinzel typical ISI. The functional [Ca2/] dependence of f ([Ca2/])
1987; Wang and Rinzel 1995) is based on the observation and of »ICa … was found to be approximately linear (Figs. 2,
that Ca2/ evolves much more slowly than the membrane B and C)
potential and the other channel gating variables of the model

f á f0 0 Gf[Ca2/] ; »ICA … á »ICa …0 / Gcc[Ca2/] (8)and that this slow [Ca2/]( t) determines the adaptation time
course. Thus we can first analyze the fast subsystem and where f0 Å 271 Hz is the initial firing frequency, and G f Å

0d f /d[Ca2/] Å 84 (in Hz/mM) is a negative-feedbackthe slow [Ca2/] dynamics separately then put them back
together. This is done in three steps (see APPENDIX B for ‘‘gain parameter’’ for the firing frequency. »ICa …0 Å 028.8

mA/cm2 is the initial »ICa … , Gcc Å d »ICa … /d[Ca2/] Å 10 (indetails) . In step 1, the fast electrical subsystem is analyzed
while considering the slow [Ca2/] as if it was a static param- mA/cm2 mM) is a negative-feedback gain parameter for the

[Ca2/]-dynamics (Ahmed et al., unpublished results) , andeter rather than a dynamical variable. This allows us to deter-
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aGcc ( in 1/ms) is the rate at which the [Ca2/] influx is
reduced by [Ca2/] itself.

In step 2, we turn to the [Ca2/] dynamics Eq. 4 . Because
it does not vary a lot within a sufficiently short ISI, ICa is
substituted by »ICa … , which is a function of [Ca2/] . The
resulting equation now only depends on [Ca2/]

d[Ca2/]
dt

Å (0a »ICa …0) 0 [Ca2/] /tadap (9)

with
1

tadap

Å aGcc /
1
tCa

(10)

Solving Eq. 9 , we obtain

[Ca2/]( t) Å [Ca2/]ss [1 0 exp(0t /tadap )] (11)

with [Ca2/]ss Å 0a»ICa …0 tadap . Note that the adaptation
time constant tadap (Eq. 10) is always smaller than tCa due
to the presence of the negative feedback term aGcc . For
instance, with a Å 0.002 and Gcc Å 10, aGcc Å 0.02 is larger
than 1/tCa Å 0.0125, hence contributes more to tadap . We
have tadap Å 30.8 ms, whereas tCa Å 80 ms; and [Ca2/]ss

Å 1.77 mM.
Finally, in step 3, we insert the time course for [Ca2/]

into the expression f Å f0 0 Gf [Ca2/] , which yields the
adaptation process for the firing frequency as function of
time

f ( t) Å fss / ( f0 0 fss )exp(0t /tadap ) Å 122 / 149 exp(0t /30.8) (12)

with fss Å f0 0 Gf [Ca2/]ss . The theoretically predicted time
course for spike-frequency adaptation is shown in Fig. 2A

FIG. 3. Dependence on applied current intensity I . A : f0 , G f , »ICa …0 , and(red curve) , which compares well with the empirical fit
Gcc as functions of I . , empirical fitting functions of Eq. 15 . B : adapta-(green curve) . However, there is a small discrepancy be-
tion time constant tadap increases, and the percentage adaptation Fadap de-tween the numerical and predicted fss . This is mainly due to creases, with I . C : examples with 4 current intensities ( indicated on the

the fact that f ([Ca2/]) is not exactly linear. Indeed, f goes right) , the smooth curves are theoretical predictions.
to zero at a critical value of [Ca2/] á 2.2 mM (when the
IAHP becomes too strong) via a homoclinic bifurcation of d[Ca2/] /dt Å 0a( »ICa …0(I) / Gcc (I)[Ca2/]) 0 [Ca2/] /tCa (14)
the saddle-node type. The mathematical theory of such a

where the firing rate is always positive by using the half-bifurcation predicts that, near the bifurcation, f ([Ca2/]) be-
rectifying function [x]/ Å x if x ¢ 0, and 0 otherwise. Thehaves as a square-root function of [Ca2/] (see Gucken-
dependence on the current intensity I of the four quantitiesheimer et al. 1997; Rinzel and Ermentrout 1987). We found
f0 , Gf, »ICa …0 , and Gcc are shown in Fig. 3A. We observethat a square-root function fits well even the global
that tadap is larger and Fadap is smaller with larger currentf ([Ca2/]) : f ([Ca2/]) Å 265

√
1 0 0.455[Ca2/] , except

intensities (see also Ahmed et al. unpublished results) . Thisnear the bifurcation threshold (Fig. 2B, blue curve) . Using
is because at higher I, spike width becomes slightly nar-this nonlinear expression for f ([Ca2/]) and the same
rower, hence Ca2/ influx per spike is reduced. All four[Ca2/]( t) as before, f ( t) can now be very accurately pre-
curves in Fig. 3A can be fitted reasonably well by logarith-dicted (Fig. 2A, blue curve) . In the following, we shall limit
mic functionsourselves to the linear approximation.

Note that the percentage adaptation f0(I) Å 9[ln (I /0.3)]/ Gf ( I) Å 59 0 15[ln (I /0.3)]/

Fadap Å ( f0 0 fss ) / f0 Å (0a »ICa…0 / f0)Gf tadap (13) »ICa …0(I) Å 084[ln (I /0.3)]/ Gcc (I) Å 551 0 143[ln (I /0.3)]/ (15)

which depends on the [Ca2/] dynamics and the IAHP only where I0 Å 0.3 is the estimated rheobase (The actual rheo-
through the factor Gf tadap . base is somewhat larger, I0 á 0.5) . Note that such a curve-

fitting is purely empirical and is not based on theoretical
grounds (see also Agin 1964; Koch et al. 1995).Calcium model of neuronal activity

