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Working memory actively engages
stimulus-selective persistent activity,
which is mathematically described as
an attractor state of a reverberatory
neural circuit.

The attractor network model is compati-
ble with temporal variations ofmnemonic
neural firing in a subspace of population
activity.

Sustained activity during working
memory coexists with intermittent
bursts of frequency-dependent net-
work synchronization.
Half a century ago persistent spiking activity in the neocortex was discovered to
be a neural substrate of working memory. Since then scientists have sought to
understand this core cognitive function across biological and computational
levels. Studies are reviewed here that cumulatively lend support to a synaptic
theory of recurrent circuits for mnemonic persistent activity that depends on
various cellular and network substrates and is mathematically described by a
multiple-attractor network model. Crucially, a mnemonic attractor state of the
brain is consistent with temporal variations and heterogeneity across neurons
in a subspace of population activity. Persistent activity should be broadly under-
stood as a contrast to decaying transients. Mechanisms in the absence of neural
firing ('activity-silent state') are suitable for passive short-term memory but not
for working memory – which is characterized by executive control for filtering
out distractors, limited capacity, and internal manipulation of information.
There is no increase in the total number
of spikes in a neural population during a
mnemonic delay period compared to a
baseline state, suggesting that persistent
activity is not more energetically costly
than an alternative memory mechanism
using hidden variables.

Activity-silent state mechanisms such
as synaptic short-term facilitation are
suitable for the storage of passive short-
termmemory traces, but not for working
memory, because the latter also involves
manipulation of information online in the
absence of external stimulation.
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Mnemonic persistent activity as an atom of cognition
The year 2021 marks the 50th anniversary of the discovery that single-cell persistent activity is
associated with working memory. The story of this discovery began in the 1960s when Joaquin
M. Fuster happened to make the acquaintance of Larry Ott, an engineer at Hughes Aircraft who
invented a cryogenic device that was used to cool the electronic components of space satellites.
At that time Fuster was impressed by the studies of C.F. Jacobsen and others showing that
lesioning the prefrontal cortex (PFC) impaired the performance of macaquemonkeys in a delayed
response task [1,2]. In a typical delayed response task, a sensory stimulus (e.g., green visual
object) and an appropriate response (go) are separated by a short time-interval (delay period).
Consequently, the probed behavior depends on working memory – the ability of the brain to
hold and manipulate information when sensory stimulation is absent [3,4]. Could Ott’s new
gadget help neuroscientists to study the brain mechanisms supporting working memory? Fuster
and his student Garrett Alexander adopted the cryogenic device to inactivate by cooling
circumscribed brain regions of monkeys in a delayed response task [5]. They then proceeded
to neurophysiological recordings, which revealed that a substantial number of prefrontal units
showed persistent elevations of firing rate during the delay, the memory retention period of the
task (Fuster’s recollection is presented in Box 1). The resulting publication in 1971 [6] and another
independent publication that same year [7] ushered in single-neuron investigations of brain
circuits underlying working memory.

The present article takes stock of the past 50 years of research exploring persistent neural activity
as it pertains to the foundation of working memory. This work has provided substantial support
for the multiple-attractor network model of self-sustained mnemonic persistent activity. The
central tenet of this theory is that a memory representation is not a transient signal that passively
decays in time; instead, it corresponds to a dynamically stable state of the brain. A working
memory system is in turn conceptualized as a neural circuit endowed with multiple attractor
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Box 1. Fuster’s reminiscence (personal communication)

