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SUMMARY AND CONCLUSIONS 

1. A model of the transient, low-threshold voltage-dependent 
(T-type) Ca2+ current is constructed using recent whole-cell volt- 
age-clamp data from enzymatically isolated rat thalamocortical 
relay neurons. The T-type Ca2+ current is described according to 
the Hodgkin-Huxley scheme, using the m3h format, with rate con- 
stants determined from the experimental data (22-24°C; extracel- 
lular Ca2+ concentration [Ca2’], = 3 mM). 

2. The T-type Ca2+ current inactivates rapidly during main- 
tained depolarization (time Constant, 7h x 20 ms at -20 mV), yet 
recovery from inactivation is slow (time constant, r, x 270 ms at 
-80 mV). To reconcile these observations, a two-step kinetic 
scheme is proposed for the inactivation gate. Each of the time 
constants in this scheme is voltage dependent, with a maximum at 
about -85 mV (45 ms for one and 275 ms for the other). 

3. Numerical simulations of recovery in a two-pulse, voltage- 
clamp protocol compare favorably with experimental results ob- 
tained by Coulter et al. as well as those obtained in an independent 
series of experiments with guinea pig thalamic neurons ([Ca”], = 
10 mM). 

4. For current-clamp simulations, a leakage current gL( v - IQ 
is included; with IJL = -65 mV, the calculated resting membrane 
potential is -63 mV. 

5. It is shown that the T-type Ca2+ current together with the 
leakage current suffices to describe the low-threshold spike (LTS), 
a slow, triangular-shaped depolarizing event that can be evoked 
only from relatively hyperpolarized membrane potentials and that 
underlies the burst firing of Na+-dependent action potentials in 
thalamic neurons. Outward currents are not required to reproduce 
the basic shape of the LTS. 

6. The LTS can be activated with either a depolarizing current 
step from a sufficiently hyperpolarized level or on termination of a 
hyperpolarizing current step. In either case, the amplitude of the 
LTS is a monotonically increasing, sigmoid-shaped function of 
the hyperpolarizing current step intensity. 

7. Because of the slower kinetic step of the channel’s inactiva- 
tion gate, our model predicts that recovery of the LTS to greater 
than one-half amplitude would require a prolonged hyperpolariza- 
tion of > 100 ms (at body temperature). This imposes an upper 
limit (= 10 Hz) on the frequency of repetitive hyperpolarizations 
that can elicit a train of LTSs and hence on the frequency of any 
rhythm that requires LTS-mediated bursting of thalamic neurons. 
This finding is consistent with the views that the T-type Ca2+ 
current in thalamic neurons is critical to the generation of the 
lo-Hz spindle oscillations and that it may also play a role in the 
epileptic discharge during absence seizures. 

INTRODUCTION 

The thalamus has long been recognized as a key structure 
in the generation of brainwave rhythmicity (Steriade and 

Deschenes 1984; Steriade et al. 1990). Important progress 
in understanding the cellular basis of this pacemaker activ- 
ity has come with an appreciation of the unique firing prop- 
erties of thalamocortical relay neurons. These cells exhibit 
two distinct modes of firing depending on the membrane 
potential level (Deschenes et al. 1984; Jahnsen and Llinas 
1984a,b). At normal resting potential, the cells transform 
suprathreshold input signals into trains of action potentials 
with high fidelity in what is referred to as “relay mode.” 
However, on hyperpolarization there is an abrupt transi- 
tion to phasic (burst) firing in which action potentials occur 
grouped into bursts. During drowsiness and slow-wave 
sleep, the burst firing of thalamic relay neurons plays an 
essential role in the generation of synchronized 8- to lo-Hz 
rhythmic oscillations (“spindling”) in the cortical electroen- 
cephalogram. In addition, the stereotyped spike-and-wave 
discharges characteristic of absence (petit mal) seizures may 
also be dependent on synchronized thalamic bursting 
(Gloor 1984). 

The following events are believed to occur in thalamic 
relay neurons during an episode of bursting oscillations. 
The relay neurons receive a barrage of long-duration (60- 
120 ms) inhibitory potentials at a frequency of 7- 14 Hz, 
possibly from neurons in the nucleus reticularis. Some, but 
not all, of these transient hyperpolarizations result in dein- 
activation of broad, triangular-shaped depolarizing events, 
referred to as the low-threshold spikes (LTS). Each LTS, in 
turn, triggers a burst of fast action potentials that ride on its 
crest. As such, the LTS plays a critical role in linking synap- 
tic input to intrinsic membrane mechanisms of bursting in 
the relay cell and in supporting the slow membrane oscilla- 
tions underlying the spindling rhythm. In particular, it pro- 
vides a cellular substrate for the postinhibitory rebound, 
which has been postulated as an important cellular prop- 
erty contributing to the rhythmicity in the thalamic neuro- 
nal network (Andersen and Andersson 1968). 

It has recently been shown (Coulter et al. 1989; Crunelli 
et al. 1989; Hernandez-Cruz and Pape 1989) that enzymati- 
tally isolated neuronal somata prepared from slices of the 
rat and guinea pig thalamus possess a prominent low- 
threshold, rapidly inactivating (T-type) Ca*+ current (Car- 
bone and Lux 1984, 1987a; Fox et al. 1987a; Tsien et al. 
1987) and, moreover, that the T-type Ca*+ current medi- 
ates the LTS recorded in these cells under current-clamp 
conditions (Suzuki and Rogawski 1989). These neurons 
have nearly ideal characteristics for voltage-clamp record- 
ing in that they are small; are roughly spherical in shape; 
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and have markedly truncated processes, allowing adequate 
spatial voltage control. Moreover, using the whole-cell 
patch-clamp technique, it is possible to perfuse the cells 
internally with impermeant cations to prevent contamina- 
tion with outward currents. Consequently, accurate kinetic 
data have been acquired that allow a theoretical analysis of 
the T-type Ca2+ channel and its relationship to the LTS 
according to the paradigm of Hodgkin and Huxley (1952). 

In the present work, we have constructed a minimal 
model of the LTS based on the recent voltage-clamp data, 
which show that the T-type Ca2+ current plus a leakage 
current are sufficient to reproduce accurately the LTS re- 
corded under current-clamp conditions. In addition, we 
demonstrate that the slow recovery time of the T-type Ca2+ 
current Z-r may be interpreted as a “bottleneck effect” re- 
lated to a slow transition process of the inactivation gate of 
Z=. We discuss the relevance of this property in limiting the 
frequency of spindling oscillations and spike-and-wave dis- 
charges in animal models of absence seizures. Our work 
further indicates that K+ currents are not required to repro- 
duce the LTS itself; but such outward currents, as well as 
network properties, may contribute to determining the in- 
terval between burst events. 

METHODS 

Presentation of the model 

Following Coulter et al. (1989), we model the T-type Ca2+ 
current in analogy with the fast sodium current of Hodgkin and 
Huxley (1952) according to 

l= = g,m3h( v - v(-J (1) 

where gT is the maximal conductance per unit area (expressed in 
mS/cm2) and l?a is the reversal potential for calcium flux, here 
fixed at + 120 mV. The value of gT may be chosen to scale the 
amplitude of & to that measured in particular voltage-clamp ex- 
periments. 