Equations 14 and 15 completely describe the calcium
We have described above how to reduce the biophysical model of neuronal activity. For this model to be useful, it

membrane model of the neuron to a calcium-model, for a should be able to predict the output firing rate f ( t ) , even
given applied current I when the input current I( t ) varies temporally in an arbitrary

fashion. In Helmchen et al. (1996), the dendritic [Ca2/]f ( t) Å [ f0(I) 0 Gf ( I)[Ca2/]]/
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signal was shown to encode firing frequency of a cortical
layer V pyramidal neuron, when the input changed at the
time scale of seconds. Intuitively, one expects that the cal-
cium-model of neuronal discharges to be valid only when
the temporal change of I( t ) is slower than both the individual
ISIs and the [Ca2/] dynamics. Because of the adapting IAHP,
the effective [Ca2/] time constant is given by tadap , typically
much shorter than tCa . Hence, one can expect that the [Ca2/]
code could remain effective even for input changes much
more rapidly than in seconds. An example is shown in Fig.
4. Driven by a chaotic input current I( t ) (Fig. 4, bottom) ,
the membrane potential fires spikes irregularly (Fig. 4, top) .
The instantaneous firing rate (the reciprocal of the ISI) and
[Ca2/] as function of time are shown in Fig. 4, middle ( in
blue) , superimposed with the predictions from the calcium-
model ( in red) . This example suggests that the calcium
model can indeed predict the instantaneous firing rate, even
for relatively rapid time changes (within tens to hundreds
of milliseconds) of the input current.

Dependence on the electrotonic coupling gc

We next consider how the spike-frequency adaptation
properties depend on the various biophysical parameters of
the model. First, the spike-frequency adaptation is influenced
strongly by the electrotonic coupling gc , which controls the
two-way current flow between the somatic and dendritic
compartments. An example is illustrated in Fig. 5A , with
two different values of gc and a same current pulse to the
soma. With a larger gc , there is greater current loss to the
dendrite, hence the initial firing frequency is lower (Fig. 5A,
left) . On the other hand, the dendritic membrane potential
repolarizes more rapidly after the somatic spike, the dendritic
spike width is narrower, and the [Ca2/] influx per spike is
reduced (Fig. 5A, right) . This leads to a slower [Ca2/]
accumulation, larger tadap , and smaller percentage adaptation
Fadap (Fig. 5B) . As in the case of varying the applied current
I (Fig. 3B) , the two quantities tadap and Fadap change in an
antagonistic manner (faster adaptation time course is corre-
lated with a greater degree of adaptation).

On the other hand, burst firing of spikes can be observed
when the electrotonic coupling gc between the two compart-
ments is sufficiently small, and the dendritic membrane area
is significantly larger than the somatic one so that the cou-
pling is asymmetric and the soma-to-dendrite influence is
weak (Mainen and Sejnowski 1996; Pinsky and Rinzel 1994;
Rhodes and Gray 1994; Traub 1982; Traub et al. 1994).
Similar to the intrinsically bursting pyramidal cells in layer
V neocortex (Kim and Connors 1993; Mason and Larkman FIG. 4. Calcium coding of neuronal electrical activity. In response to a

temporally varying input I( t ) (bottom) , the cell’s firing (blue dots, middle1990; McCormick et al. 1985; Nishimura et al. 1996), with
top) and [Ca2/] time course (blue curve, middle bottom) are well predictedmoderate current intensity the model neuron fires doubles
by the reduced calcium model Eqs. 14 and 15 (red curves) .

of spikes repetitively at low frequencies (Ç4 Hz); and (more
typically) current injection of higher intensities elicits an Relations between tadap and Fadap
initial burst of spikes followed by a train of single spikes
(Fig. 5C) . This firing pattern can be viewed as an extremely In addition to the neuronal electrotonic structure, spike-
strong form of spike-frequency adaptation, produced by the frequency adaptation depends also on the channel conduc-
same set of ion channels as the adaptation phenomenon (if tances gCa and gAHP, as well as the [Ca2/] kinetic parameters
these ion channels are located at dendritic sites sufficiently a and tCa . These dependences were explored within the

framework of our calcium-model. First, the initial firing rateisolated from the soma).
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f0 , GV f , and »ICa …0 (computed with [Ca2/] as a static parame-
ter) are all independent of tCa , hence Fadap is simply propor-
tional to tadap . The slope of the linear curve, however, de-
pends on the input current intensity I .

By contrast, if tCa is held constant and agCa gAHP is in-
creased (Fig. 6C ) , adaptation is faster (tadap is smaller )
and the percentage adaptation Fadap is larger. The plot of
Fadap versus tadap shows a linear relation with a negative
slope (Fig. 6D ) . In Fig. 6D, we also plotted the Fadap

versus tadap simulation data, obtained when the input cur-
rent intensity I is varied (Fig. 3B ) and when the electro-
tonic coupling gc is varied (Fig. 5B ) . Quite surprisingly,
in all cases, the Fadap -tadap curve is linear with approxi-
mately the same slope á 1/65 , which is close to, but
differs from, the reciprocal of the [Ca 2/ ] decay time con-
stant 1/tCa Å 1/80.

To gain some insights about this general relation between
Fadap and tadap , let us suppose that the ratio between the
initial value and the gain parameter is roughly the same for
f and »ICa … , i.e., f0 /G f á (0 »ICa …0) /Gcc . With this assump-
tion, we then can write 0 »ICa …0 Gf / f0 á Gcc . Inserting this
relation into Eq. 13 , we have

FIG. 5. Dependence on the electrotonic coupling gc between the 2 com-
partments. A : with an increased gc , the initial firing frequency is lower but
the steady-state frequency remains the same ( left) . Reduced percentage
adaptation is due to a narrower dendritic spike (because Vd repolarizes more
rapidly at larger gc ) , hence a smaller [Ca2/] influx per spike (right) . B :
tadap increases, and Fadap decreases, with gc . C : burst firing patterns with
modified electrotonic properties (gc Å 1.4, P Å 0.3) and gCa Å 0.5,
gAHP Å 18.

f0 should not depend on any of these parameters. Second,
because »ICa … Å »ICa …0 / Gcc[Ca2/], »ICa …0 and Gcc should
be proportional to gCa . Third, both gain parameters G f and
Gcc must be proportional to gAHP. In summary, we can write

Gf Å GV fgAHP, »ICa …0 Å »IV Ca …0gCa , Gcc Å GV ccgCagAHP (16)

Inserting these scaling relations into Eqs. 10 and 13 we have

1/tadap Å (agCagAHP)GV cc / 1/tCa

Fadap Å (agCagAHP)(0GV f »IV Ca …0/f0)tadap (17)