In the late 1960s we found in my laboratory that cryogenic inactivation of the lateral prefrontal cortex could produce a
reversible deficit in the performance of monkeys in a delayed response task, a test of working memory. Thus we re-
established by reversible lesion what Jacobsen had established many years before by ablation. The beauty of our method
was that it allowed us to use each animal repeatedly as its own control. From the results of that experiment it became clear
to me that the lateral PFC was crucial for the temporary retention of a form of short-term memory that Baddeley later
termed 'working memory'. It was therefore reasonable to expect that the nerve cells in that part of the cortex would be
actively involved in that form of memory. Because at the same time we were becoming proficient at recording with micro-
electrodes single units from chronic animals, it occurred to me that those cells must undergo recordable activity changes
during delayed response, that is, during memory retention. With the help of my graduate student Gary Alexander, we
trained monkeys to perform the delayed response task and surgically prepared them for single-cell recording from the
prefrontal cortex. My expectation was happily fulfilled: a substantial number of prefrontal units showed persistent eleva-
tions of firing rate during the delay, the memory retention period of the task. Never in my scientific life have I experienced
a cleaner confirmation of a hypothesis (many have failed!), although later it turned out that the sustained delay activity
reflects the influence of other factors in addition to memory.
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states encoding different memory items that coexist with a baseline state. As an analogy, imagine
a hilly golf course with many valleys, akin to a state space of neural population activity in a working
memory system. The bottom (attractor) of a valley (basin of attraction) is 'attractive' in the sense
that a ball (the position of which corresponds to the state of the neural system) naturally rolls down
towards it. This way, a sufficiently large transient input (hitting a ball hard into the air) can switch
the system from rest (one valley) to a stimulus-selective mnemonic state (a different valley)
which remains after stimulus withdrawal; such a state is robust against small perturbations
(gentile taps of the ball with a club). A subsequent brief but potent signal can switch the system
back to the resting state, thereby erasing a memory trace. Unlike a golf course, however,
attractors in a neural system may be characterized by complex spatiotemporal patterns such
as stochastic network oscillations or propagation waves (sequential activation of different neural
groups) rather than steady-states. Furthermore, the landscape of multiple attractors is readily
modifiable by a sustained input, which is essential for executive control of working memory.

I first review studies that cumulatively lend support to the recurrent neural circuit mechanism of
working memory representation, mathematically corresponding to the multiple-attractor network
model of persistent activity. This theoretical framework predicts that (i) mnemonic activity is
maintained over time when the delay period duration is varied considerably, (ii) after a brief
optogenetic perturbation persistent activity reverts to the same pattern in the control condition.
These predictions have recently received experimentally confirmations in behaving animals. In
the sections that follow, I discuss developments that address some recent challenges to the the-
ory and suggest areas for future work.

An attractor network model of persistent activity
Following the original discovery, studies of single-neuron recording in delay-dependent tasks
have documented persistent activity encoding discrete items (visual objects, categories, task
rules) [8–14] and continuous space [15–22]. Parametric working memory with monotonic
encoding of a behavioral attribute was discovered in a vibrotactile delayed discrimination (VDD)
task [23]. These experiments identified the PFC (especially its superficial layers [24]), the posterior
parietal cortex (PPC), and other brain regions that are engaged in working memory representa-
tion. Functional magnetic resonance imaging (fMRI) uncovered similar brain structures that are
activated by working memory in humans [25], and these also differentially engage the superficial
layers [26]. Research using human and other animals led to the proposal of an integrative theory
of the PFC for behavioral flexibility [27]. In close interplay with experimentation, neural network
models for stimulus-selective persistent activity were developed. Following pioneering work
[28,29], self-sustained memory states began to be conceptualized as attractor states [30,31].
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Mathematically, an attractor denotes a state of a nonlinear dynamical system that is stable such
that after a small transient perturbation the system will revert to the original state [32].

Patricia Goldman-Rakic had the vision to tackle the neural circuit mechanism across biological
levels of working memory as a window to cognition and mind [33–35]. This vision gradually be-
came realizable with a cross-disciplinary approach combining human brain imaging, single-cell
recording and pharmacology, anatomy, in vitro neurophysiology, and computational modeling
[36]. In the late 1990s and early 2000s, the attractor network paradigm was tested using spiking
neural network models endowed with biologically constrained synaptic connections [37–42].
These studies provided initial support for the attractor network model (reviewed in [31]).
Has the attractor network model stood the test of time over the past 20 years? Biologically, a
mnemonic attractor is sustained by reverberatory dynamics through feedback loops in a neural
assembly [30,31]. One early theoretical prediction was that the posited reverberation must be
slow and depend on NMDA receptors at local recurrent excitatory synapses in a working memory
circuit [38]. This model prediction was confirmed in experiments where iontophoresis of an
antagonist for NR2B subunit-containing NMDA receptors essentially abolishedmnemonic persis-
tent activity in PFC neurons recorded frommonkeys performing an oculomotor delayed response
(ODR) task [43]. Subsequent studies showed that both the NMDA and AMPA receptors
contribute to working memory function in which the fast AMPA receptors predominantly signal
sensory information [44,45]. Another model prediction was a disinhibitory motif composed of
three types of inhibitory neurons for gating access to working memory and filtering out distractors
[46]. This theoretical prediction has been supported experimentally and was shown to be a
canonical feature of the neocortex (reviewed in [47,48]).