By hypothesis, m represents the fraction of channels for which 
one of the three activation gates is in its open state, “0,” and h, the 
fraction of those with the inactivation gate in its open state. A 
channel is open if all of its four gates are in their 0 states. Each 
activation gate satisfies a two-state transition kinetics (Fig. 1A) 
with voltage-dependent rates CY, and ,&, so that 

k= (~~(1 - m) - Pmrn = (m, - m)/r, (2) 

&Lz &;$JY;& 

m  
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FIG. 1. Kinetic model of the T-type Ca2+ channel. A: an activation gate 
has 1 St-order kinetics, with 1 open state 0 and 1 closed state C; the fraction 
of gates in 0 is m. B: the inactivation gate has kinetics with 2 steps and 3 
states ( 1 open, 0, and 2 closed, C1 and C,); the fraction of gates in each state 
is h, s, and d, respectively. Step between C1 and 0 is assumed to be rela- 
tively fast. Step between 2 closed states CI and C2 is much slower; it ac- 
counts for the slow recovery from inactivation. Model has 6 voltage-de- 
pendent kinetic rates: a,(V), ,8,( V’), ar,( v), &( V’), cy2( v), and p2( V’). A T- 
type Ca2+ channel is open when its 3 independent activation gates and its 
inactivation gate are all in the open state. Total current satisfies Eq. 1. 

where the dot notation is used to signify differentiation with re- 
spect to time. In Eq. 2 we also allow for the alternative represen- 
tation in terms of the functions m, = cy,/(cy, + &J and 7, = 
l/( cy,,., + ,&), which may be more directly related to voltage-clamp 
measurements. 

In several experimental studies, no effect on the kinetic behav- 
ior of T-type Ca2+ currents was observed when the intracellular 
Ca2+ concentration was varied, when extracellular Ca2+ was re- 
placed by Ba2+ as the charge carrier, or under conditions where 
Ca2+ or Ba2+ accumulation could not occur (Carbone and Lux 
1984, 1987a; Hernandez-Cruz and Pape 1989; Nowycky et al. 
1985). The inactivation gate of the T-type Ca2+ channel is there- 
fore regarded as insensitive to the intracellular Ca2+ concentra- 
tion. Using Eq. 2 for m and a similar equation for h, Coulter et al. 
(1989) fit, according to a least-squares criterion, values for m,, h,, 
7 and 7h (and the cubic power for m) to their voltage clamp time 
c&-ses of the T-type Ca2+ current. They provided analytic expres- 
sions for m, and h,, but not for 7, and rh. 

Our model extends the above treatment in three ways. First, we 
note that the preceding description accounts for the inactivation 
on a moderately short time scale (< 100 ms). It does not represent 
the slower component in the biphasic development of inactivation 
and the slow recovery from inactivation that have been reported 
for the T-type Ca2+ current (Bossu and Feltz 1986; Carbone and 
Lux 1984, 1987a; Coulter et al. 1989). To account for these effects, 
we consider a model for the inactivation gate that has two closed 
states (C, and C,) and one open (0) state (Fig. 1B). Considerably 
lower transition rates into and out of the “deep” closed state C2 
provide the mechanism for the slower stage of inactivation. Defin- 
ing h, s, and d as the fractions of inactivation gates in the states 0, 
C1, and C2, respectively, the equations for h and d are 

h = a,(1 - h - d) - &h 

8=@,(1 -h-d)-a2d 

where we have made use of the relation h + s + d = 1. 

(34 

(3b) 

Second, by including a constant conductance leakage current, 
IL, we formulate a two-current model for the membrane free from 
voltage control. Our current balance equation takes the form 

c,ti = -ihm3h( v - vca) - a( v - w + Lpp (4) 

where &., (pA/cm2) is the applied current. Values for the maximal 
conductances gT and gL lie in ranges that may be estimated for the 
acutely dissociated cell preparation. Assuming membrane area of 
- 1 ,OOO-2,000 pm2, we can match the amplitude of 1T under volt- 
age-clamp (range: 100-400 pA; Coulter et al. 1989; Suzuki and 
Rogawski 1989) with gT = 0.1-0.6 mS/cm2. In our model the 
leakage term dominates in setting a stable resting potential, vrest. 
Under physiological conditions, several inward and outward 
currents contribute to establishing the rest state. However, the 
conductances of these currents are here presumed only weakly 
sensitive to voltage within the range relevant to & and to the LTS. 
Therefore, we consider 1L in Eq. 4 as the summation of any such 
other currents with conductances that are relatively constant dur- 
ing the LTS. For dissociated relay neurons the input resistance 
varies over a range 0.3-2.0 GQ (Suzuki and Rogawski 1989). Thus 
we choose gL equal to 0.1 mS/cm2 to be consistent with these data 
and the aforementioned membrane area. This value of gL implies, 
for Cm = 1 pF/cm2, a resting time constant of 10 ms. For all our 
simulations we set IJL = -65 mV, which typically leads to a value 
of Vrest around -63 mV. The system of Eqs. 2-4 constitutes our 
minimal model, which generates an LTS and describes its slow 
recovery under current clamp conditions. 

Finally, to perform computational experiments with our model, 
we need analytic expressions for the voltage-dependent kinetic 
rate functions. These also allow us to simulate physiological behav- 
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ior beyond the voltage range over which Coulter et al. (1989) de- 
termined 7, and 7h (-62 to - 12 mV). We next describe our deter- 
mination of these rate coefficients. 

n 
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CF 
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Activation gate 

We adopt the steady-state activation function 
Coulter et al. (1989) 

provided by 

(5) m,= 
1 + exp[-(V + V’ + 63)/7.8] 

L 0.0 -3.0 -J where the parameter vs is used to describe the effect of changing 
extracellular Ca2+ concentration, [Ca2’],. For the baseline case, 

I  I  I  I  
-70 -50 -30 -10 

Membrane Potential (mV) [Ca2+], = 3 mM, we set I/, = 0 mV. 
To find an analytic expression for T,, we use the definition 

B 
300-j (ms) 

-1 
am = Tm/ma3 (6) 

and, by linear regression, we fit the experimental data [Eq. 5 and 
values of 7, from Fig. 5 of Coulter et al. (1989)] with an exponen- 
tial function plus a constant (cf. Fig. 2A). The result is 

1 a!, = 1.7 + exp[-( I;/ + I/, + 28.8)/13.5] l 

(7) 

It follows from Eqs. 5-7 that 

1.7 + exp[-( I/ + V, + 28.8)/l 3.51 
1 + exp[-(V + Iks + 63)/7.8] (8) 

Inactivation gate 1 
‘rn 

0 In our model there are four rate coefficients 
kinetics, q, P1, a29 and P2, or equivalently 

for the in &activation 
r I I I 1 I I I 

-140 -120 -100 -80 -60 -40 -20 0 -20 
Membrane Potential (mV) 

K, = &/cq K2 = p2/(x2 71 = l/(q + I&) 72 = m2 + P2) (9) 
PIG. 2. Activation and inactivation time constants of the T-type Ca2+ 

channel. A: Coulter et al. (1989) provided 6 data points for 7,( I/) along 
with an expression for m,(v). This yields 6 values for ar,( V), according to 
Eq. 6, which were plotted as log [(Y~( v)-’ - c] vs. I? The constant C was 
adjusted to the value 1.7 so that a straight line could be fit by linear regres- 
sion, which led to the analytic expression for ar,( V) in Eq. 7. We obtain Eq. 
14 for the inactivation gating rate a,( V) in a similar way (see text). B: filled 
circles indicate the experimentally measured values for 7,, q,, and 7,. Tat- 
ter 2 are associated with the decay rates, XI and X2, for Eq. 3. Kinetic time 
constant functions q(v) and r2( V), given in terms of X1 and X2 by Eq. A7 
(see text and APPENDIX), are plotted here with dashed curves (and open 
circles in the case of TV). Solid curves (top) are according to Eq. A6. Solid 
curve for 7, (bottom) is from Eq. 8. These data correspond to room temper- 
ature. 