From Eq. 17 we can conclude that tadap and Fadap depend
only on tCa (a neuron’s [Ca2/] extrusion and buffering prop-
erties) and on the combination agCagAHP (the product of
the spike-evoked [Ca2/]-influx size agCa and the adaptation

FIG. 6. Dependence of tadap and Fadap on tCa (A and B) and the combina-conductance gAHP) . Given fixed agCagAHP, as tCa is increased
tion agCagAHP (C and D) (cf. Eq. 17) . Three curves in each panel correspond(Fig. 6A) , the adaptation is slower (tadap is larger) , but the
to different applied current intensities. B : Fadap vs. tadap from data in A isplateau [Ca2/] level is higher (cf. Eqs. 4 and 11) , hence linear with a positive slope (which depends on I) . D : Fadap vs. tadap from

Fadap is larger. A plot of Fadap versus tadap is linear with a data in C : is linear with a negative slope á 01/tCa . This is also true for
data obtained with I (Fig. 3B) or gc (Fig. 5B) being varied as parameter.positive slope (Fig. 6B) . This is evident in Eq. 17, where
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Fadap á aGcctadap (18)

or because aGcc Å 1/tadap 0 1/tCa (Eq. 10) , we have

Fadap á 1 0 tadap /tCa (19)

which is the desired relation between Fadap and tadap . This
theoretical prediction is directly testable by experimental
measurements from cortical pyramidal neurons.

Two calcium modes

We have developed our calcium model of neuronal activ-
ity Eqs. 14 and 15 with the ion currents ICa and IAHP localized
at the dendrite. In real cortical pyramidal neurons, of course,
these channels are distributed widely on the dendritic trees
as well as the soma (Jaffe et al. 1994; Johnston et al. 1996;
Yuste et al. 1994). It is of interest to investigate whether
our approach can be generalized to such cases where the
[Ca2/] signaling and [Ca2/]-dependent spike-frequency ad-
aptation are distributed across multiple compartments. For
our two-compartment model, suppose that the distributions
of gCa and gAHP are uniform at the soma and dendrite, gCa Å
1 and gAHP Å 5 (in mS/cm2) for both compartments. We
then have two equations like Eq. 4 for somatic and dendritic
[Ca2/] , respectively

d[Ca2/] s

dt
Å 0asICa,s 0 [Ca2/]s /tCa,s

d[Ca2/]d

dt
Å 0adICa,d 0 [Ca2/]d /tCa,d (20)

Because the parameter a is proportional to the surface:vol-
ume ratio, it should be much smaller for the soma than for
the dendrite. Similarly, tCa is expected to be longer at the
soma than at the dendrite. For instance, the spike-evoked FIG. 7. Two Ca2/ modes. With gCa and gAHP on both the somatic and
[Ca2/] transient peak amplitude and decay rate (1/tCa) can dendritic compartments, the time course of spike-frequency adaptation is a

sum of 2 exponentials, with tadap,1 Å 29.4 ms and tadap,2 Å 191 ms. Fasterbe three times as large in some dendritic sites as in the soma
component ( largely due to the dendritic gAHP) dominates ( top) . Dendritic(Schiller et al. 1995). With the simple two-compartment
[Ca2/]( t) is not monotonic and displays a maximum at around tmax Å 106model, let us assume that for the dendritic compartment, ms. Red curves : empirical fits.

ad Å 0.002 and tCa,d Å 80 ms, whereas for the somatic
compartment we multiple the right-hand side of Eq. 4 by a
factor of 1/3, so that as Å 0.000667 and tCa,s Å 240 ms.

is smaller than would be expected without a somatic IAHP.As shown in Fig. 7, with two calcium modes, [Ca2/]s ( t) ,
Hence, the nonmonotonic behavior of [Ca2/]d( t) .[Ca2/]d( t) , and f ( t ) can be empirically well fitted by a sum

The theoretical analysis for the adaptation time course canof two exponentials, with the first rapid phase followed by
be generalized in this case, but only approximately. As isa second much slower phase (Fig. 7, red curves)
detailed in APPENDIX C, our liner approach yields good esti-

[Ca2/]s ( t) Å 0.74 0 0.3 exp(0t /tadap,1 ) 0 0.44 exp(0t /tadap,2 ) mates for the two adaptation time constants tadap,1 and tadap,2 .
However, the steady state plateaus and the actual time[Ca2/]d( t) Å 1.13 0 1.63 exp(0t /tadap,1 ) / 0.5 exp(0t /tadap,2 )
courses cannot be predicted accurately unless nonlinear in-

f ( t) Å 73 / 225 exp(0t /tadap,1 ) / 16 exp(0t /tadap,2 ) (21) teractions between the two [Ca2/] modes are taken into
account.where tadap,1 Å 29.4 ms and tadap,2 Å 191 ms. None that

the faster [Ca2/] mode (which is primarily of the dendritic
origin) dominates the spike-frequency adaptation, while the Adaptation to stochastic Poisson input
slower mode is only 16/225 Å 7% of the faster mode. More-
over, the time course of [Ca2/]d can be nonmonotonic (Fig. So far, spike-frequency adaptation of cortical pyramidal

neurons has been investigated with current pulse stimulation.7) . In the first rapid phase of adaptation, [Ca2/]s is small,
both [Ca2/]d and the firing rate converge to their plateau However, in in vivo conditions, pyramidal cells are driven

by synaptic inputs that are stochastic and vary unceasinglylevels as if the somatic IAHP did not exist. But as [Ca2/]s

(hence the somatic IAHP) slowly accumulates, the firing rate in time. As a first step toward addressing the question of
spike-frequency adaptation to natural stimuli, we stimulatedfurther decreases in the second phase of adaptation, which

leads to a decay of [Ca2/]d to its actual final plateau, which the response of our model neuron to random synaptic inputs
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FIG. 8. Adaptation to a Poisson synaptic input.
A : an example of the membrane potential and
[Ca2/] time course ( top and middle top) . Cell ini-
tially fires rapidly that appears as a burst of spikes,
followed by a firing pattern that is uneven in time.
Instantaneous firing rate (averaged over 100 trials)
has a single exponential time course (middle bot-
tom) . ISI variability increases with decreasing fir-
ing rate (bottom) . Red curves : theoretical predic-
tions. B : linear dependence of f and »ICa … on
[Ca2/] . C : ISI return map ( tn/1 vs. tn) . Blue curve :
conditional average of tn/1 for each fixed tn , which
is approximately linear with a negative slope k Å
00.3. (Dendritic gAHP Å 8 mS/cm2.)