The theoretical finding that NMDA receptors play a crucial role in working memory offered an
example of how a core cognitive function can be elucidated in neuroscience across levels, from
receptors to recurrent neural circuit dynamics to function. It also explained why in healthy subjects
low-dose ketamine, an NMDA receptor antagonist, could induce working memory deficits
[49] similar to those observed in schizophrenic subjects who display NMDA receptor
hypofunction [50–52]. This insight helped to prompt the emergence of the field of computational
psychiatry [53,54]. Slow reverberation is also suitable for temporal accumulation of evidence to
inform decision-making [55–57], suggesting a shared mechanism for working memory and
decision-making in 'cognitive-type' neural circuits [58,59].

Rigorous experimental tests of the attractor network model of working memory became possible
only recently thanks to advances of experimental tools such as cell type-specific optogenetic ma-
nipulation. In a mouse experiment, subjects learn to associate one of two sensory cues with left
and right licking responses. The two sensory stimuli may be somatosensory (far and near objects
that touch whiskers) or auditory (high and low tones; Figure 1A). Before the response is allowed to
take place, there is a short delay period. Single neurons in a premotor area, the anterior lateral
motor cortex (ALM), display elevated firing activity during the delay period. A series of experi-
ments, in close interplay with computational modeling, have led to a wealth of information
about the underlying neural circuit mechanisms supporting short-term memory in this task.
First, optogenetic inactivation performed systematically across the cortex demonstrated that
ALM is the crucial node for maintaining short-term memory [60]. Second, if persistent activity is
a single-cell phenomenon rather than being maintained by synaptic reverberation, current injec-
tion into a cell should be able to turn off ongoing persistent activity [61]. This was not found to
be the case using intracellular recording in behaving animals during a delay period [62], in support
of a network mechanism. Third, despite optogenetic perturbations that transiently alter the
timecourse of ALM neural firing, the trajectory of population activity converges to one of two
890 Trends in Neurosciences, November 2021, Vol. 44, No. 11
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Figure 1. Mnemonic activity in mouse performing a delayed response task. (A) One of two sensory cues is presented briefly, which can be a high or low tone in an
auditory task, or a near or far location of an object on the whisker in a somatosensory task. The two stimuli are mapped to left and right licking responses, shown in red and
blue, respectively. A correct motor response after a delay yields a reward. (B) Population activity from ~10 simultaneously recorded ALM neurons, projected in the 1D
subspace optimized for mnemonic representation. (Left) Control when the choice is correct (right, blue). (Middle) Optogenetic inactivation at the start of the delay period
suppresses right-selective neural activity, which recovers and the ultimate choice is correct. (Right) Same as the middle panel but this time optogenetic manipulation
induces an incorrect response (left, red). ALM decoding still predicts the erroneous movement direction, demonstrating its correlation with behavior performance.
Abbreviations: ALM, anterior lateral motor cortex; a.u., arbitrary units; CD, coding direction. Figure reproduced, with permission, from [62].
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fixed endpoints in the state space of recorded neural population activity, in support of discrete at-
tractor models (Figure 1B) [63]. Fourth, optogenetic inactivation during the delay period revealed
that thalamocortical connections are important for the maintenance of delay period activity in the
ALM [64].

In this task, because the sensorimotor transformation presumably occurs during external stimu-
lation, persistent firing in the premotor area ALM encodes preparation for the impending move-
ment rather than sensory working memory. This differs from other tasks, such as delayed
match to sample (DMS), which require that delay activity represents the sample stimulus because
the correct motor response is unknown (and thus cannot be prepared) during the delay period.
Using delay dependent tasks where remembering sensory information is essential, other rodent
experiments found that frontal and parietal areas are engaged in workingmemory-dependent be-
havior [65]. Results from neural data analyses and experimental manipulations combined with
Trends in Neurosciences, November 2021, Vol. 44, No. 11 891
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modeling lend further support to the attractor network paradigm [66–68]. Moreover, parametric
working memory can be modeled as line attractors [69,70], akin to a flat part of a golf course
where the ball can stay at a continuum of positions. Finally, attractor models have also been
extended to account for multiple-item working memory [71].

Dynamical coding and heterogeneous delay activity
Although the attractor model has received theoretical and empirical support, it has been challenged
on the grounds that mnemonic neural activity often varies substantially over a delay period. In a
working memory task, neurons in a cortical area tend to display temporal variations during the
delay period [72,73]. A relatively small number (5–10%) of recorded neurons show strictly tonic per-
sistent activity. Others display time-varying patterns: some ramp-up while others ramp down their
firing rates in time during the delay [74]. The percentage of sampled neurons showing delay period
activity can be 30% or more depending on the precise recording location [75]. Note that a brain re-
gion is engaged inmany tasks, thus the number of cells activated in a single task could be a small but
significant fraction of the entire population. In delayed response tasks, persistent activity was
reduced or absent in error trials [16,75], in support of its importance at the behavioral level.