The steady-state inactivation function was estimated by Coulter 
et al. (1989) as follows 

1 
‘, = 1 + exp[( V + Vs + 83.5)/6.3] ’ (10) 

We examined several possible approaches to determining the two 
equilibrium functions K1 and K2 from h,. We noted that if K2 is 
independent of voltage, it was not possible to account adequately 
for the recovery of 1-r. This can be understood by observing that, 
according to Eq. 3b, K2 equals the occupation of the deep closed 
state C2 relative to that of C, at equilibrium. In the voltage-clamp 
recovery experiment of Coulter et al. (1989), it was found that, on 
the one hand, a brief hyperpolarization from a more depolarized 
level led to a minor initial recovery. Thus at a depolarized level the 
occupation in the deep closed state C2 should be high, and K2 
should be large, so that during a short hyperpolarization the 
amount of flux to the open state 0 is limited by the small fraction 
available in the Ci state. On the other hand, the complete recovery 
at a longer time scale requires that on persistent hyperpolarization 
the occupation in C2 ought to be low, and K2 should have a smaller 
value. Both requirements could not be satisfied with a fixed value 
of K2. Therefore K2 must be voltage dependent. We settled on the 
simplifying assumption that the two transition steps in Fig. 1B 
have similar equilibrium properties, albeit with very different time 
constants: K, = K2 = K. This convenient approximation will be 
justified a posteriori by the agreement between the resulting model 
simulations and experimental observations. It now follows from 
the steady-state solution of Eq. 3 and from Eq. 10 (see APPENDIX 
for details) that 

It remains to determine 71 and 72 or, equivalently, al and cy2. 
Recall that Coulter et al. (1989, Fig. 5) described inactivation ki- 
netics with a single 7h. Their estimations were based on voltage- 
clamp data over a restricted time scale, 60- 100 ms, which is rela- 
tively short compared with a typical recovery time from inactiva- 
tion (=250 ms). In addition, they as well as Suzuki and Rogawski 
(1989) measured a slow time constant, 7,, for the recovery process 
at a few voltage values. To represent these disparate time scales in 
our two-step model of inactivation, it seems plausible to associate 
7h with the time constant of the faster transition step between the 
states 0 and Ci in the scheme of Fig. 1B and to attribute the 
recovery time constant 7, to the slow step between the states Ci 
and C2. However, the correspondence is not immediate. Although 
the faster time constant is likely unaffected by the slower transi- 
tion process and thus is identifiable with TV:, the recovery time 
constant certainly depends on both slow and fast processes (hence 
on 72 and 71). 

The mathematically exact time constants of our model of the 
three-state inactivation gate are XT1 and XT’ where X, and X2 are the K = vO.25 + exp[( V + I/’ + 83.5)/6.3] - 0.5 
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characteristic decay rates of the system Eq. 3, a and b. These time 
constants correspond to the measurable quantities Th and 7,, re- 
spectively. In the APPENDIX we show how X1,2 are related to 71,2 
through a quadratic formula, and we use this to show that 

71 x xy’ = rh (14 

With this approximation we can substitute for 71 the experimental 
values for 7h and evaluate the right side of 

-1 
a1 = q[l + K] (13) 

which follows from Eq. 9. Thereby we can obtain, as we did by 
linear regression for CY, above, an exponential function for cyl (cf. 
Fig. 2A) 

a1 = exp[-(V+ V’+ 160.3)/17.8] (14) 

According to the definition in Eq. 9, multiplying this by K yields 
an analytic expression for ,& (not shown here). Then 71 follows 
from l?q. 13, and it has a maximum of -45 ms near v = -85 mV 
(Fig. 2B). 

Relatively few measurements are available for estimating the 
long time constant of Eq. 3. From the recovery experiments of 
Coulter et al. (1989, Fig. 7), we have X;’ = 220 and 243 ms at 
- 112 and -92 mV, respectively. An additional datum for X,’ (at 
V= -42 mV) was obtained by fitting a sum of two exponentials to 
the decay of the uninterrupted 1T transient in their Fig. 7; the time 
constant estimated for the slower phase is 135 ms. These values are 
plotted in Fig. 2B (filled circles) together with the corresponding 
values of 72 (open circles) as given by l?q. A 7. A simple form for 72 
that is consistent with these measurements (decaying at depolariz- 
ing voltage and saturating in the other direction) is the sigmoid 
function 

240 
r2 = 1 + exp[(V + Vs + 37.4)/30] (15) 

From this expression and Eqs. 9 and 11 we get formulas for cy2 and 
p2. The graph of 72 is shown in Fig. 2B where it may be compared 
with the recovery time constant, plotted as Xi’ versus V. 

Temperature correction 

The time constants above correspond to room temperature (22- 
24”C), at which the voltage-clamp experiments and our simula- 
tions thereof were performed. For our current-clamp simulations, 
we adjust the rates for “body temperature” (taken here to be 10°C 
greater than the preceding conditions). These results may then be 
compared with in vivo recordings or data obtained in slice prepara- 
tions such as those reported by Thompson (1988), which were 
carried out at 34-35°C. To correct for temperature we use Q,, 
values of 5 and 3 for activation and inactivation (both steps), re- 
spectively (see Coulter et al. 1989). Thus, at body temperature, 7, 
is multiplied by a factor of 0.2 and 71 and 72 by 0.33. 

Numerical methods 

Our numerical simulations have been carried out using the soft- 
ware package “PHASE PLANE” (Ermentrout 1990) for solving 
interactively differential equations on an IBM PC-compatible mi- 
crocomputer. For the most part, we chose the Gear integration 
method to ensure a stable and accurate numerical solution for 
equations having the property of stiffness (i.e., disparate time 
scales). However, we found accurate computation did not require 
severe error control. For instance, satisfactory results were ob- 
tained with the Gear tolerance parameter set from 0.001 to 0.09 
and maximum step size (in this variable step algorithm) set to 1 .O 
ms. We found that a comparable accuracy could be achieved using 

the fourth-order Runge-Kutta method with a fixed time step of 
0.5 ms. 

RESULTS 

T-type Ca2+ current under voltage-clamp 

Coulter et al. (1989) found that recordings of the T-type 
Ca2’ current during the initial 100 ms or so after a depolar- 
izing voltage step could be fit accurately by the use of Eq. 2 
for Z=. Our extension of the model, intended to account for 
the slow recovery behavior, still accurately reproduces the 
early phase of the current. The time courses in Fig. 3A illus- 
trate that, when the membrane is stepped from a relatively 
negative holding potential (-92 mV) to a more depolarized 
test potential (-42 mV), the deinactivated Ca2+ channels 
open and generate a transient current ZT [compare the top 
panel with Fig. 6, A and B, in Coulter et al. (1989)]. In the 
bottom panel, one sees a very rapid rise in activation fol- 
lowed by the early phase of inactivation as h decays on a 
time scale of tens of milliseconds. After 150 ms nearly all 
the inactivation gates have shifted from the open state 0 to 
the closed states C1 and C2. The gradual rise of d reflects the 
much slower kinetic step between C1 and C2. In spite of the 
fact that d has reached nearly 0.7 (tending toward its equilib- 
rium level d, = 0.96 at -42 mV), the transients of ZT, m, 
and h in Fig. 3A would change very little if the deep closed 
state C2 were disallowed (by fixing d = 0). The slight differ- 
ences are detectable only after - 100 ms. 

