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We characterize a class of strongly intermittent processes in space and time as sporadic chaos, for
which the dynamical entropy (a measure of randomness or information content) per unit time is not ex-
tensive and exhibits fractal scaling with the system size. Theoretical arguments are presented to show
that directed percolation processes at the criticality are sporadically chaotic in that sense. For deter-
ministic sporadic chaos, many positive Lyapunov exponents exist but the information generation rate
per unit time and unit space volume is zero. An analysis of the Lyapunov exponent spectrum is carried
out on the Chaté-Manneville coupled map lattice model at the transition point from rest to space-time
chaos. The scaling exponents for the dynamical entropy per unit time and the attractor’s Lyapunov di-
mension are estimated. Furthermore, the accumulation of exponents near zero gives rise to a divergence

of the Lyapunov exponent distribution density at zero.

PACS number(s): 05.45.+b, 47.53.+n, 64.60.Ak

I. INTRODUCTION

Many dynamical systems in nature display complex
behaviors where random variations and coherent patterns
are interspersed in space and time [1]. Imagine such a
strongly intermittent system. Suppose that if one looks at
a spatially localized observable its time evolution is so
dominated by regular behavior or simply by quiescence
that the chaotic activity occurs only on a fractal subset of
time with zero measure. On the other hand, if one looks
at the spatial pattern at a given time, active fluctuations
are also confined to a fractal subset, embedded in an oth-
erwise well ordered or silent space. How can one quanti-
tatively characterize the space-time dynamics of such sys-
tems? In what precise sense can they be identified as
chaotic or “at the border of chaos’?

In this work we propose to examine these questions in
terms of the basic concepts of chaos theory, namely, the
Lyapunov exponents and the Kolmogorov-Sinai entropy
hxs [2]. Chaotic time evolution of a deterministic
differentiable system has at least one positive Lyapunov
exponent A and displays exponential sensitivity to initial
conditions. Because of the Pesin’s equality (which we as-
sume to hold in general for attractors)

hgs= 2 A s
ki>0

(1.1

hxs is also strictly positive. The dynamical entropy hgg
measures the information production rate per unit time
by the process. It can be expressed as the limit

1
hgs= lim —H(T), 1.2)
Ks Tl—I>noo T ( ) (
where H (T) is the entropy (“information content”) of the
process over a time interval 7. Furthermore, if A; are la-

beled in a decreasing order, then the Lyapunov dimen-
sion D; of the attractor is
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(1.3)

On the other hand, it has been shown [3,4] that strong
temporal intermittency can display sporadic chaos, in the
sense that

T* (0<a<l)
H(T) ~

5w |T/(InT)? (@>0), 9
and nearby trajectories diverge as 8x, ~exp(ct®)8x,, or
8x, ~exp[ct /(Int)*]6x,, with ¢ >0. For sporadic time
evolution, no positive Lyapunov exponent exists and the
entropy per unit time is zero. Examples of this kind in-
clude the Pomeau-Manneville dynamics at the criticality
[5] and a quantum spin system [6]. This phenomenon can
also be realized by purely stochastic processes, in which
case the Shannon entropy for a time interval T behaves as
Eq. (1.4). In fact, Mandelbrot first investigated such
sporadic random functions and pointed out the unusual
behavior of Shannon entropy in the context of informa-
tion theory of communication [7,8]. More recently, it
was shown that the Lévy motion (a model of anomalous
diffusion) [9] can be sporadic in the same sense [10].

Now consider a highly intermittent dynamical system
with many active elements (or degrees of freedom) in a
large spatial extension L (of volume ¥V =L¥, d being the
spatial dimensionality). One can easily construct peculiar
examples for which the space-time dynamical entropy
H (V,T) scales with ¥ and T anomalously. For instance,
if independent critical Pomeau-Manneville maps are dis-
tributed on a discrete lattice or on a fractal sublattice of
dimension d, one can have, respectively,

a

H(V,T)~ (1.5)
Tay?r/d
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for 0<a and d;/d <1. The largest Lyapunov exponent
is zero and the system is temporally sporadic.