generated by a Poisson process with rate l. As illustrated in f0 Å 213 (in Hz). (Note, again, tadap is much shorter than
Fig. 8A, when the Poisson input is turned on, the cell initially tCa Å 80 ms.) These curves fit accurately with the simulation
fires rapidly (at 180 Hz), then the firing rate is reduced in data (red curves in Fig. 8A) .
parallel with the accumulation of [Ca2/] . The instantaneous Driven by random EPSPs, the neuronal firing activity dis-
firing frequency calculated by averaging over trials shows a plays fluctuations. We calculated the coefficient of variation
time course similar to that with a constant current pulse. of the ISIs (cf. METHODS). The CV displays a time course
This time course can be predicted using the same analysis that mirrors the mean instantaneous firing rate (Fig. 8A) :
as before, except that now we use trial-averaged firing rate its initial value is low but not zero (Ç0.1) , increases as the
f and calcium current ICa . As shown in Fig. 8B, both f and firing rate decreases, and plateaus at a value close to 0.5.
»ICa … are approximately linear with [Ca2/] when the latter The ISI variability is expected to be larger with lower firing
is considered as a parameter frequencies when the cell acts more like a coincidence detec-

tor than a temporal integrator of excitatory inputs (Perkel etf Å f0 0 Gf[Ca2/] ; »ICa … Å »ICa …0 / Gcc[Ca2/] (22)
al. 1967; Softky and Koch 1993; Stern 1965).

where f0 Å 213 Hz, Gf Å 252 Hz/mM, »ICa …0 Å 022.6 mA/ Because the firing is now random, the membrane potential
cm2, and Gcc Å 27.5 mA/cm2 mM. Solving Eq. 4 with ICa shows two noteworthy features. First the initial response
substituted by »ICa… , we obtain appears as a burst, even though the neuron shows typical

adaptation time course and no burst with a current pulse[Ca2/]( t) Å [Ca2/]ss (1 0 exp(0t /tadap ))
(Fig. 1) . Second, in the steady state after the transient burst,

f ( t) Å fss / ( f0 0 fss ) exp(0t /tadap ) (23)
fast doublets can be observed typically after a relatively long
silent time. This phenomenon can be understood in terms ofwhere tadap Å 14.8 ms, [Ca2/]ss Å 0.67 mM, fss Å 44.2 and
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temporal correlations caused by the spike-adapting current
IAHP. Statistically, if by chance the cell happens to fire rapidly
in a short time window, significant [Ca2/] influx will be
produced, the enhanced IAHP will hyperpolarize the cell, and
the firing rate subsequently will be reduced. Conversely,
during a time period of relative low firing, IAHP decreases as
a result of the [Ca2/] decay, and the probability of firing
increases. In short, the adaptation generates negative statisti-
cal temporal correlations between ISIs. This is shown in Fig.
8C by the ISI return map (computed in the steady state)
where the (n / 1)th ISI is plotted against the n th ISI. Given
ISIn , the average ISIn/1 is calculated (blue curve) and yields
a linear relation with a slope k Å 00.3. This slope is the
same as the coefficient of correlation between successive
ISIs (the CC, see METHODS). It is about a third of the maxi-
mum negative correlation (k Å 01) possible.

The steady-state input-output relation, i.e., the mean firing
rate f versus the Poisson input rate l, is linear (Fig. 9A, red
curve) . We also computed the ISI CV and CC as function
of l; they are plotted against the mean output frequency f
(Fig. 9, B and C) . One observes that the CV changes slightly
with f , ranging 0.3–0.5 (Fig. 9B, red curve) . The CC shows
a much stronger frequency dependence with a large negative
peak at f á 20 Hz (Fig. 9C, red curve) . This strong fre-
quency dependence can be explained in terms of two time
constants: tCa Å 80 ms and tadap á 15 ms (for the sake of
argument, we assume that tadap remains about the same as
l is varied) . The negative ISI correlation is produced by the
spike-adapting current IAHP, and the effect is large only in
a neuronal firing rate range such that the mean ISI (1/ f ) is
between tadap and tCa . This is because when the firing rate
f is very low ( f õ 1/tCa Ç 10 Hz), [Ca2/] decays back to
baseline between spikes so that IAHP cannot accumulate and
k á 0. On the other hand, at very high firing rates ( f ú 1/
tadap Ç 70 Hz), no significant adaptation dynamics takes
place during two consecutive ISIs, and their correlation
should again be small.

FIG. 9. Dependence on the Poisson input rate l. A : average steady-stateThis result demonstrates that, when the input is stochastic, firing rate f as function of l. ISI variability (CV) (B) and ISI correlation
the [Ca2/]-dependent current IAHP strongly sculptures the (CC) (C) are plotted as function of f . Red : control (with dendritic gCa Å

1 and gAHP Å 8 mS/cm2), blue : gAHP Å 0, green : gCa Å 0. Note that whenfiring patterns by producing negative correlations between
gAHP Å 0 but gCa is present, the CV is larger than 1 at low firing frequenciesISIs in a frequency-dependent manner, even in the stationary
(B). On the other hand, the CC is virtually 0, hence the ISIs are essentiallystate where the trial-averaged firing rate is constant. uncorrelated in time when gAHP Å 0 (C). In control condition, CC depends
strongly on firing frequency and displays a negative peak at á 20 Hz.

Stochastic burst firing

cited by a constant input current (within an appropriateWe confirmed that the ISI correlation (CC) is essentially
range), there is a bistability where both the resting state andzero when the spike-frequency adaptation is absent by
a state of repetitive spiking are possible (data not shown).blocking either gAHP or gCa (Fig. 9C, blue and green curves) .
Because Poisson synaptic inputs are not constant in time,Interestingly, with gAHP Å 0, the ISI variability (CV) is ú1
the model neuron is driven to switch randomly between theat low frequencies, whereas it is always õ1 if gCa Å 0 (Fig.
two states (Fig. 10A) . There is no significant ISI correlation9B) . Note that the behavior with gAHP Å 0 should be the
in the absence of IAHP (Fig. 10B) . The switching is notsame as the initial unadapted firing state when gAHP is not
periodic but stochastic, and the ISI distribution is not bi-blocked (but IAHP Å 0). Therefore, the f-l curves with or
modal (Fig. 10C) . The large CV is related to the presencewithout gAHP blockade in Fig. 9A can be considered as the
of a long tail in the ISI distribution, with large ISIs corre-initial and the plateau input-output relations, respectively,
sponding to the time epochs when the cells is in the silentunder control conditions.
state (Fig. 10C) . Note that hysteresis between two statesThe firing is highly irregular (with CV ú 1) when the
has been suggested previously to be a cause of large ISIgAHP is blocked because of a hysteresis phenomenon that is
variability, although in these cases the ISI distribution isproduced by a dendritic calcium plateau potential (cf.