The amplitude of Z= has been matched to the experimen- 
tal data by our choice of gT = 0.4 mS/cm2. We note that, if 
the conductance of a single open T-type channel is assumed 
to be 8 pS (Carbone and Lux 1987b; Fisher et al. 1990; Fox 
et al. 1987b), this value for g, implies that such an acutely 
dissociated relay cell has - 500- 1,000 T-type Ca2+ chan- 
nels. 

Recovery of I, from inactivation 

Although the biphasic nature of inactivation is not appar- 
ent in Fig. 3A, it becomes so when a second ZT response is 
provoked, as in Fig. 3B. Because of the slow kinetics for d, a 
50-ms return step to the holding potential allows only a 
minor decrease in d and therefore the channel deinactivates 
only slightly (h rises from 0 to -0.2). The current Z= for the 
second depolarization to -42 mV shows little recovery, the 
ratio of the two Z= peaks being 0.28. In contrast, if C2 were 
absent, and the kinetics of other steps were unchanged, then 
the second ZT peak would exceed 75% of the first one. 

The time scale of transitions between C1 and C2 deter- 
mines the relative refractory period of ZT. To quantitate the 
dynamics of recovery from inactivation, we have simulated 
a series of two-step runs in which the latency to the second 
test step (i.e., the duration of the holding pulse) is varied 
(Fig. 4A). As the latency increases beyond the slower time 
scale of inactivation, substantial recovery of Z= is achieved. 
If we seek to approximate this process with a single exponen- 
tial (Fig. 4B), we obtain by linear regression a time constant 
of 237 ms. Our analytic expression (Eq. A6) for the slow 
time constant X;’ at -92 mV yields 249 ms, and the ap- 
proximation formula, Eq. A9, provides an excellent esti- 
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FIG. 3. A: time course of the T-type Ca2+ current (IT) elicited by a volt- 
age step from a holding potential ( VjJ of -92 mV to a final potential of -42 
mV as modeled with Eqs. 1-3. Top: IT rises rapidly to a peak of -235 pA 
and decays in 2 phases (the late slower phase is less apparent than the fast 
early decay). Bottom: time courses of the channel variables m(t), h(t), and 
d(t) corresponding to the current shown above. Slow change of d(t) is 
responsible for the late decay phase of IT. Here, we assume the thalamic 
relay neuron has a membrane area of 1,000 pm2 corresponding to g, = 0.4 
mS/cm’. B: partial recovery from inactivation of Jr in a simulated 2-pulse 
experiment. Top: the initial 1= response is elicited by a 200-ms step from 
-92 to -42 mV followed by a 2nd step with a delay of 50 ms. Only a 
fraction of Z= is recovered (ratio of the 2 peak current values is 0.28). 
Bottom: dependence of recovery on the time courses of h(t) and d(t). At 
start of the 2nd pulse, most of the inactivation gates are in the deep closed 
state C2 and only a few reenter the open state 0 during the 50-ms repolariza- 
tion. 

mate, 242 ms, for this exact result. The modest discrepan- 
cies between these values and the simulation results are due 
to the limited range of recovery times (~450 ms) considered 
in Fin. 4B. These theoretical results on recovery compare 

well with the corresponding experimental data of Coulter 
et al. (1989) (see their Fig. 7, and with their estimate 7, 
= 243 ms). 

Our model is based primarily on experimental data from 
rat cells (Coulter et al. 1989), but we have also applied the 
model to mimic a set of recovery experiments carried out 
by Suzuki and Rogawski (1989), who used enzymatically 
isolated thalamocortical relay neurons from the guinea pig. 
These simulations required a change of the value of vS in 
the model, because [Ca2+], = 10 mM was used instead of 3 
mM in the latter experiments. Following an empirical rule 
of thumb (Frankenhaeuser and Hodgkin 1957), we shifted 
the voltage dependence of the gating kinetic rates positively 
by Vs = - 10 mV for this approximately threefold increase 
in [Ca2+],. A corresponding adjustment in the reversal po- 
tential V& using the Nernst expression, would have little 
effect on Jr and is disregarded here. Again we find close 
agreement between the theoretical and experimental results 
(Fig. 4B): the recovery time constant is 290 ms from the 
experiments, 278 ms from our simulations, and 256 and 
246 ms from the analytical predictions (Eqs. A6 and A9, 
respectively). 

A 0 

-125 

-250 I 

I T 

-421 * * v -07 
JL 

I I I I I I I I 

0 100 200 300 400 500 600 700 
Time (ms) 

x 0.6 
f 

“.” 
I  I  I  I  I  

0 200 400 600 800 
Recovery Time (ms) 

FIG. 4. A: increase in recovery of 1T as a function of the interpulse inter- 
val in a simulated 2-pulse experiment. Conditions are as in Fig. 38. B: 
fractional recovery of 1-r plotted vs. latency. Solid curves are best single 
exponential fits to the calculated values that allow an estimate of the theo- 
retical recovery time constants. Squares indicate experimental data from 
Coulter et al. ( 1989); circles are from Suzuki and Rogawski (1989). Condi- 
tions in the former case are as in Fig. 3B ([Ca’+], = 3 mM); the recovery 
time constant 7, equals 243 ms (experimental) or 237 ms (theoretical). In 
the latter case, the simulation was carried out assuming [Ca2’], = 9 mM 
and a holding potential of -80 mV; 7, = 290 ms (experimental) and 278 ms 
(theoretical). 
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Low-threshold spike 

To simulate current-clamp behavior we must integrate 
the full model, Eqs. 2-4. For these computations we use 
values of g, in the range 0.1-0.6 mS/cm2, and we adjust the 
kinetic rates for body temperature (see METHODS). Figure 5 
shows an LTS as computed with our model after release 
from a hyperpolarized level of -92 mV. The resulting volt- 
age trajectory has the characteristic triangular-shaped wave- 
form of the LTS in recordings from brain slices and isolated 
neurons (Jahnsen and Llinas 1984a; Suzuki and Rogawski 
1989). The initial voltage increase is due to the leakage 
current, which tends to drive V toward I& Indeed, the ris- 
ing V slows as it nears & but then v continues to grow as 
the deinactivated ZT begins to increase. Notice (Fig. 5, bot- 
tom) that, at ~20 ms, although m is near its resting level 
(i.e., value at infinite time), h is large in comparison with its 
resting value, so that there is a net depolarizing current. The 
self-accelerating interaction between v and m leads to a 
transient spike, which is then counterbalanced by the inac- 
tivation process (decline in h). The peak of Voccurs at ~30 
ms, after the rapid drop of h to ~20% of its initial value. The 
LTS decay is biphasic: the slower phase is evidenced here by 
the gradual relaxation of d, m, and v toward their rest val- 
ues. It is interesting to note that, although h and the Ca2+ 
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FIG. 5. Current-clamp simulation with only 2 membrane currents, IT, 
and a constant conductance leakage current. Model generates a low- 
threshold spike (LTS) on release from hyperpolarization at time 0. Time 
courses of membrane potential (top) and gating variables (bottom) ob- 
tained by numerical integration of Eqs. 2-4. Here and in subsequent fig- 
ures, g, = 0.1 mS/cm2, VL = -65 mV, and kinetic rates are adjusted for 
body temperature. Early repolarization of the LTS is associated with a 
rapid drop of h to near 0, whereas the later stage in the return of V to the 
resting level (-63 mV) reflects the slow phase of inactivation, i.e., the 
gradual rise of d. Solid curves are for [Ca2’1, = 3 mM, l’h = -92 mV, and 
g, = 0.25 mS/cm’. Dashed curve (top) illustrates prolonged plateau before 
upstroke of LTS under altered parameter conditions corresponding to an 
elevation of [Ca2+10 to 9 mM (I$ = -80 mV; gT = 0.52 mS/cm2). At this 
higher [Ca2’], level, the voltage dependence of the channel kinetic rate 
constants are shifted in a positive direction ( V’ = - 10 mV). With these 
parameters, I/ hovers longer near the resting level after the release from 
hyperpolarization because the growth rate of m is diminished in this volt- 
age range; finally m increases sufficiently to induce an LTS. 