Crucially, temporal changes of delay period activity, per se, are compatible with attractor network
models. The misconception that an attractor must be in a steady-state may result from the mere
fact that mathematical models are easiest to describe and analyze if attractors are steady-states
[37,38,41,76]. However, attractor states do not need to be stationary, as illustrated by stimulus-
selective attractors characterized by stochastic oscillations [39,76] which have been observed in
behaving monkeys during workingmemory tasks [18]. Persistent activity may also exhibit chaotic
dynamics [77,78]. In principle, an attractor of a dynamical system may display complex
spatiotemporal patterns, exemplified by fluid turbulence with vortices over many scales in
space and time.

A more puzzling finding is that the stimulus-selectivity of a recorded neuronmay only be detectable
in a brief portion of the delay period, and each cell shows statistically significant selectivity at
different times ([79,80]). A method to quantify whether a working memory representation is
stationary or time-varying is to train a linear classifier at time t to decode information from recorded
neurons, which is then used to decode the stimulus at another time t′, thus the quality of decoding
is shown in a 2D 'cross-temporal classification matrix' [81]. Figure 2A shows such a matrix com-
puted using 600 PFC neurons in a monkey delay-dependent experiment [82]. During the cue pre-
sentation, reliable decoding (red to orange color) is confined near the diagonal line, which means
that the classifier trained at a particular time cannot decode the trial type at a different time. On
the other hand, during the delay period following the initial cue, good decoding fills a square on
the upper right corner, demonstrating that working memory representation is relatively stable
over time.

Studies using cross-temporal classification analysis have yielded various cross-temporal classifi-
cation matrices [85,86]. In general, working memory representations are stable over time in tasks
that mostly involve memory maintenance, but are time-varying when information processing and
manipulation are required during the delay period; sometimes a code is stable in a time-window,
and then evolves into time-varying in another time-window, yielding a mixture of stable code and
dynamical code [87].

Can temporal variations of neural activity be compatible with a stable working memory represen-
tation during a delay period? To address this question, principal component analysis (PCA) was
applied to PFC neural trajectories using data from ODR [16] and VDD [23] monkey experiments
892 Trends in Neurosciences, November 2021, Vol. 44, No. 11
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Figure 2. Analysis of information coding by delay period activity. (A) Cross-time classification matrix of recorded
neurons for a remembered task. Classifiers are trained to discriminate trial type at one timepoint (y axis) and are tested at
another timepoint (x axis). (B) In a delayed response task, calcium imaging of choice-specific cells (one cell per row) in the
posterior parietal cortex of a behaving mouse. Traces were normalized to the maximal activity of each cell on preferred trials
and sorted by the peak time. (C) Decoding from human fMRI blood oxygen level-dependent (BOLD) signals in a multi-step task
in which two items were presented as memoranda for each trial. A cue indicated which item would be tested by the impending
recognition memory probe, followed by the probe, then by a second cue, and then a second probe. Red and blue dots
indicate stimulus presentation; red triangle, first cue; blue triangle, second cue. After the first cue, decoding by a classifier of the
first cued item (red) increases whereas that of the uncued item (blue) decays to the baseline (grey). Upon presentation of the
second cue, decoded evidence for the two categories was reversed for the remainder of the trial. Abbreviation: ΔF/F, change
in fluorescence intensity. Panel (A) is reproduced, with permission, from [82], (B) from [83], and (C) from [84].
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[88]. This analysis revealed that single neurons display various temporal patterns in their delay
period activities (Figure 3A). However, population coding of a stimulus stored in working memory
is stable within a subspace where working memory coding is stationary, despite considerable
temporal changes in the orthogonal subspace (Figure 3B) as proposed in [89]. This observation
was reproduced in attractor network models [88]. In conclusion, temporal variations of delay pe-
riod neural activities can be reconciled with a stable working memory representation over time in
a low-dimensional subspace or manifold of neural population activity.
Trends in Neurosciences, November 2021, Vol. 44, No. 11 893
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Figure 3. Coexistence of stable working memory coding and temporal dynamics of delay period neural population activity. (A) Six individual neurons are
shown for each of two monkey experiments using oculomotor delayed response (ODR, left) and vibrotactile delayed discrimination (VDD, right) tasks. Different colors
correspond to different stimuli. (B) Demixed principal component analysis (PCA) of prefrontal cortex (PFC) population activity reveals that coding is stable (traces for
different colors are distinct) in a subspace of the population activity-state space (PC1 and PC2), whereas temporal changes are confined in the orthogonal subspace
(time PC1). (C) Firing rate distributions of PFC neurons in behaving monkeys, plotted with a logarithmic scale along the x axis and a linear scale along the y axis for the
ODR and VDD experiments, respectively. (D) Firing rate distributions of ALM neurons from mice performing a delay-dependent task. Panels (A–C) are reproduced, with
permission, from [88], panel (D) was generated, with permission, from data provided by Nuo Li [63].