Marder et al. 1996). Indeed, when the neuron model is ex- bimodal (Stern et al. 1997; Wilbur and Rinzel 1983). Such
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FIG. 10. A : an example with gAHP Å 0 and l Å 0.3 kHz,
which shows high ISI variability (CVú 1). Membrane poten-
tial randomly switches in time between a resting (inactive)
phase and a firing (active) phase. B : consecutive ISIs are not
correlated in time. C : ISI distribution shows a long tail that
spans several mean ISI (blue curve) , in contrast with the case
of Fig. 8 with adaptation (red curve) . ISI distributions are
plotted against ISI/ »ISI… . D : power spectrum of the spike
train has a large amplitude at low frequencies (blue curve) ,
whereas the adaptation current IAHP filters out response power
at low-frequencies (red curve) .

dynamics with many long time scales also is reflected in state and a firing state is characterized by a long tail in the
ISI distribution and a high power at low frequencies. Bythe power spectrum of the spike train, which displays large

amplitudes at low frequencies (Fig. 10D, blue curve) . By contrast, an intrinsically bursting neuron is characterized by
a random temporal mixture of bursts and single spikes, acontrast, in an adapting state with gAHP x 0, powers at lower

frequencies are strongly suppressed (Fig. 10D, red curve) . strong negative ISI correlation, a bimodal ISI distribution
and a peak in the power spectrum that depends on the levelSuch high-pass filtering behavior is a common and important

signature of temporally adapting dynamics. of the excitatory drive.
Although random switching between two states gives rise

to an apparently bursty pattern of neuronal firing (Fig. 10), Forward masking
we emphasize that it is very different from an intrinsically
bursting behavior that does not require random switching by We investigated possible computational implications of the
fluctuating inputs. We simulated the bursting state of Fig. spike-frequency adaptation, in particular a ‘‘forward masking’’
5C with Poisson inputs (Fig. 11). In this case, the membrane effect suggested by the experiments of Sobel and Tank (1994)
potential displayed a temporal mixture of single spikes and on the cricket Omega auditory neurons. Namely, when two
bursts of spikes (Fig. 11A) . Unlike the bistable dynamics, or several inputs are presented sequentially in time, neuronal
bursting state showed a large negative correlation between response to the first input would activate an IAHP with a delay,
ISIs due to the gAHP (Fig. 11B) . Furthermore, the ISI distri- thereby inhibiting responses to subsequent inputs. To see if
bution can be bimodal: a broad peak at typical ISI values such an effect also occurred in our pyramidal neuron model,
between single spikes, whereas a second sharp peak at we first presented to the cell a ‘‘masking’’ input pulse, then
ISI á 3–5 ms corresponds to the short ISIs within a burst a test input pulse after a time interval of t ms (Fig. 12).
(Fig. 11C) . The bimodality is most evident at low mean Indeed, the response to the test input was reduced dramatically
firing rates when the two maxima are well separated (Fig. by the masking input (Fig. 12, A and B). The peak response
11C, blue and red curves) . The bimodality also is reflected to the test input was decreased in proportion with the amplitude
by the presence of a distinct peak in the power spectrum of of the masking input, i.e., there was a linear relationship be-
spike trains (Fig. 11D) . At higher mean firing rates, the tween the two with a negative slope (Fig. 12C). The masking
broad peak moves closer to, and eventually overlaps with, effect was produced by the residual [Ca2/], which was accu-
the sharp peak of the ISI distribution (Fig. 11C, black mulated by the neuronal firing during the masking input and
curve) , and the hump in the power spectrum disappears which did not have enough time to return to its baseline be-
(Fig. 11D) . tween the two pulses as long as t was not too large. Therefore,

a significant amount of residual IAHP inhibited the neuronalTo summarize, stochastic switching between a resting
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FIG. 11. Burst firing pattern by Poisson input. A : in the
bursting regime (with the same parameters as in Fig. 5C) ,
the cell’s response to random synaptic inputs typically show
a temporal mixture of single spikes and bursts of spikes. From
top to bottom : l Å 1.0, 1.5, and 2.5 kHz. B : ISI return map
for top panel in A, showing a strong negative correlation
between the consecutive ISIs (blue curve : conditional average
of tn/1 for given tn) . C : ISI distributions for the 3 examples
in A . There is a bimodality at low rates (blue and red) . An
increased firing frequency shifts the second peak to the left,
so that the 2 peaks overlap with each other (black) . D : bimod-
ality of the ISI distribution indicates a statistical repetition of
the firing events in time, which is reflected in the power
spectra of the spike train by the presence of a significant peak
(blue and red) . Peak disappears when the ISI distribution is
no longer bimodal (black) .

firing at the onset of the test pulse. Interestingly, there is often for the stimulus 2 is approximately linear; the presence of
stimulus 1 shifts this response curve to higher input rates,a time lag between the test input onset and neuronal response,

which allows [Ca2/] to decay further and leads to a gradually but does not significantly change its slope (cf. Fig. 1C in
Sobel and Tank 1994). Note that because the inputs wereincreasing time course of the neuronal response (Fig. 12B).