conductance gTm3h are small, repolarization of vdoes not 
proceed with the passive membrane time constant (10 ms). 
Because Z= has a large driving force, this current remains 
comparable in magnitude with the leakage current, and 
hence the return to rest is dominated first by the decay rate 
of h and subsequently by the decay of d. 

The initial depolarization that precedes the LTS exhibits, 
in some experiments, a more pronounced slowing of the 
voltage trajectory near vL, resulting in a “plateau” before 
the firing of the LTS [Jahnsen and Llinas 1984a (Fig. 7); S. 
Suzuki and M. A. Rogawski, unpublished observations]. 
This plateau can be reproduced with our model on adjust- 
ment of various combinations of parameters as, for exam- 
ple, would occur with increased [Ca2’], (as used in the ex- 
periments of Suzuki and Rogawski 1989). The simulated 
voltage tracing under these conditions is shown by the 
dashed line in Fig. 5. To understand the delay in this case, 
recall that the voltage-dependent channel parameters are 
shifted to more positive voltages by higher [Ca”],. Thus, as 
V hovers near yL, both m and its growth rate are smaller 
than in the preceding case and a longer time is needed for 
m(t), hence V(t), to grow. We emphasize, however, that the 
prolonged plateau does not necessarily require unphysio- 
logically high Ca2+ levels. Indeed, significant delays can also 
be obtained with other parameter variations, such as de- 
creasing VL by 7- 12 mV and simultaneously increasing g, 
by a factor of 2-3. Such differences in parameter values 
could easily occur with variations in cell properties without 
a change in the intrinsic gating behavior of the T-type Ca2+ 
channel. 

An important factor in shaping the LTS is the rate of 
inactivation compared with the time scale of V(t) and m(t). 
For example, if al and p1 were doubled, the LTS amplitude 
(solid curve, Fig. 5, top) would be reduced from about -2 1 
to -45 mV. Corresponding sensitivity was also found if the 
transitions between 0 and C, were much slower: halving 
the rates would lead to a peak value of about +3 mV. In 
contrast, the kinetics of m are already quite fast, so that 
speeding the rates by a factor of 2 increases the LTS peak 
only to - 17 mV. It appears that the h kinetics are well tuned 
to provide the proper time course of calcium conductance 
for LTS generation with g, in our chosen range of values. 
Of course, if our model had additional outward currents, 
then offsetting adjustments could buffer such sensitivity. 

Whereas the faster inactivation process affects the LTS 
waveform, the slow step of inactivation sets the minimum 
duration of hyperpolarization necessary to deinactivate Z=. 
Figure 6 shows how the response peak increases with dura- 
tion: > 100 ms of hyperpolarizing current is necessary to 
generate an LTS of greater than half-amplitude. The effect 
here is equivalent to that seen in the recovery experiments 
of Jahnsen and Llinas (1984a; see Figs. 6 and 7) and in our 
simulations of ZT recovery under voltage-clamp conditions 
(cf. Fig. 4A). If, at the beginning of hyperpolarization, a 
sizable fraction of inactivation gates are in the deep closed 
state C2 (as at rest), then it will take an amount of time =72 
for these channels to drift back to 0, i.e., to deinactivate. 

The LTS amplitude also varies with intensity of the hyper- 
polarization. In Fig. 7A, 200-ms current steps to various 
levels of hyperpolarization lead to a family of graded LTSs. 
The LTS amplitude saturates at strong hyperpolarizations 
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FIG. 6. Current-clamp simulations of the LTS evoked by hyperpolariz- 
ing current steps showing that the LTS amplitude increases with the dura- 
tion of the hyperpolarization. Current step begins at t = 20 ms and contin- 
ues for varying durations up to 400 ms (&.,,, = -2pA/cm2). LTS exceeds 
80% of its maximum amplitude for steps longer than 100 ms. g, = 0.2 
mS/cm2, [Ca2’], = 3 mM. 

because in this limit h attains its maximum value of 1. The 
response curve in Fig. 7B displays a sigmoid form and may 
be compared with the corresponding experimental data of 
Jahnsen and Llinas obtained over a more limited range 
(1984a, Fig. 4). Although there is not a strict threshold at 
these parameter settings (Fig. 7B), the behavior could be 
steeper with minimal adjustment in the parameters so as to 
simulate an “all or none” type of response pattern. For 
example, with increased [Ca”], the computed peak of v(t) 
shows a much sharper increase with stimulus strength (not 
shown). Similar phenomena have been seen experimentally 
in the presence of high [Ca2+], (Suzuki and Rogawski 
1989). 

Oscillatory behavior involving the LTS 

If the LTS is critical to the generation of the 8- to lo-Hz 
rhythmic firing of thalamic relay neurons, it must be possi- 
ble to evoke the LTS at the required frequency within the 
appropriate voltage domain. In an attempt to explore this 
issue, we consider the response of our minimal model to 
repetitive hyperpolarizing current stimulation. The case 
shown in Fig. 8A allows us to define our protocol. A full 
cycle of period P, (ms) consists of hyperpolarization, &, = 
-2.0 pA/cm2, for p ms and then zero current for the re- 
mainder of the cycle. After each release an LTS is gener- 
ated. In the example shown here, the driving frequency of 5 
Hz is sufficiently low and p is long enough so that LTSs of 
constant amplitude are reliably evoked after each stimulus 
during the train. 