Trends in Neurosciences
Firing activity during a delay period may move among different neural groups. In rodents, several
studies found temporal 'tiling' of a delay period by transiently active neurons [83,90,91]. In one
mouse experiment, delay period activity of neurons (monitored by calcium imaging) in the poste-
rior parietal cortex was transient rather than tonic: each firing cell briefly peaked at a different time
894 Trends in Neurosciences, November 2021, Vol. 44, No. 11
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during the delay period (Figure 2B) [83], demonstrating sequential activation of neural groups
[92,93]. Such a delay period activity pattern is incompatible with a stationary code. Transient
activities were also found in the mice anterior agranular insular cortex in another delay-dependent
experiment [91]. On the other hand, in the aforementioned delayed response task, analysis of
peak times of spiking activity of recorded neurons did not support sequential activation underlying
delay period information coding [62], and so far no evidence has been reported for delay period
sequential activity in monkey experiments.

If working memory is indeed represented by a sequence of transiently active neurons, the stored
information must be read out from different neural groups at different times. In that case, would
downstream neurons need to constantly change their input weights over time for decoding? A
simple solution is for readout neurons to receive converging inputs from all mnemonic cells.
However, in that case, a downstream neuron would display stationary persistent activity [92],
and thus the computational benefit of such a scheme in comparison with a stationary code in
the first place remains unclear.

Some types of temporal variations of delay activity are suitable to serve specific functions. For
instance, ramping activity could reflect anticipated timing of the memory-guided behavioral
response [94–96]. Corroborative evidence was also reported in a delayed response task in mice
in which ALM neurons showed ramping activity when the delay duration was fixed, but tonic per-
sistent activity in trials where the delay duration varied probabilistically and therefore was not pre-
dictable [62]. Other temporal changes require different explanations, some of which may be
related to uncontrolled factors in an experiment, such as micro-behavior that is not necessary to
perform the task [97].

Independently of temporal variations in the firing of a cell, delay period activity also varies con-
siderably from cell to cell (e.g., Figure 3A). Whereas early models strove for simplicity to optimize
analysis and interpretations of network behavior, more recently elaborated attractor models display
considerable cell-to-cell heterogeneities [78,98–102]. In the brain, heterogeneity could arise from
variations of biological properties across individual cells in a well-defined population, or/and be-
cause several subtypes of neurons are being recorded [103]. Heterogeneity across neurons may
also be understood in terms of desirable functions such as mixed-selectivity that is essential for
flexible cognitive behaviors [104,105].

Activity-silent states
The key assumption of the attractor model is that a biological working memory circuit has distinct
stimulus-selective mnemonic attractor states that coexist with a stable resting state. Alternatively,
and inconsistent with the attractor model, a network may have only a single attractor (the resting
state) and delay period activity may be genuinely transient: a to-be-remembered stimulus
perturbs the system to another internal state, from which it returns to the resting state after the
input offset during a delay period. The return trajectory may be slow, but elevated activity should
eventually disappear if the delay period is sufficiently long.

The 'activity-silent state' model posits that a memorandum can be encoded by 'hidden' variables
that are unobservable at the level of neuronal spiking [106], in which case there would be no need
for persistent activity in the form of an attractor state. A plausible biological substrate for such
activity-silent working memory is synaptic short-term facilitation (STF), which in rodent cortex is
more prominent at synapses between excitatory neurons in frontal cortex than primary visual
cortex [107,108]. Importantly, substantial STF does not automatically imply an activity-silent
state; instead, it could be required for the maintenance of persistent activity [107]. Moreover,
Trends in Neurosciences, November 2021, Vol. 44, No. 11 895
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persistent activity that depends on STF could be repetition of brief population bursts (Figure 3 in
[109]), which should still be considered to be an attractor rather than an activity-silent state.
Thus, 'hidden' synaptic variables and spiking are not decoupled, and STF can contribute to
the maintenance of persistent activity as part of the synaptic machinery [110]. Interestingly,
STF and other slow synaptic or cellular processes could induce history-dependence across
trials [110–112], which has been observed in monkey and human studies [111,112].