It has been suggested that certain “self-organized criti-
cal” (SOC) systems [11,12] are characterized by the ab-
sence of positive Lyapunov exponents. This, however, has
been shown numerically to be untrue in a SOC earth-
quake model [13] and is likely so for most SOC processes
and for extended dynamical systems in general. In the
case of fully developed fluid turbulence, which has many
positive Lyapunov exponents, Ruelle has investigated the
spectrum of Lyapunov exponents and suggested that
strong intermittency might be manifested by an infinite
distribution density of Lyapunov exponents at A=0 [14].
Evidence for such a phenomenon has been seen in ad hoc
shell models of scalar turbulence [15].

In the present work, we would like to focus on the scal-
ing of the dynamical entropy per unit time hyg(V) as
function of the size of the system V. The existence of
positive Lyapunov exponents is equivalent to the strict
positiveness of hgg(V), according to Eq. (1.1). We shall
refer to space-time sporadic chaos a large chaotic system
for which the dynamical entropy hgg( V) is not extensive:

hxs(V) ~ V¥ (0<a<1)

or (1.6)
V/(InV)® (&>0).

For instance, how hgg(V) of fluid turbulence scales with
V is an open question.

In terms of the dynamical entropy, our approach can
be applied to deterministic systems as well as stochastic
processes. In Sec. II we shall provide arguments to show
that the sporadic behavior of Eq. (1.6) is a general prop-
erty of the stochastic directed percolation (DP) processes
at the criticality. Since many large nonequilibrium
dynamical systems displaying a continuous phase transi-
tion belong to the DP universality class, the notion of
sporadic chaos could provide a general measure of
dynamical chaos for strongly intermittent processes in
space and time. In Sec. III we shall consider a well
known deterministic model of space-time
intermittency —the coupled map lattice of Chaté and
Manneville—and show by numerical simulations that the
model at the critical point of transition from resting
behavior to space-time chaos is characterized by sporadic
chaos in the sense of Eq. (1.6) as well as by a divergence
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of distribution density of Lyapunov exponents at A=0
(which we shall refer to as strong intermittency in the
sense of Ruelle). The possibility that SOC systems may
display sporadic chaos in a robust way is briefly discussed
in Sec. IV.

II. DIRECTED PERCOLATION

Many model systems of large extended nonequilibrium
processes display a continuous (second-order) phase tran-
sition from a time independent (“‘absorbing”) state to a
spatiotemporally random state (the active state). Exam-
ples arise from diverse fields, including chemical
reaction-diffusion systems [16], heterogeneous catalytic
surface [17], evolution of galaxies [18], and epidemic con-
tact process [19]. It turns out that all these models be-
long to the same universality class DP [20]. Indeed, the
conjecture has been put forth that DP is the generic criti-
cal behavior of models with a single order parameter,
which exhibit a continuous phase transition to a unique
absorbing state [21-23].

We would like to propose here that for any dynamical
process of the DP universality class, the critical behavior
at the phase transition is characterized by space-time
sporadic chaos in the sense of Eq. (1.6). The plausibility
of this hypothesis can be seen by a heuristic argument
based on the self-affine fractal properties of the critical
DP clusters. Consider a DP process (in discrete space-
time) at the criticality, the oriented direction being
viewed as time. The asymptotic activity pattern of the
system is dominated by an infinite space-time cluster.
According to the scaling theory [20], the active sites at a
given time forms a fractal that scales with the system size
L as

NI ~L®, D,=d—B/v, 2.1)

and the temporal activity at a fixed site forms a fractal
that scales with the total time of observation T as

N(T~T"', Dy=1-B/v,, (2.2)

where d is the dimensionality of the physical space, B is
the critical exponent for the stationary active site density,
and v, and v, are the critical exponents for the correla-
tion lengths in space and time, respectively. The numeri-
cal values of these exponents are summarized in Table I.

TABLE I. Critical exponents B, v, and v, for directed percolation process of spatial dimension d. Numerical values are obtained
from Essam, Guttmann, and De’Bell [24] (low density series expansion) for d =1, Grassberger [25] (Monte Carlo simulation) com-
bined with De’Bell and Essam [26] (series expansion) for d =2, Janssen [21] (e expansion around the upper critical dimension d,. =4)
for d =3,4. D is the fractal dimension of temporal activity at a given spatial location and D, is the fractal dimension of spatial ac-

tivity for a fixed time.