The dependence of LTS amplitude on the frequency and 
pulse duration for such trains of hyperpolarizing pulses is 
summarized in Fig. 8B. To display the results on a single 
scale, we plot the adapted peak voltage versusp/P,, the frac- 
tion of hyperpolarization per cycle. Indeed, as one expects, 
the response amplitude increases with the period of the stim- 
ulus, approaching saturation for periods longer than -300 

ms. Most striking, however, is the sensitivity seen for fre- 
quencies in the 5- to lo-Hz range. Here, the LTS amplitude 
for a range of hyperpolarization durations is adequate for 
generating a burst of spikes (i.e., the peak reaches threshold 
for Na+-dependent action potentials; Suzuki and Rogawski 
1989). If the stimulus is faster than - 12 Hz, the peak depo- 
larization (for any fraction p/PO) does not exceed -55 mV 
and drops dramatically for higher stimulus rates. For a 
fixed period, the LTS amplitude is graded with increasing 
duration of the hyperpolarizing pulse (corresponding to 
Fig. 6); it reaches -45 mV when p is - 100 ms (for P, 2 200 
ms). The response is maximal for a duration larger than 
one-half of the total period, and then it decreases sharply 
when the release phase of the stimulus cycle is too brief 
(-30 ms). Although the quantitative details are affected, 
the qualitative aspects of Fig. 8 are preserved for variations 
in the amplitude and time course of the stimulating current. 
For example, if the hyperpolarizing pulse were -3.0 PA/ 
cm2 or if gT = 0.3 nS/cm2, the maximal response for P, = 
100 ms would be - 30 and -35 mV, respectively, instead of 
-50 mV. Also, it is not essential that the applied hyperpolar- 
ization terminate abruptly. In fact, inhibitory postsynaptic 
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FIG. 7. Current-clamp simulations showing how the LTS amplitude in- 
creases with the intensity of the hyperpolarizing stimulus. A: family of 
LTSs evoked by 200.ms hyperpolarizing steps increasing in magnitude 
from - 1 to -5 PA/cm2 (gT = 0.2 mS/cm’). B: peak amplitude of the LTS 
plotted vs. the magnitude of the applied current step. 
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FIG. 8. Response of the model to a repetitive train of hyperpolarizing 
current pulses. Repetition period of stimulus is P, and the step duration is 
P- 4pp = -2pmA/cm2 and g, = 0.25 mS/cm2. A: time course of membrane 
potential for P, = 200 ms and p = 120 ms (~-HZ stimulus). After a single 
larger amplitude response at the start of the train (not shown), the LTS 
amplitude adapts rapidly to a constant amplitude. B: LTS amplitude 
(adapted) vs. p/P,. Curves are for different stimulus periods (P, = 50, 100, 
200,300, or 400 ms) and are labeled with the corresponding frequencies in 
Hz. Salient features: I) the LTS response is significantly attenuated if stimu- 
lus frequency exceeds 10 Hz; 2) response saturates for frequencies ~3 Hz; 
3) for a given PO, the LTS amplitude first increases with the duration of the 
hyperpolarization (as described in Fig. 6) but then falls suddenly as the 
off-time of the stimulus, P, - p, becomes shorter than the rise time of the 
full-amplitude LTS. 

potentials (IPSPs) observed in thalamic neurons exhibit 
rather smooth decays (Thompson 1988). Computations 
with our model, in which Zapp has an exponential decay 
phase, yield results similar to those above (not shown). 

DISCUSSION 
T-type Ca2+ current and the LTS 

We have presented a theoretical model of the T-type Ca2’ 
channel based on kinetic parameters derived from recent 
voltage-clamp recordings using enzymatically isolated tha- 
lamic relay neurons. By virtue of the isolation procedure, 
these cells are electrically compact, allowing excellent spa- 
tial voltage control and accurate determination of kinetic 
parameters (Kay and Wong 1987). Although the T-type 
Ca2+ channel shares certain kinetic characteristics with the 
voltage-dependent Na+ channel of fast action potentials 
(Hodgkin and Hux ley 1952), an im portant difference be- 

tween the two is that inactivation of the T-type Ca2+ chan- 
nel occurs in two phases, the second of which is much 
slower than the first. To describe this characteristic of Z=, we 
proposed a kinetic scheme of the inactivation gate with two 
transition steps that possess disparate time constants. The 
slow outlet from the deep closed state is shown to serve as a 
“bottleneck” of the deinactivation process and controls its 
time course. 

We studied the behavior of our model of the T-type Ca2+ 
current under simulated current-clamp conditions in an 
idealized cell endowed only with Ca2+ channels and a leak- 
age pathway. Calculated current and voltage trajectories 
based on the model compare well with the experimental 
data and in particular provide insight into the long recovery 
time for the T-type Ca2+ current and the LTS. Thus there is 
a close correspondence between the recovery of the current 
in a simulated two-pulse experiment (Fig. 4A) and the ac- 
tual experimental data obtained in two independent experi- 
ments (Fig. 4B). Moreover, in current-clamp simulations, 
we find that the shape (Fig. 5) and recovery (Fig. 6) of the 
LTS closely match results obtained in recordings from enzy- 
matically isolated thalamic neurons (Suzuki and Rogawski 
1989) as well as those obtained from relay neurons in tha- 
lamic slices (Crunelli et al. 1989; Jahnsen and Llinas 
1984a,b; Llinis and Jahnsen 1982; Thompson 1988). The 
model allows sufficient flexibility to account for certain ex- 
perimentally observed variations in cellular responsiveness, 
including the variable duration of the plateau phase that 
precedes the rapid upstroke of the LTS in current-clamp 
experiments (Fig. 5). 

Our theoretical model of the T-type Ca2+ channel in tha- 
lamic relay neurons has several implications regarding the 
role of these channels in thalamic physiology and perhaps 
also in pathophysiological states, such as absence seizures. 
The demonstration that bursting in thalamic and other cen- 
tral neurons is mediated by Ca2+-dependent low-threshold 
spikes (see Llinas 1988) along with the subsequent identifi- 
cation of transient low-threshold (T-type) Ca2+ channels in 
various neuronal and muscle cells (Carbone and Lux 1984; 
Hagiwara et al. 1988; Nilius et al. 1985; Nowycky et al. 
1985) led naturally to the proposal that these channels play 
a role in the bursting behavior of some neurons (Miller 
1987). Subsequent pharmacological studies have provided 
strong confirmatory evidence that T-type Ca2+ channels are 
critical to the generation of the LTS event, at least in tha- 
lamic neurons (Suzuki and Rogawski 1989; Thompson 
1988). Nevertheless, it has remained unclear whether the 
intrinsic properties of these active elements alone are re- 
sponsible for the main features of the LTS. Our model sug- 
gests that they are. Although other membrane currents may 
perhaps modify the likelihood with which a given synaptic 
stimulus elicits an LTS and undoubtedly play a role in sub- 
tly shaping the voltage trajectory of the LTS, the intrinsic 
properties of the T-type Ca2+ channel alone are sufficient to 
generate the main features of the LTS. 