The requirement for the relative timing of the two inputs can repetitive and [Ca2/] accumulated between pulses, firing
responses to both stimuli were affected by the adaptationbe quantified by plotting the ratio of the two peak responses

f2/ f1 versus t. The recovery follows a decay time course like dynamics: each was smaller than what it would have been
in the absence of the other input. However, the effect wasÇexp(0 t/tCa) (Fig. 12D). This is expected because it

should be the same as the decay time course of [Ca2/] during differential and the reduction was much smaller to the re-
sponse to stronger input than that to the weaker one. Thisthe time t, which, in the absence of spike-triggered influx,

satisfies d[Ca2/]/dt Å 0[Ca2/]/tCa. was shown by plotting the ratio of responses f2 / f1 versus
that of inputs l2 /l1 , which yields a very nonlinear curveWhen two or several inputs of different amplitudes are

presented to the neuron model, one expects that the forward (Fig. 13C) . For example, if the stimulus 1 input rate is twice
that of stimulus 2, the response to stimulus 1 was 25 timesmasking mechanism can produce a ‘‘selective attention’’

effect where responses to all inputs but the strongest one that of response 2 (Fig. 13C) . Therefore, in the presence of
two or more inputs, the [Ca2/]-dependent adaptation pro-are suppressed (Pollack 1988). This is illustrated with two

periodic trains of pulses with different amplitudes (Fig. cess can selectively suppress the neuronal responses to
weaker inputs so that the response to the strongest input13A) . As is shown in Fig. 13B, the input-output relation
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FIG. 12. Forward masking effect. A : 2 input pulses
are presented to the cell model with a time separation of
t ms. With increasing amplitude of the first (masking)
input, the response to the second (test) input is dramati-
cally reduced. B : an example with the spike rastergram
( top) , the average instantaneous firing frequency (middle
top) . [Ca2/] does not have time to decay back to its
baseline during the time interval between the masking
and test pulses (middle bottom) , this residual [Ca2/] is
at the origin of the forward masking phenomenon. C :
peak response to the test input is negatively proportional
to the amplitude of the masking input. D : masking effect
decreases with t according to a recovery time course
about exp (0t /tCa) , tCa Å 200 ms. (Dendritic gAHP Å
6 mS/cm2.)

‘‘pops up’’ in time. This represents a cellular selective atten- to a reduction of the two-compartment conductance-based
model to a simple calcium model of neuronal firing activ-tion mechanism operating in the temporal domain.
ity. It was shown that this calcium model can predict the
instantaneous neuronal output as the input changes rapidlyD I S C U S S I O N
in time in an arbitrary manner partly because the effective
time constant tadap for the [Ca 2/ ] dynamics is much shorterThe main findings of this work are twofold and are sum-
than tCa due to the adaptation feedback. This result con-marized in the following text.
firms and strengthens the suggestion (Helmchen et al.
1996) that the intracellular Ca 2/ is capable of encodingQuantitative theory of spike-frequency adaptation and
the temporal output computation of cortical pyramidal neu-calcium coding
rons. Of course, this description is limited to a rate code
of neural information, the knowledge about the preciseCortical neurons and networks display many forms of
spike timing within a typical ISI being lost. Thus our cal-adaptation to sensory inputs. Here we focused on the spike-
cium model is a firing-rate model of neuronal activity thatfrequency adaptation and developed a method to predict
is derived from a conductance-based model and that incor-its time course ( in response to a current pulse ) character-
porates the spike-frequency adaptation, a main firing char-ized by two quantities: the adaptation time constant tadap

and the percentage adaptation Fadap . This procedure led acteristic of regular spiking cortical pyramidal neurons.
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only approximate (see Fig. 6) . They are not expected to
hold if the linear theory is not valid and the adaptation time
course is not exponential, for example, when adaptation is
so strong that the firing is blocked completely in the steady
state (Guckenheimer et al. 1997; Madison and Nicoll 1984).
Moreover, it is important to assess how these predictions
depend on details of the model. We performed some limited
computer simulations to address this tissue, using a different
functional form for IAHP Å gAHP ([Ca2/] / ([Ca2/] /
KD) q 1 (V 0 EK), with q Å 2 (Koch et al. 1995) or q Å 3
(Lytton and Sejnowski 1993; Zhang et al. 1995) instead of
q Å 1. In this case, the reduced calcium equation was no
longer linear. Numerically, we found that the second relation
between tadap and Fadap still held roughly with the slope
comparable with, but larger than, 1/tCa . Another issue con-
cerned other ionic currents such as the [Ca2/]-independent
IM (Madison and Nicoll 1984) or/and the nonspecific cation
IH (Lorenzon and Foehring 1992), which in some pyramidal
neurons contribute to spike-frequency adaptation although
to a much lesser extent than IAHP. In principle, their effects
could be analyzed in the same way as we did for IAHP; the
predicted relations between tadap and Fadap would need to be
modified accordingly.

To the first order of approximation, however, we feel that
the two relations are useful predictions that can be tested
experimentally. The second relation can be assessed in pyra-
midal neurons, e.g., by measuring tadap and Fadap while a
current pulse is applied with different intensities or when
the gAHP is blocked pharmacologically at various drug con-
centrations. These manipulations preserve tCa , and our the-
ory predicts that Fadap and tadap vary in such a way that they
satisfy Fadap á 1 0 tadap /tCa . Such measurements should
provide an independent ( if only crude) estimate for the
[Ca2/] decay time tCa . Furthermore, because gAHP is known
to be modulated by transmitters such as acetylcholine, nor-
epinephrine, serotonin, and histamine (McCormick and Wil-
liamson 1989; Nicoll 1988; Pedarizani and Storm 1993),
one can ask if neuromodulation of the gAHP could strongly

FIG. 13. Cellular selective attention. A : 2 input pulse trains (blue and regulate the spike-frequency adaptation dynamics while pre-red) are presented to the cell model with slightly different amplitudes (l1 serving the simple relation between tadap and Fadap .and l2 , respectively) . Response to the weaker input f2 is suppressed differ-
In addition, these relations could be used to assess howentially as compared with f1 to the stronger input. B : f2 as function of l2 ,

for 3 different l1 values. Presence of the masking input l1 shifts the f-I the biophysical mechanism for spike-frequency adaptation
curve to the right but does not change the input-output slope. C : response differs from cell to cell in neocortical circuits. Ahmed et al.
ratio f1 / f2 is a highly nonlinear function of the input ratio l1 /l2 , demonstra- (1993, 1997) have quantitatively described spike-frequencyting a selective inhibition of the response to the weaker input. Dendritic

adaptation in in vivo pyramidal neurons of the cat primarygAHP Å 6 mS/cm2, tCa Å 200 ms.
visual cortex. It was found that there was a conspicuous
difference between superficial and deep layer neurons: super-