The space-time activity pattern forms a self-affine fractal of dimension Dr=1+D,. The dynamical entropy

per unit time scales with the system volume with the sporadicity exponent a.

d B i v DN=I_B/V" D_L:d _B/Vl a=1—B/(vld)
1 0.2765+0.0003 1.7339+0.0003 1.0969+0.0003 0.8405+0.0002 0.7479+0.0003 0.7479+0.0003
2 0.586+0.015 1.286+0.005 0.729+0.008 0.5441+0.014 1.198+0.03 0.598+0.015

3 0.82 1.10 0.58 0.25 1.59 0.53

4 1 1 1 0 2 1
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Now, the space-time activity forms a self-affine cluster,
of which the fractal dimension D has been carefully con-
sidered in [27]. Numerical results using the box-counting
method lend support to the formula

Dp=d+1—B/v,, (2.3)
which is corroborated by another independent Monte
Carlo study [28]. Indeed, this expression is expected con-
sidering that all the cuts not in the time direction are gen-
eric [29], with fractal dimension D,. Thus Dy=1+D,.

Let us find some upper bounds for the space-time
dynamical entropy H (V,T). If the temporal correlations
are ignored, then

H(V,T)=TH,(V), H/(V)=—Pflog,P{, (2.4)

where H (V) is the spatial entropy, P; is the stationary
probability for a spatial configuration labeled by the in-
dex i, and the sum is over all possible configurations.

Furthermore, if all the spatiotemporal correlations are
neglected and if in the asymptotic state the probability p
for any space-time site being active is the same, then

Hy(V,T)=VTh, ,

2.5)
hy=—plog,p —(1—p)log,(1—p) .
We have
HWV,T)=H/(V,T)<H,(V,T) . (2.6)

It is reasonable to assume that all three quantities scale
with V and T with the same exponents and we would like
to evaluate these scaling laws for Hy(V,T) and H,(V,T).
Equation (2.3) implies that the number of active sites in
a space-time (li)o%ain V' XT would scale on average like
N(V,T)~TV '""; the mean probability p for any space-
time site being active is then
N, T)

—pB/(v,d)
~22 50 T 0. 2.
vV Vo @.7)

Ignoring correlations and assuming equidistribution,
therefore,

1-B/(v,d)

Hy(V, T)=VThy~TV O (log, V) (2.8)
and the entropy per unit time is
Hoy (V)= TlilnwiTHo( V,T)~ V°O(log,V) ,
a=1—B/(vid). (2.9

On the other hand, Kinzel has analyzed the scaling of
the stationary spatial entropy H, (V) in a one-dimensional
probabilistic cellular automaton at a DP criticality and
using t:he1 finite size scaling technique showed that
H((V)~V ! [30]. Generalizing his reasoning to the
d-dimensional case, then
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H(V,T)~TV®, a=1—B/(vd), (2.10)

which agrees with the scaling of H,(V,T) except for the
logarithmic factor. These results suggest that the critical
DP process exhibits sporadic chaos in the sense that the
dynamical entropy per unit time is positive, but it scales
sublinearly with the system size [cf. Eq. (1.6)]. The
sporadicity exponent a=1—f/(v,d). The numerical
values of a for different dimensionalities are listed in
Table I.

That the dynamical entropy per unit time H (V)
=limy_, ,H(V,T)/T is strictly positive means that the
critical DP dynamics is chaotic. A finite subsystem gen-
erates a finite amount of information per time step, with a
rate that increases with the subsystem’s size monotonical-
ly albeit sublinearly. This conclusion is not obvious; ac-
tually an opposite impression might be obtained if one
looks at space and time disjointly rather than as a whole.
Suppose that one is limited to monitor the time evolution
at a fixed site and let us ask what the information genera-
tion rate per unit time A, by that temporal signal is. Ac-
cording to Eq. (2.2), the probability for a given site being
active at any particular time instant is p,~ ol /T.
Hence

A

T—>o0

h,~ —p, log,p,—(1—p,)log,(1—p,)~T

(2.11)

Similarly, at a f})xe/(‘ij time the probability for any site being
active is p,~V ' /V [Eq. (2.1)]. Hence the information
generation rate per unit space volume is

hs~ —p; logp, —(1—p;)logy(1—p;)
—B/(v,d)
~y B 2.12)
V—
However, the space-time pattern is not a direct product
of the time cut with the space cut and collectively the
dynamical interactions between spatial units generates an
amount of information per unit time that grows infinitely
with the system size.