On the other hand, short-term synaptic plasticity (STF) could maintain a short-termmemory trace
even when self-sustained neural spiking dies out [109]. In other words, the activity-silent state
model assumes that a dynamical variable of STF, not observable by spiking activity, could
mediate short-term memory. Results from neurophysiological tests of this idea are not clear-cut,
partly because interpretations are not straightforward for different types of measurements –

ranging from single-neuron physiology and electroencephalography (EEG)/magnetencephalography
(MEG) to fMRI blood oxygen level-dependent (BOLD) signal. For instance, in a monkey experiment,
local field potential (LFP) displays brief episodes of synchrony in the gamma frequency band
(around 40 Hz), and this was interpreted as being inconsistent with the sustained activity model
[113,114]. However, persistent activity of single cells often coexists with intermittent and weak LFP
rhythms [115–118]. Furthermore, if brief bursts are the neural substrate of workingmemory represen-
tation, this predicts that variability of spike trains would bemuch higher during the delay period than in
the resting state. This prediction is contradicted by single-cell data from three monkey experiments
[119]. A unifying explanation of all these data is the theory of sparsely synchronous oscillations,
where episodic bursts of network coherence coexist with sustained firing of single cells [116,117],
and temporally enhance information conveyed by spikes [113,118].

Nevertheless, the activity-silent scenario has a specific prediction – if a brief stimulus activates one
of several neural assemblies in a network and therefore induces STF at their interconnections,
then a later non-selective global signal (a 'pinging' of the entire network) would selectively 're-
awaken' that particular neural assembly because its hidden state is differentially primed by STF
[109]. This prediction has been tested in human experiments. In one study, a subject was
shown two sample stimuli (a face and a word), followed by a delay period when a post-cue
instructed which of the two would be probed (e.g., word). Then a test (the same or a different
word) was shown and the participant responded 'match' or 'nonmatch'. The trial continued with
a second delay when another post-cue instructed which of the two would be probed next
(which might be face or word); a final test stimulus was shown, and the subject responded
'match' or 'nonmatch' [84]. Multivoxel patterns from the BOLD signal were used to decode each
of the items in the initial sample set. It was found that category (face or word) decoding by
BOLD signal decayed to baseline. However, each post-cue 'reawakened' significant decoding of
the corresponding stimulus category (Figure 2C), supporting the idea that information remains in
some hidden state that is not detectable by the BOLD signal, with the caveat that fMRI measure-
ments are not directly related to spiking neural activity. Moreover, transcranial magnetic stimulation
(TMS) could reactivate the representation of the latest cued category, consistent with the model
prediction about pinging a short-term memory system [109]. Similar findings were reported in
another experiment with two to-be-remembered items, using decoding from EEG and pinging
with nonspecific visual stimulation [120].

Two experiments [84,120] were designed on the idea that a stored item can be 'in' (if cued) or 'out
of' (when uncued) the focus of internal attention [121,122]. These observations suggest that an
item at the center of attention is represented by persistent activity, whereas information about
another item encoded in a hidden variable can be reactivated when it becomes a priority.
However, these studies did not distinguish behaviorally relevant stimuli from distractors. This is
896 Trends in Neurosciences, November 2021, Vol. 44, No. 11
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crucial because a requirement for normal working memory function is the ability of the brain to
filter out irrelevant distracting sensory flow [22,39,41,123–125]. Modeling work showed that a
synaptic memory trace is strongest for the latest shown stimulus because signals of earlier stimuli
decay [126]. Therefore, in the absence of some additional control mechanism, such a passive
memory trace cannot realize working memory in the face of distractors that are presented after
behaviorally relevant stimulation.

One argument for the activity-silent state model is that spikes are costly [127], and therefore
realizing a memory trace without spike firing would save energy [106]. If so, in the monkey
ODR and VDD experiments, PFC neuronal spike firing rates during the delay period should be
greater than during the baseline state of fixation ('foreperiod') at the start of a trial. This is not
true: surprisingly, the distribution of firing rates across the recorded PFC neurons is roughly
log-normal and the same was seen across behavioral epochs for both experiments (Figure 3C).
This is also the case for delay period activities in the mouse experiment of [63] (Figure 3D).
Presumably, in a given trial neurons selective for an encoded stimulus have elevated spiking ac-
tivity, whereas others reduce their firing, in such a way that the total population activity remains
similar to the baseline state. Therefore, the attractor network model for persistent activity cannot
be discounted, and the activity-silent state model is not favored, on the grounds of metabolic
energy consumption in the brain.