Such a calcium-based model can be generalized to a net- ficial layer cells adapt faster and more strongly (tadap Å
work of interconnected pyramidal neurons. 11.5 { 1.3 ms, and Fadap Å 67 { 3%) than deep layer cells

Our analysis permitted us to derive tadap and Fadap in terms (tadap Å 51.4 { 6.4 ms and Fadap Å 51 { 5%). According
of the biophysical parameters of the membrane and intracel- to our theoretical results, this finding cannot be explained
lular Ca2/ dynamics. With plausible approximations, two primarily by a difference in the [Ca2/] extrusion/buffering
relations between tadap and Fadap were obtained. The first processes between superficial and deep layer neurons. If that
relation is given by Eq. 18 : Fadap á aGcctadap , where aGcc was the case, the relation Fadap á aGcctadap would predict
is a ‘‘negative feedback gain parameter’’ and is proportional that a smaller tadap should be correlated with a smaller Fadap ,
to gCa and gAHP but independent of all [Ca2/] extrusion and contrary to the observations.
buffering processes. The second relation is given by Eq. 19 :

Cellular selective attention and decorrelationFadap á 1 0 tadap /tCa , which predicts a negative proportion-
ality between the two quantities as long as tCa is maintained We investigated in detail the effect of spike-frequency

adaptation to stochastic synaptic inputs of the Poisson type.fixed. We emphasize that these relations are not exact but
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In particular, we showed that the [Ca2/]-gated IAHP can Å * dtn( » tn/1Étn … 0 m)( tn 0 m)p( tn)
produce a forward masking effect similar to that shown ex-
perimentally in the Omega auditory neurons of the cricket á k * dtn( tn 0 m)2p( tn) Å ks 2 (A3)
(Sobel and Tank 1994). Essentially, the IAHP provides a
delayed negative feedback that is intrinsic to single pyrami- Therefore, CC Å k. In other words, if the conditional average of
dal neurons and hence can be viewed as a cellular mechanism tn/1 is plotted as function of its preceding value tn , the slope k is
of lateral inhibition in time. Thus when two (or more) com- identical to the ISI coefficient of correlation.
peting inputs converge onto a pyramidal neuron, the IAHP

can differentially suppress the responses to all but the strong-
A P P E N D I X B : D E R I V A T I O N O F S P I K E - F R E Q U E N C Y

est input (Fig. 13).
A D A P T A T I O N T I M E C O U R S E

Because awake states are associated with activation of the
The method is outlined in RESULTS. Here, we describe the proce-brain stem cholinergic system and acetylcholine is a potent

dure step by step. In step 1, we focus on the fast membrane dynam-inhibitor of the IAHP (and IM) (McCormick and Williamsson
ics Eqs. 1–3 , where [Ca2/] is considered as a parameter rather1989; Nicoll 1988), it is important to know how strong the
than a variable. For a constant [Ca2/] , the IAHP Å gAHP[[Ca2/] /spike-frequency adaptation effect is in pyramidal neurons
([Ca2/] / KD)](V 0 EK) is a ‘‘passive’’ outward current. Givenduring awake behavioral conditions. This question can be I, the larger is [Ca2/] , so is IAHP, and the less the neuron should

addressed, if the degree of neuronal adaptation can be as- fire. We simulated the membrane Eqs. 1–3 with different [Ca2/]
sessed directly from extracellularly recorded spike trains. values. For each [Ca2/] value, the firing rate f was computed as
We found that the spike-frequency adaptation mechanism well as the average »ICa … over an ISI; they are plotted in Fig. 2, B
was manifested by a large negative coefficient of correlations and C, respectively. These curves are nonlinear, in fact f Å 0 for

[Ca2/] ú 2.2 mM. However, if we restrict ourselves to the rangeof the ISIs (CC) (Figs. 8 and 9). Because the CC is readily
of [Ca2/] between 0 and [Ca2/]ss Å 1.74 mM of Fig. 2A, the twocomputable from spike trains, it may subserve a probe for
curves in Fig. 2, B and C, can be approximated well by straightassessing the strength of adaptating ion currents (especially
lines. This yieldsthe IAHP) , under different in vivo conditions of the intact

brain. Note that the CC is computed in the stationary state f á f0 0 Gf [Ca2/] »ICa … á »ICa …0 / Gcc[Ca2/] (B1)
after transients. Therefore, in contrast to constant current

with f0 Å 271, Gf Å 84, »ICa …0 Å 028.8, and Gcc Å 10 (Fig. 2, Bpulses, with stochastic synaptic inputs the IAHP is operative
and C, red solid lines) .all the time and is responsible for generating negative tempo- In step 2, we turn our attention to the slowly evolving dynamics

ral correlations between output ISIs in a frequency-depen- of [Ca2/] , Eq. 4. Because [Ca2/] varies slowly, we substitute ICa
dent manner, whereas the Poisson input is totally uncorre- by its average »ICa … which is a function of [Ca2/] itself (Eq. B1) .
lated in time. This result suggests that, if the inputs actually Therefore, we have
are correlated strongly in time, such positive correlations

d[Ca2/]
dt

á 0a»ICa … 0 [Ca2/] /tCacan be reduced (inputs are decorrelated) by a subtraction
mechanism through spike-frequency adaptation. Computa-

Å 0 a( »ICa …0 / Gcc[Ca2/]) 0 [Ca2/] /tCational implications of this observation will be explored in a
separate work. Å 0a»ICa …0 0 (aGcc / 1/tCa)[Ca2/]

Å 0a»ICa …0 0 [Ca2/] /tadap (B2)
A P P E N D I X A : I S I R E T U R N M A P A N D C O E F F I C I E N T

withO F C O R R E L A T I O N

For a neuronal spike train converted into a sequence of ISIs { t1 , 1
tadap

Å aGcc /
1
tCa

(B3)
t2 , t3 , . . ., tN} (with a mean m) , the coefficient of correlation
between consecutive ISIs (CC) is defined in Eq. 7 of METHODS. Solving the averaged equation, we have
Here we show that the CC is the same as the slope of the conditional

[Ca2/]( t) Å [Ca2/]ss (1 0 exp(0t /tadap )) ,average » tn/1Étn … versus tn . Let p( tn/1, tn) be the joint probability
for tn/1 and tn . Then by definition

with [Ca2/]ss Å 0a»ICa …0tadap (B4)