11l. DETERMINISTIC CHATE-MANNEVILLE MODEL

The Chaté-Manneville coupled map lattice [31] is
perhaps the best known deterministic model that exhibits
a continuous phase transition from an absorbing quies-
cent state to a chaotic state and near the criticality
displays strong space-time intermittency. Initial numeri-
cal results suggested that although the transition is DP-
like, it does not belong to the DP universality class. A
later study using much larger lattice size and longer time,
however, yielded critical exponent values that are compa-
tible with the DP prediction [32].

For deterministic systems the dynamical entropy is
connected with the Lyapunov exponents and here we
would like to study the scaling properties of the entropy
and the Lyapunov exponent spectrum in the critical
Chaté-Manneville model. Let us consider a variant form
of it [32], which in one dimension is described by
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X,'t+1=f (l—G)in+§(xit»1+xit+1) 5

rx if0<x=<1
f(x)=1ir(1—x) if L1 <x =1

x ifx>1,

(3.1)

with i =1,2, ..., n, n being the system size. The periodic
boundary condition is used.

Let r =3 be fixed. The mapping dynamics f(x) is
chaotic (or active) for 0 <x <1 and stationary (or inac-
tive) for x > 1. It is readily seen that for weak coupling
(small € values), the long-term behavior of the lattice sys-
tem is a steady state where every site is inactive. Note
that there is a continuous degeneracy of such “absorbing
states.” It is known that as € is increased to €, =~0.359 85
a transition occurs, giving rise to spatiotemporal chaos
for e> €, [31,32]. Chaté has recently analyzed the scaling
properties of the behavior as e—¢, in terms of the spec-
trum of Lyapunov exponents and vectors [33]. In that
work it is shown that as e—¢€_", the fraction p,., of active
sites tends to zero, while the largest Lyapunov exponent
remains finite. Indeed, many positive Lyapunov ex-
ponents seem to exist even at e =¢,.

Here we are concerned with the scaling of the
Lyapunov spectrum as function of the lattice size n, at
the criticality. The complete Lyapunov spectrum was
computed at €=0.359 85 using the method of Gram-
Schmidt orthonormalization [34]. The dynamical entro-
py [Aks(n)] and Lyapunov dimension [D; (n)] are calcu-
lated according to Egs. (1.1) and (1.3), respectively. Note
that for a finite lattice size n, at the criticality the system
will always converge to the absorbing state. Only in the
limit of infinite lattice is the asymptotic dynamics non-
trivial. In simulations, we started with a random initial
condition [the initial state at each site was chosen from a
uniform distribution on (0,r/2)]. After a long enough
transient period of time but before the dynamics started
to decay to the absorbing state, a time interval T was
chosen, over which the Lyapunov spectrum was calculat-
ed. The Gram-Schmidt procedure requires a computa-
tion time that is proportional to n3T. This cubic depen-
dence on the lattice size makes very large-scale simula-
tions unpractical at the present time. For instance, a cal-
culation with »n =2048 and 7 =1000 takes about 22.5 h
of CPU time on a Cray Y-MP supercomputer. We have
performed the calculations with n =128, 256, 512, 1024,
and 2048; for each lattice size the Lyapunov spectrum
was computed with a time interval T'=1000 and with
several random initial conditions. In fact, we are not
aware of a Lyapunov spectrum analysis on such a large
dynamical system being reported so far in the literature.

The simulation results clearly show that both the
dynamical entropy hgg(n) and Lyapunov dimension
D, (n) increase with lattice size n; hence the model at the
criticality is chaotic with sensitivity to initial conditions.
Figure 1 shows the log-log plots of hgg(n) and D, (n)
with four different random initial conditions. In each
case the linear regression method yields a statistical fit of

straight line, with a slope a=0.711+0.06 for hgg and
x=0.85+0.03 for D, respectively. Thus we have

hys(n)~n®, a=0.71£0.06
D;(n)~n*, k=0.85%0.03 .