Limitations of the model 

Despite its utility, our model of the thalamic relay neu- 
ron has certain limitations. First, it ignores the presence of 
other voltage- and Ca2+- dependent currents, including the 
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transient K+ current (Z*) (Rogawski 1985; Rudy 1988) and 
a hyperpolarization-activated cation current (I,; McCor- 
mick and Pape 1990), that likely influence the cell’s 
subthreshold behavior. Because our model is sufficient to 
reproduce the characteristic features of the LTS, we pro- 
pose that these currents may alter the rate and pattern of 
repetitive bursting but are not critical to generating the 
burst other than in shaping fast Na+-dependent action po- 
tentials. (Ionic currents associated with the Na+ spike do 
not appear to play a major role in specifying the trajectory 
of the LTS because tetrodotoxin does not alter the LTS 
shape.) In fact, the voltage-dependent properties of the ac- 
tive K+ currents in thalamic neurons are such that they 
would not be predicted to substantially alter the voltage 
trajectory of the LTS. Unlike the classical delayed rectifier 
K+ current (Z& of the squid giant axon (but similar to the 
current in some other central neurons; see, e.g., Ffrench- 
Mullen and Rogawski 1989), Zk in thalamic relay cells 
shows substantial activation only on depolarization to po- 
tentials more positive than about -20 mV (S. Suzuki and 
M. A. Rogawski, unpublished observations), a level that is 
not reached by the LTS. ZA is activated at somewhat more 
hyperpolarized levels; i.e., in thalamic neurons, the thresh- 
old is about -50 mV and one-half activation occurs at 
about - 30 mV ( [Ca2+10 = 5 mM). The peak conductance of 
ZA in thalamic neurons is comparable with that of the T- 
type Ca*+ current. The current activates rapidly (< 10 ms) 
and inactivates with a time constant of -60-80 ms (at 
room temperature). Simulations of our model, which in- 
cluded an additional Z* with these experimentally deter- 
mined parameters (with appropriate adjustment for normal 
[Ca*‘l, and body temperature), indicated that Z* caused at 
most a modest (< 18%) reduction in the peak amplitude of 
the LTS with little effect on its shape. Z* in thalamic relay 
cells is one-half inactivated at about -75 mV. We tested the 
sensitivity of the computed LTS to the position along the 
voltage axis of this half-inactivation point and found that a 
shift in the depolarizing direction does not substantially 
alter the shape of the LTS, although its amplitude is further 
reduced (33% for + 10 mV). We therefore conclude that 
neither of the major voltage-dependent K+ currents is criti- 
cal to specifying the voltage trajectory of the LTS, but these 
currents may modify the behavior of the cell during the 
interval between burst events and will certainly need to be 
taken into account in a complete model of the electrore- 
sponsiveness of the thalamic relay neuron. With regard to 
Ca*+-activated K+ channels, little information is available 
for thalamic neurons, and, in fact, slow Ca*+-activated K+ 
channels may not exist in these cells (see McCormick and 
Pape 1990), so that at present it is premature to speculate 
on the role these channels might play in determining the 
membrane potential behavior during bursting. 

Another feature of the thalamic relay neuron that we did 
not consider is its morphological complexity and the possi- 
ble presence of T-type Ca *+ channels on cellular processes 
as well as on the soma. In other neuronal cell types, Ca*+ 
channels have been localized to dendritic regions (Jones et 
al. 1989; Lipscombe et al. 1988; Llinas 1988; Llinas and 
Sugimori 1980; Tank et al. 1988; Westenbroek et al. 1990). 
The distribution of T-type Ca*’ channels has not yet been 
determined, although there is some evidence that these 

channels may be present in dendrites (Harris et al. 1989). In 
thalamic relay neurons, T-type Ca*+ channels are clearly 
present in the somatic or proximal dendritic membrane 
(Steriade et al. 1990; Suzuki and Rogawski 1989); however, 
the extent to which the channels are also present on distal 
dendrites is uncertain. Nevertheless, spatial segregation of 
Ca*+ channels to dendrites would complicate the interpre- 
tation of interactions between local synaptically driven den- 
dritic potentials and the firing behavior of the soma that 
presumably determines the output properties of the cell. 
This problem is highlighted by the experimental observa- 
tion of Thompson (1988) that IPSPs, which cause no 
change in membrane potential measured at the soma, are 
capable of evoking an LTS, presumably because they suffi- 
ciently hyperpolarize local regions of the dendritic mem- 
brane. Nevertheless, in general terms, our model of the LTS 
is as applicable to the local milieu of the dendrite as it is to 
the soma. However, if the LTS is generated locally in den- 
drites, it must presumably be transmitted to the soma to 
generate fast action potentials (Wollner and Catterall 
1986). 

Endogeneous oscillations in thalamocortical relay neurons 

Although the IO-Hz spindling oscillation of relay neu- 
rons is believed to be crucially dependent on the phasic 
inhibition from the reticular nucleus, the T-type Ca*+ 
current, together with other ionic currents, might endow 
thalamic relay neurons with the capability of generating 
endogeneous bursting behaviors. In fact, a slower, l- to 2- 
Hz bursting oscillation has been observed in both in vivo 
and in vitro recordings (Leresche et al. 1990; McCormick 
and Pape 1990). With the experimentally determined pa- 
rameter values, our model does not display rhythmic behav- 
ior. McCormick and Pape (1990) have suggested that the 
l- to ~-HZ oscillation can be accounted for by the combina- 
tion of the T-type Ca*+ current and the hyperpolarization- 
activated cation current (Zh), which they characterized in 
their thalamic slice recordings. We found that inclusion of 
Zh enables our model to produce similar slow oscillations if 
we use the kinetic parameters for the h-type current pro- 
vided by these authors; if the passive time constant C,/g, is 
increased to 50 ms, and if a strong steady hyperpolarizing 
current is applied (unpublished observations). 

We also explored the conditions under which, without Zh, 
the parameter values in our model might be modified to 
produce self-sustained oscillations in the frequency range of 
10 Hz. After examining a range of values for g, and Zai.,p 
without success, we found that rhythmicity occurs under 
either of the following two conditions. When m, and h, 
are translated along the voltage axis to bring their mid- 
points closer together than are observed experimentally, 
our model generates repetitive LTSs in response to a con- 
stant hyperpolarizing current (Fig. 9). Alternatively, auto- 
oscillatory activity occurs when the slow phase of inactiva- 
tion is eliminated by setting d = 0. 

Recently, Rose and Hindmarsh (1989) developed a dif- 
ferent theoretical model of the thalamic relay cell that also 
supports endogenous oscillatory bursting. This model 
differs from the present one by utilizing a simpler func- 
tional form for the low-threshold Ca*+ current (I, in their 
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notation) and by including several other currents. The 
Rose-Hindmarsh model was formulated before the avail- 
ability of the recent voltage-clamp data on the T-type Ca2+ 
current in thalamic neurons, and it does not account for the 
slow recovery of the T-current. Thus the inactivation gate 
for I, has two states and a single voltage-independent time 
constant (TV, = 25 ms). The other currents in the model 
include a fast Na+ current , I Na; a noninactivating, delayed- 
rectifier K+ current, ZK; a transient (inactivating) K+ 
current, Z*; and a leakage current, Zi,. In the subthreshold 
voltage range, ZNa, ZK, and Z* are small and not strongly 
voltage dependent. Consequently, they may be cast into an 
“effective” leakage current. Under such circumstances, this 
model predicts current-clamp behavior in response to ap- 
plied current similar to that of our present model in the 
absence of the slow inactivation step (d = 0). Moreover, the 
additional currents in their complete model lead to spike 
generation when V passes threshold in response to a depo- 
larizing stimulus. Under a constant hyperpolarizing current 
their model also exhibits repetitive LTS-driven bursting 
oscillations. Although this automatic firing mode is un- 
likely to be relevant to the in vivo behavior of thalamic 
relay neurons per se, it is conceivable that such rhythmic 
burst firing occurs in neurons of the nucleus reticula& tha- 
lami, which also possess T-type Ca2+ channels and which 
may be capable of oscillations (Mulle et al. 1986). In fact, it 
is believed that these latter neurons may drive the burst 
firing of relay neurons (Steriade et al. 1987). Similarly, our 
model could be applicable to the reticularis neurons if the 
T-type Ca2+ channels in these cells had the characteristics 
described above. 