»( tn/1 0 m)( tn 0 m) … Å ** dtn/1dtn( tn/1 0 m)( tn 0 m)p( tn/1 , tn) (A1) Using the numerical values of the parameters in this expression,
we obtain [Ca2/]ssÅ 1.77 mM and tadapÅ 30.8 ms. These predicted

We can write p( tn/1 , tn) Å p( tn)p( tn/1Étn) , where p( tn/1Étn) is the values are close to those from numerical simulations of the whole
conditional probability for tn/1 given tn . Suppose that the condi- model system ([Ca2/]ss Å 1.74 mM, tadap Å 33 ms, respectively) .
tional average of tn/1 given a fixed tn is linear with tn (for examples, Finally, in step 3, we insert the time course for [Ca2/] into the
see Figs. 8C and 11B) expression f Å f0 0 G f [Ca2/] , which yields

f ( t) Å f0 0 Gf [Ca2/]( t) Å f0 0 Gf [Ca2/]ss (1 0 exp(0t /tadap ))
» tn/1Étn … Å * tn/1p( tn/1Étn)dtn/1 á ktn / k 0 (A2)

Å f0 0 Gf [Ca2/]ss / Gf [Ca2/]ss exp(0t /tadap )
where k is the slope and k 0 is a constant. Then Å fss / ( f0 0 fss ) exp(0t /tadap ) (B5)
»( tn/1 0 m)( tn 0 m) …

where fss Å f0 0 Gf [Ca2/]ss . Using the numerical values for f0 and
G f , we obtain f0 Å 271 Hz and fss Å 122 Hz, compared with

Å * dtn( tn 0 m)p( tn)S* dtn/1( tn/1 0 m)p( tn/1Étn)/1D numerical values of f0 Å 272 Hz and fss Å 116 Hz. The slight
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[Ca2/]s ( t) Å [Ca2/]s,ss / cs1 exp(0t /tadap,1 ) / cs2 exp(0t /tadap,2 )

[Ca2/]d( t) Å [Ca2/]d,ss / cd1 exp(0t /tadap,1 ) / cd2 exp(0t /tadap,2 ) (C5)

where the time constants are given by the eigenvalues of the matrix

0 S Bss Bsd

Bds Bdd
D (C6)

Explicit calculations yield tadap,1 Å 30.7 ms and tadap,2 Å 184 ms.
And solving Eq. C4 we have [Ca2/]s,ss Å 1.0, cs1 Å 00.22, cs2 Å
00.77, [Ca2/]d,ss Å 1.3, cd1 Å 01.8, cd2 Å /0.52 (in mM).

The fact that cd1 and cd2 have different signs implies that the
time course [Ca2/]d( t) is not monotonic and exhibits a maximum.
Indeed, we can find the time tmax when the maximum occurs byFIG. B1. Average firing rate f , »ICa,s … and » /ICa,d … as functions of [Ca2/]s

(A) and [Ca2/]d (B) for the fast-slow variable analysis. , linear approx- letting d[Ca2/]d /dt Å 0, which yields
imations.

0 cd1

tadap,1

exp(0tmax /tadap,1 ) 0 cd2

tadap,2

exp(0tmax /tadap,2 ) Å 0 (C7)

overestimate of fss is due to a small nonlinearity of the f-[Ca2/]
curve (Fig. 2B) . or, solving this algebraic equation,

tmax Å
tadap,1tadap,2

tadap,2 0 tadap,1

ln S0cd1tadap,2

cd2tadap,1
D Å 112 ms (C8)A P P E N D I X C : A D A P T A T I O N T I M E C O N S T A N T S B Y

T W O C O U P L E D C A L C I U M M O D E S

which compared well with the numerical value of the peak timeWith ICa and IAHP in both somatic and dendritic compartments,
(Å 106 ms).we attempted to generalize our fast-slow variable analysis to predict

Finally, in step 3, by inserting the solutions for [Ca2/]s ( t) andthe biphasic spike-frequency adaptation time course. In step 1, we
[Ca2/]d( t) into the expression of the firing rate (Eq. C3) , wehold [Ca2/]s and [Ca2/]d as parameters. We make the simple
obtainassumption that the two adapting currents act independently and

additively, so we numerically compute the dependence of the firing
f ( t) Å fss / b1 exp(0t /tadap,1 ) / b2 exp(0t /tadap,2 ) (C9)rate f and the calcium currents ICa,s and ICa,d on each of the [Ca2/]s

and [Ca2/]d separately. For instance, if we consider the effect of with fss Å 93, b1 Å 153.6, b2 Å 23.7 (in Hz).
the somatic IAHP on spike-frequency adaptation, we let [Ca2/]d Å Compared with the empirical fits given by Eq. 21, we see that
0 while [Ca2/]s is varied, we have (Fig. B1A) the linear theory predicts reasonably well the two adaptation time

constants but not the steady-state values and the weighting factorsf Å f0 0 Gf ,s[Ca2/]s
for the two modes (the coefficients in Eqs. C5 and C9) . We found

»ICa,s … Å »ICa,s …0 / Gcc,ss[Ca2/]s that the linear analysis is not accurate, because there are significant
interactions between the two modes which would introduce cross-

»ICa,d … Å »ICa,d …0 / Gcc,ds[Ca2/]s (C1)
product terms like [Ca2/]s 1 [Ca2/]d in Eq. C3 . An improved
nonlinear analysis is beyond the scope of this paper.with f0 Å 272, »ICa,s …0 Å 017.2, »ICa,d …0 Å 028.3, Gf,d Å 81.4, Gcc,ss

Å 5, and Gcc,ds Å 8.5.
On the other hand, the effect of the dendritic IAHP is considered I thank G. Turrigiano for comments on the manuscript.
with [Ca2/]s Å 0 while [Ca2/]d is varied as parameter, we have This work was supported by National Institute of Mental Health Grant
(Fig. B1B) MH-53717-01), the Alfred P. Sloan Foundation, and the W. M. Keck Foun-

dation.
f Å f0 0 Gf ,d[Ca2/]d Address reprint requests to X.-J. Wang.
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»ICa,d … Å »ICa,d …0 / Gcc,dd[Ca2/]d (C2)

with Gf,d Å 75, Gcc,sd Å 4.6, and Gcc,dd Å 9.
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