(3.2)

The estimated value of the exponent « is compatible with
the DP prediction (see Table I). By analogy with DP, we
hypothesize that a is equal to the fractal dimension of the
spatial set of active sites for fixed time. On the other
hand, the exponent k seems to be new and it is unknown
whether it might be expressed in terms of other critical
exponents of the system through a hyperscaling relation.
Therefore, both hgg(n) and D;(n) scale sublinearly
with the system size and we conclude that the critical
Chaté-Manneville model represents an example of space-
time sporadic chaos in the sense of Eq. (1.6). Note that
the variations of hgg(n) and D;(n) are greater with
larger values of n. Indeed, it is quit conceivable that a
quantity whose mean scales sublinearly may have vari-
ance that scales anomalously [3,4,10]. The study of fluc-

A

slope=0.71

H

3
2
7 8 9 10 11
log,(n)
B
12 T T T
10 +
€
a’ slope=0.85
o)
(o]
- 8
6 1
7 8 9 10 11
log,(n)

FIG. 1. The log-log plot of (a) the dynamical entropy hgs(n)
and (b) the Lyapunov dimension D, (n) as function of the lattice
size for the critical Chaté-Manneville model (r=3,
€=0.35985). For each n =2k, k=7,...,11, four data points
(open square) correspond to different random initial conditions.
The linear regression (solid lines) of the raw data yields a scaling
exponent a=0.71+0.06 for hgg(n) and «=0.8510.03 for
D;(n).
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tuations is not included in the present work.

In Fig. 2(a) the Lyapunov spectrum as function of the
lattice size is shown, where A; =A(x) are plotted in an in-
creasing order with x =i/n. Note that the inverse
x =F(A) is the distribution function for the exponents.
Displayed in Fig. 2(a) is one of the four samples of which
hgs(n) and D;(n) are closest to the linear regression
lines. One sees that, in agreement with Chaté [33], the
largest Lyapunov exponent A ,,=~0.43 does not change
significantly with n and the curves look continuous. This
implies that in the limit n — o, there will be a whole con-
tinuous range of positive Lyapunov exponents. On the
other hand, for each fixed n, the area below the curve and
for  A=20 (shaded for n=2048) is simply
(1/n)33, >0hi =hgs(n)/n, which clearly decreases with

n. That hgg(n) grows sublinearly with n implies that this
area should vanish as n — 0.

Another essential feature of the Lyapunov spectrum is
the existence of many near-zero exponents, the number of

A

<

1.3 ' : : ‘ ;

0.0 0.2 04 06 0.8 1.0
im=F(x)

3 r

~2Fr

<

<

o

™

©
1+
0 )
-1.5 -1.0 -0.5 0.0 0.5

li
FIG. 2. (a) A sample Lyapunov exponent spectrum for

n =128, 256, 512, 1024, and 2048 (arrow indicates increasing n).
The maximum Lyapunov exponent value (=~0.43) does not vary
significantly with n. The strong intermittency is manifested by
the presence of many near-zero exponents (inset for n =2048)
and by the fact that the dynamical entropy per unit time and
space hgs(n)/n (shaded area shown for n =2048) decreases to
zero as n— . (b) The smoothed and averaged distribution
density of Lyapunov exponents are shown with » =512 (dotted),
1024 (dashed), and 2048 (solid). The three curves are essentially
the same for A <0, while for A >0 the distribution density is a
decreasing function of n (inset). Note a large peak at A=0, indi-
cating that in the limit of infinite lattice dF /d MA=0)= 0.
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which increases with the lattice size. For n =2048 an en-
larged portion of the spectrum close to A=0 is shown in
the inset of Fig. 2(a). This observation led us to surmise
that in the limit of n = «, the distribution function F(A)
has an infinite derivative at A=0. To assess this hy-
pothesis we performed the averaged distribution density
p(A)=F'(A) for n =512, 1024, and 2048 [Fig. 2(b)]. For
a fixed n value, the distribution density for each sample
was calculated as the smoothed derivative of F(A) with a
bin AA=0.01; then an average was made over the four
samples. One sees in Fig. 2(b) that the three curves large-
ly coincide with each other for A <0. For positive A the
density is a decreasing function of n (see inset). Near
A=0, there is a peak that rapidly grows with n and seems
to diverge as n — .