We are still at an early stage of identifying the relative 
contributions made by intrinsic cellular properties and by 
intercellular coupling in generating the rhythm. As addi- 
tional biophysical data become available, we anticipate that 
theoretical models will be improved and will be used to gain 
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FIG. 9. LTS model exhibits intrinsic oscillations for altered parameter 

values. Modest translations of the voltage dependence of m,( v) and h,(v) 
cause them to overlap. In this example, the midpoint of m,( v  is shifted 
from -63 to -65 mV and that of h,( v) from -83.5 to -75 mV. With g, = 
0.2 mS/cm2 and Iapp = - 1 .O PA/cm’, the oscillation period is -200 ms 
(body temperature). 

further insight into the mechanisms that underlie these 
rhythms. 

Implications for thalamic spindling and absence seizures 

Under ordinary conditions, burst firing of thalamic relay 
neurons occurs during slow-wave sleep and is associated 
with spindling in the cortical electroencephalogram (Ster- 
iade and Deschenes 1984). Electrophysiological recordings 
from thalamic relay neurons in vivo have indicated that 
burst firing during spindling is accompanied by a barrage of 
inhibitory potentials arising from neurons in the nearby 
nucleus reticularis thalami (Houser et al. 1980; Roy et al. 
1984; Steriade et al. 1986). These inhibitory events deinac- 
tivate the T-type Ca2+ current so that an LTS and a burst of 
spikes is elicited as the membrane potential of the relay 
neuron recovers at the termination of the inhibitory drive. 
Such a scheme is supported by recordings from relay neu- 
rons in thalamic brain slices, which have demonstrated that 
trains of conventional IPSPs elicited by stimulation of the 
nucleus reticularis can result in the rebound excitation of 
an LTS without the intervention of any excitatory input 
(Thompson 1988). However, in these in vitro studies, the 
inhibitory drive needed to be maintained for >50- 100 ms, 
and recordings in vivo have shown that the IPSPs typically 
have a duration of 60-120 ms. Consequently, in our 
current-clamp simulations we have investigated the voltage 
and time dependency for activation of the LTS by a hyper- 
polarizing stimulus. The LTS amplitude is seen to increase 
in a monotonic fashion with larger hyperpolarizing steps 
(Fig. 7), and this corresponds with the graded nature of the 
LTS recorded in brain slices (Thompson 1988). Moreover, 
it is apparent (Fig. 8) that the period of hyperpolarization 
required to evoke an LTS in our simulations is compatible 
with the IPSP duration in the in vitro recordings and the 
actual duration of the inhibition recorded under more phys- 
iological conditions in vivo. We note that the predictions of 
Fig. 8 are strikingly similar to the experimental observa- 
tions of McCormick and Feeser ( 1990), displayed in a simi- 
lar fashion in their Fig. 3. 

During spindling, thalamic neurons exhibit bursting at a 
frequency of - 10 Hz. Does our theoretical model permit 
bursting to occur at this rate? In vivo recordings have indi- 
cated that the hyperpolarization level between bursts is -80 
mV (see, e.g., Fig. 2C in Deschenes et al. 1984). The slow 
time constant of inactivation of the T-type Ca2+ current at 
-80 mV is 275 ms (measured at 25OC and with [Ca2+], = 3 
mM). Using the Q,, of 3 determined by Coulter et al. (1989) 
to correct the time constant to body temperature (and also 
correcting for the in vivo Ca2’ concentration of 2.5 mM), 
we obtain an estimate for the in vivo inactivation time con- 
stant at -80 mV of 90 ms, which should allow the T-type 
Ca2+ current to be activated at a sufficient rate. 

The thalamus has long been considered to be a critical 
structure in the generation of the spike-and-wave dis- 
charges recorded in the cortex during absence seizures. 
These stereotyped discharges occur at a frequency of 3 Hz 
in cats and humans; similar electroencephalographic events 
occur at 8- 10 Hz in rodents with absence-like seizures 
(Vergnes et al. 1987, 1990). It has been argued that the 
activity of the thalamic neurons during the spike-wave dis- 
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charge is similar to that occurring during spindling (Gloor 
1984). If so, the cells would fire in the bursting mode that is 
dependent on T-type Ca*+ channels. Our estimate of the 
upper limit for the frequency of burst firing in thalamic 
neurons is surprisingly close to the maximum spike-wave 
discharge frequency during absence seizures in rodents (10 
Hz). Thus our results indicate that the thalamic neuron is 
competent to discharge in burst mode at either the cat and 
human or rodent frequencies. 

APPENDIX 

At fixed voltage, the steady state of Eq. 3 determines 
tions h, and d, for the inactivation variables h and d 

the func- 

Solving these 
Eq. 9 yields 

P2(1-h-d)=ar2d 

equations in terms of the new parameters defined in 

h, = 1 
1 + K,[l + K2] (A24 

The simplification K1 = K2 = K leads to 

h,= ’ l+K+K2 (A-9 

from which the expression for K, Eq. 11, follows. 
The time courses of h(t) and d(t) are determined by solving the 

ordinary differential Eqs. 3, a and b, which are linear under volt- 
age-clamp conditions. Each is a sum of two exponential terms 

A0 + A, exp[-X,t] + A2 exp[-X,t] 

where 4, and ---X2 are the characteristic roots of this second-order 
system. They satisfy the quadratic equation 

X2+Tr X+D=O 

where 

Tr = --(a, + p, + a2 + P2) = -(l/q + l/72) 

1 +K(l +K) 
D = Qlcy2 + Ma2 + P2) = 7 7 (1 

1 2 
+ K)2 

Thus AI and X, are given by 

(Am 

A,, x2 = ; (l/q + l/72) t 

The directly measurable time constants in experiments are X,-r 
and X,-l (i.e., rh and rf, respectively) rather than 71 and 72. To get 
analytic expressions for the latter, we must express them in terms 
of X1 and X2. Therefore we invert Eq. A6 to obtain 

-1 -1 
(A, + A,) t 0, + X212 - 

4(1 + AQ2Xlh2 
71 972 1 +K(l +K) I 

W-J 

A useful approximation for 71 may be obtained if we factor X, 
out of the right side in Eq. A7. Now because the ratio X2/X1 is small 
(because 7, @ ?h), we form a Taylor’s series expansion and retain 
only the first term to arrive at 

71 = A,-’ WV 

To approximate 72 we use the fact X1X2 = D in Eq. A5 and then 
eliminate X1 by using Eq. A8 to obtain 

72 = A,-‘[1 + K(1 + K)]/(l + m2 (A9 

This formula shows how one should adjust the measured 7, to 
obtain 72; the factor involving K is between 3/4 and 1. 

We remark that Eq. A9 may also be viewed as an approximation 
for the slow time constant X2-’ of Eq. 3, which can be obtained in a 
more direct way by exploiting the time scale differences in Eq. 3. 
That is, because Eq. 3a describes a much faster process than Eq. 
3b, we use the rapid equilibrium hypothesis on the former: assume 
steady state, dh/dt = 0, and solve for h in terms of d. Substituting 
this into Eq. 3b, we obtain a single first-order equation for d, the 
decay rate of which approximates h, and which, when rewritten 
using the definitions from Eq. 9, is equivalent to Eq. A9. 

We thank Dr. Michael Weinstein for exploratory simulations with ear- 
lier versions of this model. 
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