Persistent activity is required for manipulation of information in working memory
A functional perspective distinguishes short-termmemory (STM), possibly involving the hippocam-
pus [128], from working memory for which information is not only maintained but also
manipulated without direct sensory stimulation [3,4,129,130]. Even simple delay-dependent
tasks may entail information manipulation to transform a sensory cue into a prospective plan for
the future [131,132]. How can one test computationally the hypothesis that maintenance and
manipulation of information during a delay period have different demands and differentially engage
persistent activity? In recent years, tools from machine learning have been used to train recurrent
neural networks (RNNs) to perform tasks [133]. An RNN is initially a 'blank slate', where connection
weights are random, and the network is incapable of any function. If a to-be-learnt task involves a
mnemonic delay, this approach does not make an a priori assumption as to whether an RNN will
solve the problem by virtue of a persistent activity pattern or an activity-silent state. Therefore, it
offers an opportunity to investigate which of the two scenarios emerges from training [101].

In the model depicted in Figure 4A, an input layer signals the spatial location and direction of
motion stimuli, and an output layer generates a delayed response. The recurrent network
between the input and output layers is wired with connections endowed with STF. Some connec-
tions are dominated by short-term depression (Figure 4B, left) whereas others are dominated by
STF (Figure 4B, right). The overall synaptic efficacy is the product of the depression factor and
facilitation factor. In a motion-direction DMS task, the sample is decoded either by recurrent
neural population activity or by activity-silent synaptic efficacy. When the delay period is short, STF
can maintain a memory trace of the sample, in which case activity is not necessary. However,
with gradually prolonged delay duration, the solution found by learning in a trained RNN increasingly
depends on decoding by the firing activity of recurrent units (Figure 4C). This is because, when the
delay period is long compared to the biological time-constants of STF, in an activity-silent state
scenario a passive memory trace would decay away before the end of the mnemonic delay, and
persistent activity sustained by an attractor state emerges from training through experience.

What happens if an RNN is trained to perform a working memory task where information must be
manipulated during the delay period? In a delayed match-to-rotated-sample (DMRS) task,
Trends in Neurosciences, November 2021, Vol. 44, No. 11 897
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Figure 4. A recurrent neural network trained by machine learning to perform working memory tasks. (A) Model scheme. (B) Short-term facilitation (STF) and
short-term depression in response to a pulse input. Variable u (red) is the facilitation factor, and x (blue) is the depression factor, both defined between 0 and 1. Synaptic
efficacy is proportional to the product ux. (C) After the model is trained to perform a delayed match to sample (DMS) task, decoding accuracy from the recurrent population
activity is poor with short delay duration, but gradually increaseswhen the delay becomes longer than the biological time-constants of STF. (D) Scatterplot showing the level
of persistent neuronal activity, measured as the neuronal decoding accuracy during the last 100 ms of the delay (x axis), versus the level of manipulation of information
necessary to perform a delayed response task (y axis) across nine different tasks (indicated by colored crosses). Abbreviations: DMRS, delayed match to rotated
sample; figures indicate the rotation of the target test in degrees. ABBA and ABCA represent the order of presentation of items (ABBA is more demanding than ABCA
because the match response should correspond to the second A but not second B). Adapted, with permission, from [101].
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subjects must decide whether the test direction is the same as the sample direction rotated
by 90°. In this case, even with a short delay, persistent activity emerged naturally from training,
demonstrating that the amount of persistent activity (hence the accuracy of its sample decoding)
depends on the behavioral demand for information manipulation during the delay period. This
conclusion was further confirmed by training different RNNs to perform one of nine tasks for
which the degree of required information manipulation was quantified. Generally, decoding
898 Trends in Neurosciences, November 2021, Vol. 44, No. 11
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Outstanding questions
Under what behavioral circumstances
is memory instantiated by sequential
activation of different neural groups,
each firing briefly? In the scenario
of sequential activation, what is the
mechanism that allows a downstream
system to read out the stored
information at different timepoints?

What is the precise dynamical nature
of persistent activity? How can one
distinguish an attractor of highly
complex spatiotemporal neural activity
from slowly decaying transients?