Let us assume that near A=0—, F(A)=F,—alA|*
(a >0) and try to extract an estimate for u from our data
with n =2048. Let us call any Lyapunov mode “in the
interior of the attractor” if it adds to the Lyapunov di-
mension. [According to Eq. (1.1), if A; are labeled in de-
creasing order, the mode i is in the interior of the attrac-
tor if i <D;.] Let K, (K,) be the number of positive
(negative) such modes; then [D;]=K,+K,, where [x]
means the integer part of x. Now let the negative
Lyapunov modes in the interior of the attractor be A,
J=Ky+1,Ky+2,...,Ky+K,, in increasing order; then
AK0+ K, +1 is the smallest positive Lyapunov exponent.
Let us also determine a value K, ([K,]=K,+K,) by
linear extrapolation between Ag,+x, and AK0+ K,+1> SO
that AKC=O. Then (K,—j)/n is the discrete approxima-
tion of F, —F (1) for negative exponents in the interior of

the attractor. For fixed n =2048 and for each of the four
samples, we plot in Fig. 3 log;,[(K,—j)/n] as a function

0.0 -
-1.0
£
= 0.62
<
3
o
-2.0 - 0.88
.
-3.0 / I 1 )
-3.5 -2.5 -1.5 -0.5
log,, A}

FIG. 3. For n =2048, negative exponents in the interior of
the attractor are labeled in increasing order and K. is the linear-
ly extrapolated value such that AKC=O. The log-log plot of

(K.—j)/n versus A; yields a linear fit, except very close to
J=I[K.], for each of the four samples. The estimated slope
varies from 0.61 to 0.88, with a mean of 0.78, which is less than
1. This implies that in the limit of infinite system, the distribu-
tion function of Lyapunov exponents F(A)=~1—a|A|¥, u <1, for
small negative A values near zero.



52 SPORADIC CHAOS IN SPACE-TIME DYNAMICAL PROCESSES 1323

0.5

F(\)

O-O 1 1 1
-1.5 -1.0 -0.5 0.0 0.5

A

FIG. 4. Schematic drawing of the limiting distribution F(A)
of Lyapunov exponents, characterized by a horizontal plateau
for AE[0,A.,] and an infinite derivative for A—0—.

of logyo(|A;]), j=Ko+1,Ko+2,...,Ky+K,. One sees
that a large portion of each curve is linear except near
Jj=Ky+K,, where errors may occur due to the limited
accuracy (107%) with which the critical value K, was
determined and due to the finite system size [note that
the discussion in the preceding paragraph implies that
lim,_, ,K.(n)/n=F,=1]. The slope obtained from
linear regression varies from 0.61 to 0.88, with a mean
pn=0.78. Hence p<1; consequently F'(A=0)=o0.
Combining the above results we conclude that in the limit
of infinite lattice, the distribution function F(A) of
Lyapunov exponents is continuous, with a constant pla-
teau at F(A)=1 for A=0, and its derivative diverges at
A=0 as the latter is approached from the negative side
(see Fig. 4 for a schematic illustration).

IV. DISCUSSIONS

An intriguing question is whether sporadic chaos can
be a robust phenomenon that persists under small

changes of the underlying system such as tuning a control
parameter. We have argued above that sporadic chaos is
realized by critical directed percolation processes. One
can then ask whether a large nonequilibrium system can
be driven by its intrinsic dynamics into such a criticality.
Recently, Bak and Sneppen introduced a simple model of
biological evolution [35] and showed that it self-organizes
into a critical dynamics displaying strongly intermittent
coevolutionary avalanches of all sizes (“punctuated equi-
librium”). The space-time activity (‘“mutation”) seems to
behave similarly to the critical directed percolation
[36,37]. If this is true, then it follows from the argument
of Sec. II that the space-time dynamics of the Bak-
Sneppen model should be sporadically chaotic; we hy-
pothesize that its space-time dynamical entropy H (V,T)
is linear with 7, but that the entropy per unit time scales
with the system size sublinearly. Note that for discrete
models the notion of Lyapunov exponents is not well es-
tablished. The dynamical entropy, on the other hand, is
applicable and may be used to quantify the degree of
chaos in those systems.

It thus appears that sporadic chaos can indeed occur
generically in large extended nonlinear dynamical sys-
tems. The notion introduced here may be used to de-
scribe quantitatively the strongly intermittent space-time
activity in self-organized critical processes, which give
rise to the fractal scaling of information content of struc-
tures and patterns in physics, biology, or linguistics
[38,39].
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