What biologically realistic neural circuit
model accounts for the observation
that total neural population activity
remains unchanged during rest and
active working memory?

During the mnemonic period of a
working memory task, is the internal
representation retrospective about
previously shown stimuli or prospective
about upcoming events and actions?
How does the transformation from
retrospective to prospective coding
take place in a neural circuit?

What is the biological mechanism of
the history-dependence of working
memory behavior across trials? What
would be its functional utility?

How can the limited working memory
capacity be explained mechanistically?
How is the content of working memory
controlled and flexibly updated
accuracy from recurrent population activity increases with the task demand of information manipu-
lation (Figure 4D). These findings highlight the importance of distinguishing passive short-term
memory traces from active working memory: short-term memory traces do not always require
persistent activity. On the other hand, internal computation is carried out and communicated by
spikes; because information manipulation is an integral part of working memory at the cognitive
level, persistent activity is essential for working memory.

Concluding remarks
I have reviewed experimental and theoretical research on selective self-sustained persistent activity as
a neural substrate for working memory representation. Substantial progress has been made in our
understanding of the neural circuit mechanisms of persistent activity, taking advantage of close inter-
actions between experimentation using delay-dependent tasks and biologically based computational
models. An important concept running through this research is of 'attractors' – stable states of a
dynamical system that may be steady-states (corresponding to tonic persistent activity) or complex
spatiotemporal patterns. The workhorse for working memory maintenance is positive feedback,
which depends on the recurrent synaptic excitation, although single neuronal and synaptic dynamical
properties also play a role [31,134]. Feedbacks include both local and long-distance connections
such as the phonological loop in the case of human speech [135]. The attractor network model
makes several testable predictions (Box 2). It is a synaptic theory because it mainly relies on network
reverberations. Short-term synaptic plasticity, which depends on neural firing and in turn can
enhance spiking activity, represents one contributing factor and fits naturally into the attractor network
model [107,110,112]. Alternatively, if a memory trace is encoded solely by a hidden state such
as synaptic efficacy that is endowed with short-term plasticity, physiological experiments should
be able to detect the trace [112,136]. The energy-saving argument in favor of the activity-silent
state scenario [106,114] is inconsistent with the conserved totality of neural population spiking activity
across different behavioral epochs. A hidden-variable mechanism is likely to be sufficient for passive
short-termmemory, but not for active workingmemory, because it works only when the delay period
is short compared to the time-constant of the underlying biological process, it does not filter out
distractors, and it is not suited to subserve information manipulation internally in the brain [101].

In summary, persistent firing has withstood challenges as the neural substrate of working memory
coding. At the same time, recent work also highlights the need to better understand the complex
Box 2. Predictions of an attractor state in contrast to a decaying transient

An attractor as the substrate of an internal brain state is robust against brief andmodest perturbations, which can be noise,
sensory distractors, or intruding thoughts. This can be tested experimentally using optogenetic perturbations.

A workingmemory representation sustained by an attractor is insensitive to the duration of amnemonic time-period, which
can be varied systematically in an experiment. Forgetting is an active process caused by interference from other external or
mental events.

Neurobiologically, an activity-silent memory trace can be instantiated by a purely feedforward process. By contrast, the
attractor model predicts that memory relies on sufficiently strong reverberations through feedback loops at multiple levels
in a subnetwork of the brain.

The coexistence of multiple attractors enables a working memory circuit to rapidly switch between a resting state and an
information-specific mnemonic state, in contrast to slow transients that cannot be turned off by a brief input.

The attractor networkmodel, but not the activity-silent state model, is capable of filtering out behaviorally irrelevant distractors
in working memory; this can be verified experimentally using distracting stimuli that are shown after a behaviorally relevant
stimulus is stored in working memory.

The landscape of multiple attractors can be modified flexibly by executive control signals, which vary depending on
cognitive load.
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according to behavioral demands?

What is the large-scale brain circuit
basis of distributed working memory?
What would constitute an adequate
mathematical model of such distributed
representation?
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spatiotemporal mnemonic processes in a working memory circuit, as well as the distinction
between working memory and passive short-term memory. Efforts devoted to understanding
the neural circuit mechanism of persistent activity have played a major role in revealing the mystery
of the PFC [59]. Among the most important challenges for future research (see Outstanding
questions) is the need to elucidate how the PFC works with the rest of brain in distributed working
memory and related cognitive processes to advance the nascent neuroscience of large-scale brain
systems [126,137–140].
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